supplementary materials


jj2166 scheme

Acta Cryst. (2013). E69, m331    [ doi:10.1107/S1600536813013202 ]

trans-Dichloridobis{2-chloro-6-[(3-fluorobenzyl)amino]-9-isopropyl-9H-purine-[kappa]N7}platinum(II)

Z. Trávnícek and P. Starha

Abstract top

In the title compound, trans-[PtCl2(C15H15ClFN5)2], the PtII atom, located on an inversion centre, is coordinated by the purine N atoms of the 2-chloro-6-[(3-fluorobenzyl)amino]-9-isopropyl-9H-purine ligands and two Cl atoms in a slightly distorted trans-square-planar coordination geometry [N-Pt-Cl angles = 89.91 (5) and 90.09 (5)°]. Weak intramolecular N-H...Cl contacts occur. In the crystal, C-H...Cl and C-H...F contacts, as well as weak [pi]-[pi] stacking interactions [centroid-centroid distances = 3.5000 (11) and 3.6495 (12) Å] connect the molecules into a three-dimensional architecture.

Comment top

In the title compound, the PtII atom is located on an inversion centre and thus, the asymmetric unit contains one-half of the described platinum(II) complex (Fig. 1). The central PtII atom is four-coordinated by two chloride anions [Pt—Cl = 2.2940 (5) Å] and two 2-chloro-6-[(3-fluorobenzyl)amino]-9-isopropyl-9H-purine molecules [Pt—N = 2.011 (2) Å], which are bonded to platinum through their N7 atoms of the purine moieties. The geometry of the complex is slightly distorted square-planar with the N—Pt—Cl angles in the vicinity of the central metal atom of 89.91 (5)° and 90.09 (5)°, and the mean plane fitted through the PtCl2N2 unit (r.m.s. deviation = 0.000 Å) being planar. Both the essentially planar purine moieties [with the maximum deviation of 0.050 (2) Å for the C5 atom] are mutually coplanar and each of them forms the dihedral angle of 62.04 (3)° and 49.58 (5)° with the PtCl2N2 unit, and the benzene ring, respectively (Fig. 1). The molecular structure involves weak N6—H6A···Cl2 intramolecular interactions (Table 1, Fig. 1). In the crystal, the molecules are connected together through weak C13—H13A···Cl2, C18—H18A···F1 and π···π (between the six-membered pyrimidine and benzene rings) intermolecular interactions into a three-dimensional architecture (Fig. 2 and 3, Table 1).

Related literature top

For the structures of platinum(II) dichlorido complexes involving different 2-chloro-6-[(substituted-benzyl)amino]-9-isopropyl-9H-purine derivatives, see: Trávníček et al. (2006); Szüčová et al. (2008). For the synthesis, see: Štarha et al. (2009).

Experimental top

The solution of 2-chloro-6-[(3-fluorobenzyl)amino]-9-isopropyl-9H-purine (0.5 mmol; prepared according to the previously described procedure, (Štarha et al., 2009) in acetone (10 ml) was slowly poured into the distilled water solution of K2PtCl4 (0.25 mmol). The reaction mixture was stirred at laboratory temperature, until the initial orange colour turned to yellow. The solid was collected by filtration and washed with distilled water and acetone. Part of the product was recrystallized from N,N`-dimethylformamide. The crystals suitable for a single-crystal X-ray analysis formed after two weeks. Analysis calculated for C30H30N10Cl4F2Pt1: C 39.8, H 3.3, N 15.5%; found: C 39.9, H 3.3, N 15.3%. Elemental analysis (C, H, N) was performed on a Thermo Scientific Flash 2000 CHNO-S Analyzer.

