supplementary materials


lx2286 scheme

Acta Cryst. (2013). E69, o1124    [ doi:10.1107/S1600536813016243 ]

{2-[(1,3-Benzothiazol-2-yl)methoxy]-5-chlorophenyl}(4-chlorophenyl)methanone

K. N. Venugopala, S. K. Nayak and B. Odhav

Abstract top

In the title compound, C21H13Cl2NO2S, the benzothiazole ring makes dihedral angles of 0.94 (1) and 70.65 (5)° with the 4-chlorophenylmethanone unit and the 5-chlorophenyl ring, respectively. The dihedral angle between the 4-chlorophenylmethanone unit and the 5-chlorophenyl ring is 66.20 (5)°. The crystal structure consists of dimeric units generated by C-H...N hydrogen bonds, further linked by C-H...O and C-H...[pi] interactions, leading to a three-dimensional network.

Comment top

Substituted benzothiazole derivatives have been reported to exhibit various pharmacological properties such as analgesic, antibacterial, antifungal, antidepressant, antitumor, antihypertensive, anthelmintic, and herbicidal activity (Kelarev et al. (2003)). However, the variety of biological and structural features of new benzothiazole derivatives is of great scientific interest (Rana et al. (2007); Telvekar et al. (2012); Saeed et al. (2010) and Nayak et al. (2013)). In continuation of our interest on such molecules (Venugopala et al. (2012)) here, we report the single-crystal structure of the title compound.

In the title molecule (Fig. 1), the benzothiazole ring makes dihedral angles of 0.94 (1)° and 70.65 (5)° with the 4-chlorophenylmethanone unit and the 5-chlorophenyl ring, respectively. The dihedral angle between the 4-chlorophenylmethanone unit and the 5-chlorophenyl ring is 66.20 (5)°. The crystal structure consists of dimeric units generated by C–H···N hydrogen bonds, further linked by C–H···O and C–H···π interactions, which lead to a three-dimensional network (Table 1 and Fig. 2, Cg is the centroid of the S1/C1/C6/N1/C7 thiazole ring). The crystal structure consists of dimeric units generated by C–H···N hydrogen bonds, further linked by C–H···O and C–H···π interactions, which lead to a three-dimensional network (Table 1 and Fig. 2).

Related literature top

For crystal structures of benzothiazole derivatives, see: Venugopala et al. (2012); Nayak et al. (2013). For background to the applications of benzothiazole derivatives, see: Rana et al. (2007); Saeed et al. (2010); Kelarev et al. (2003); Telvekar et al. (2012).

Experimental top

A mixture of (2-chloromethyl)benzo[d]thiazole (1 mmol) and (5-chloro-2-hydroxyphenyl)(4-chlorophenyl)methanone (1 mmol) and in dry THF, dry potassium carbonate (1 mmol) was added and stirred at room temperature. The reaction mixture was added and the reaction mixture was stirred at room temperature for 14 h. The reaction mixture was concentrated to remove the solvent, diluted with ethyl acetate, washed with water, brine solution and dried over anhydrous sodium sulfate. The organic layer was concentrated to yield a residue which was purified by column chromatography using ethyl acetate and n-hexane as eluent (7:3, Rf = 0.73) to afford the product in 83% as a brown solid (m. p. 448 (2) K). Suitable crystals for single-crystal X-ray study were obtained from dichloromethane solvent using slow evaporation technique at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å for aryl and 0.99 Å for methylene H atoms. Uiso(H) = 1.2Ueq(C) for aryl and methylene H atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C–H···N, C–H..O and C–H···π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i)x-1/2,-y+3/2,z-1/2; (ii)-x+1,-y+1,-z+1; (iii)x,y-1, z]
{2-[(1,3-Benzothiazol-2-yl)methoxy]-5-chlorophenyl}(4-chlorophenyl)methanone top
Crystal data top
C21H13Cl2NO2SF(000) = 848
Mr = 414.29Dx = 1.498 Mg m3
Monoclinic, P21/nMelting point: 448(2) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.7107 Å
a = 13.6452 (4) ÅCell parameters from 340 reflections
b = 7.47005 (19) Åθ = 1.0–28.0°
c = 18.7286 (6) ŵ = 0.48 mm1
β = 105.772 (3)°T = 292 K
V = 1837.14 (9) Å3Plate, colourless
Z = 40.23 × 0.21 × 0.14 mm
Data collection top
Oxford Diffraction Xcalibur (Eos, Nova)
diffractometer
3602 independent reflections
Radiation source: Mova (Mo) X-ray Source2544 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.047
Detector resolution: 16.0839 pixels mm-1θmax = 26.0°, θmin = 3.0°
ω scansh = 1616
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 99
Tmin = 0.897, Tmax = 0.935l = 2322
18937 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.109H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.3056P]
where P = (Fo2 + 2Fc2)/