Refinement top

Non-hydrogen atoms were refined anisotropically and hydrogen atoms were located in difference maps and refined using the riding model with C—H = 0.95 (CH), C—H = 0.99 (CH2), C—H = 0.98 (CH3) Å, and N—H = 0.88 Å, with Uiso(H) = 1.2Ueq(CH, CH2, NH) and 1.5Ueq(CH3). The maximum and minimum residual electron density peaks of 0.52 and -0.32 e Å-3 were located 0.87 Å, and 0.27 Å from the Pt1, and H6A atoms, respectively.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme and the non-hydrogen atoms at the 50% probability level. Dashed lines indicate weak N6—H6A···Cl2i intramolecular interactions (symmetry code: i) -x, -y, -z).
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the a axis. Dashed lines indicate weak C13—H13Aiv···Cl2 intermolecular and π···π stacking interactions (Cg···Cg = 3.5001 Å) (symmetry code: iv) x, -y+1/2, z + 1/2).
[Figure 3] Fig. 3. Packing diagram of the title compound viewed along the b axis. Dashed lines indicate weak C18—H18A···F1iii intermolecular interactions (symmetry code: iii) -x+1, -y, -z).
trans-Dichloridobis{2-chloro-6-[(3-fluorobenzyl)amino]-9-isopropyl-9H-purine-κN7}platinum(II) top
Crystal data top
[PtCl2(C15H15ClFN5)2]F(000) = 888
Mr = 905.53Dx = 1.833 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15658 reflections
a = 9.37786 (13) Åθ = 3.0–31.7°
b = 12.86530 (17) ŵ = 4.65 mm1
c = 14.2891 (2) ÅT = 105 K
β = 107.9165 (16)°Prism, yellow-orange
V = 1640.36 (4) Å30.35 × 0.35 × 0.35 mm
Z = 2
Data collection top
Agilent Xcalibur Sapphire2
diffractometer
2881 independent reflections
Radiation source: Enhance (Mo) X-ray Source2726 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.010
Detector resolution: 8.3611 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1513
Tmin = 0.293, Tmax = 0.293l = 1616
13582 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.037H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0204P)2 + 1.5464P]
where P = (Fo2 + 2Fc2)/3
2881 reflections(Δ/σ)max < 0.001
216 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[PtCl2(C15H15ClFN5)2]V = 1640.36 (4) Å3
Mr = 905.53Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.37786 (13) ŵ = 4.65 mm1
b = 12.86530 (17) ÅT = 105 K
c = 14.2891 (2) Å0.35 × 0.35 × 0.35 mm
β = 107.9165 (16)°
Data collection top
Agilent Xcalibur Sapphire2
diffractometer
2881 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2726 reflections with I > 2σ(I)
Tmin = 0.293, Tmax = 0.293Rint = 0.010
13582 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.015H-atom parameters constrained
wR(F2) = 0.037Δρmax = 0.52 e Å3
S = 1.10Δρmin = 0.32 e Å3
2881 reflectionsAbsolute structure: ?
216 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.00000.00000.00000.01222 (5)
Cl10.73503 (6)0.18413 (6)0.31702 (4)0.03616 (16)
Cl20.15533 (5)0.11059 (4)0.04896 (4)0.02297 (12)
F10.32167 (15)0.15374 (11)0.40416 (9)0.0297 (3)
N10.52347 (19)0.13487 (14)0.15853 (12)0.0174 (4)
N30.49172 (18)0.08828 (14)0.31434 (12)0.0164 (4)
N60.34612 (19)0.10095 (14)0.00859 (12)0.0176 (4)
H6A0.25990.07230.02390.021*
N70.1537 (2)0.01264 (12)0.13330 (14)0.0145 (4)
N90.2482 (2)0.01119 (12)0.29616 (14)0.0148 (4)
C20.5616 (2)0.12816 (17)0.25559 (15)0.0189 (4)
C40.3566 (2)0.05155 (15)0.26050 (14)0.0137 (4)
C50.2990 (2)0.05145 (15)0.15906 (14)0.0137 (4)
C60.3894 (2)0.09529 (15)0.10649 (14)0.0140 (4)
C80.1290 (3)0.01030 (15)0.21725 (17)0.0160 (4)
H8A0.03770.03870.22150.019*
C90.4310 (2)0.15101 (17)0.04837 (15)0.0187 (4)
H9A0.51350.10490.05240.022*
H9B0.47550.21650.01590.022*
C100.3281 (2)0.17380 (15)0.15035 (15)0.0157 (4)
C110.3731 (2)0.15135 (16)0.23221 (15)0.0179 (4)
H11A0.46770.12010.22510.021*
C120.2768 (2)0.17560 (16)0.32396 (15)0.0179 (4)
C130.1394 (2)0.22057 (16)0.33922 (15)0.0205 (4)
H13A0.07660.23640.40370.025*
C140.0949 (2)0.24231 (17)0.25725 (16)0.0209 (4)
H14A0.00000.27330.26520.025*
C150.1886 (2)0.21895 (16)0.16387 (15)0.0191 (4)
H15A0.15690.23400.10830.023*
C160.2665 (3)0.01102 (16)0.40122 (16)0.0181 (5)
H16A0.34340.03780.44240.022*
C170.1208 (3)0.00727 (17)0.42384 (19)0.0238 (5)
H17A0.08520.07800.40420.036*
H17B0.13750.00140.49450.036*
H17C0.04550.04290.38740.036*
C180.3242 (3)0.1208 (2)0.42492 (17)0.0307 (5)
H18A0.41550.12990.40620.046*
H18B0.24770.17020.38830.046*
H18C0.34660.13330.49560.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.00955 (7)0.01405 (7)0.01116 (7)0.00130 (4)0.00039 (5)0.00091 (4)
Cl10.0192 (3)0.0674 (5)0.0179 (3)0.0222 (3)0.0002 (2)0.0010 (3)
Cl20.0140 (2)0.0248 (3)0.0274 (3)0.0009 (2)0.0023 (2)0.0114 (2)
F10.0371 (8)0.0390 (8)0.0154 (6)0.0029 (6)0.0115 (6)0.0034 (6)
N10.0135 (8)0.0234 (9)0.0147 (8)0.0018 (7)0.0034 (7)0.0004 (7)
N30.0122 (8)0.0219 (9)0.0140 (8)0.0012 (7)0.0022 (7)0.0011 (7)
N60.0149 (8)0.0232 (9)0.0123 (8)0.0060 (7)0.0008 (7)0.0012 (7)
N70.0133 (9)0.0159 (9)0.0130 (9)0.0009 (6)0.0022 (7)0.0001 (6)
N90.0141 (9)0.0180 (9)0.0112 (9)0.0013 (6)0.0024 (7)0.0007 (6)
C20.0112 (9)0.0260 (12)0.0174 (10)0.0028 (8)0.0010 (8)0.0011 (9)
C40.0133 (9)0.0137 (10)0.0140 (10)0.0016 (8)0.0039 (8)0.0006 (8)
C50.0124 (9)0.0125 (10)0.0145 (9)0.0013 (8)0.0015 (8)0.0010 (8)
C60.0128 (9)0.0133 (10)0.0148 (10)0.0016 (8)0.0026 (8)0.0006 (8)
C80.0125 (11)0.0189 (11)0.0155 (11)0.0032 (8)0.0024 (9)0.0003 (8)
C90.0155 (10)0.0247 (11)0.0158 (10)0.0026 (9)0.0046 (8)0.0018 (9)
C100.0166 (10)0.0139 (10)0.0163 (10)0.0030 (8)0.0046 (8)0.0005 (8)
C110.0177 (10)0.0170 (10)0.0192 (10)0.0007 (8)0.0059 (8)0.0010 (8)
C120.0247 (11)0.0170 (10)0.0138 (10)0.0026 (9)0.0085 (9)0.0006 (8)
C130.0222 (11)0.0191 (11)0.0169 (10)0.0020 (9)0.0009 (8)0.0044 (8)
C140.0148 (10)0.0200 (11)0.0268 (11)0.0022 (8)0.0050 (9)0.0051 (9)
C150.0214 (11)0.0196 (11)0.0187 (10)0.0007 (9)0.0098 (9)0.0009 (9)
C160.0164 (11)0.0283 (12)0.0097 (10)0.0043 (8)0.0039 (9)0.0014 (8)
C170.0232 (13)0.0290 (13)0.0227 (13)0.0019 (9)0.0121 (10)0.0015 (9)
C180.0334 (13)0.0408 (14)0.0195 (11)0.0122 (11)0.0103 (10)0.0117 (10)
Geometric parameters (Å, º) top
Pt1—N72.0108 (18)C9—H9A0.9900
Pt1—N7i2.0109 (18)C9—H9B0.9900
Pt1—Cl22.2940 (5)C10—C151.390 (3)
Pt1—Cl2i2.2940 (5)C10—C111.390 (3)
Cl1—C21.748 (2)C11—C121.380 (3)
F1—C121.366 (2)C11—H11A0.9500
N1—C21.324 (3)C12—C131.368 (3)
N1—C61.348 (3)C13—C141.387 (3)
N3—C21.317 (3)C13—H13A0.9500
N3—C41.349 (3)C14—C151.386 (3)
N6—C61.333 (3)C14—H14A0.9500
N6—C91.453 (3)C15—H15A0.9500
N6—H6A0.8800C16—C181.513 (3)
N7—C81.323 (3)C16—C171.516 (3)
N7—C51.390 (3)C16—H16A1.0000
N9—C81.350 (3)C17—H17A0.9800
N9—C41.372 (3)C17—H17B0.9800
N9—C161.485 (3)C17—H17C0.9800
C4—C51.382 (3)C18—H18A0.9800
C5—C61.412 (3)C18—H18B0.9800
C8—H8A0.9500C18—H18C0.9800
C9—C101.508 (3)
N7—Pt1—N7i180.0H9A—C9—H9B108.3
N7—Pt1—Cl289.91 (5)C15—C10—C11119.10 (19)
N7i—Pt1—Cl290.09 (5)C15—C10—C9120.70 (18)
N7—Pt1—Cl2i90.09 (5)C11—C10—C9120.19 (18)
N7i—Pt1—Cl2i89.91 (5)C12—C11—C10118.25 (19)
Cl2—Pt1—Cl2i180.00 (3)C12—C11—H11A120.9
C2—N1—C6117.27 (17)C10—C11—H11A120.9
C2—N3—C4109.68 (17)C13—C12—F1118.13 (19)
C6—N6—C9124.74 (17)C13—C12—C11123.80 (19)
C6—N6—H6A117.6F1—C12—C11118.06 (19)
C9—N6—H6A117.6C12—C13—C14117.65 (19)
C8—N7—C5105.71 (18)C12—C13—H13A121.2
C8—N7—Pt1124.49 (15)C14—C13—H13A121.2
C5—N7—Pt1129.68 (14)C15—C14—C13120.2 (2)
C8—N9—C4106.56 (18)C15—C14—H14A119.9
C8—N9—C16127.83 (19)C13—C14—H14A119.9
C4—N9—C16125.45 (18)C14—C15—C10121.01 (19)
N3—C2—N1131.76 (19)C14—C15—H15A119.5
N3—C2—Cl1114.12 (15)C10—C15—H15A119.5
N1—C2—Cl1114.11 (15)N9—C16—C18109.15 (17)
N3—C4—N9126.44 (18)N9—C16—C17110.76 (19)
N3—C4—C5126.43 (18)C18—C16—C17112.39 (19)
N9—C4—C5107.08 (17)N9—C16—H16A108.1
C4—C5—N7108.25 (17)C18—C16—H16A108.1
C4—C5—C6116.90 (17)C17—C16—H16A108.1
N7—C5—C6134.64 (18)C16—C17—H17A109.5
N6—C6—N1119.28 (18)C16—C17—H17B109.5
N6—C6—C5122.78 (18)H17A—C17—H17B109.5
N1—C6—C5117.92 (17)C16—C17—H17C109.5
N7—C8—N9112.38 (19)H17A—C17—H17C109.5
N7—C8—H8A123.8H17B—C17—H17C109.5
N9—C8—H8A123.8C16—C18—H18A109.5
N6—C9—C10109.24 (16)C16—C18—H18B109.5
N6—C9—H9A109.8H18A—C18—H18B109.5
C10—C9—H9A109.8C16—C18—H18C109.5
N6—C9—H9B109.8H18A—C18—H18C109.5
C10—C9—H9B109.8H18B—C18—H18C109.5
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···Cl2i0.882.533.222 (2)136
C13—H13A···Cl2ii0.952.863.492 (2)125
C18—H18A···F1iii0.982.493.450 (3)166
Symmetry codes: (i) x, y, z; (ii) x, y+1/2, z1/2; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···Cl2i0.882.533.222 (2)136
C13—H13A···Cl2ii0.952.863.492 (2)125
C18—H18A···F1iii0.982.493.450 (3)166
Symmetry codes: (i) x, y, z; (ii) x, y+1/2, z1/2; (iii) x+1, y, z.
Acknowledgements top

This work was supported by Palacký University (grant No. PrF_2013_015). The authors wish to thank Mr Tomáš Šilha for performing the CHN elemental analysis.

references
References top

Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.

Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Štarha, P., Trávníček, Z. & Popa, I. (2009). J. Inorg. Biochem. 103, 978–988.

Szüčová, L., Trávníček, Z., Popa, I. & Marek, J. (2008). Polyhedron, 27, 2710–2720.

Trávníček, Z., Marek, J. & Szüčová, L. (2006). Acta Cryst. E62, m1482–m1484.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.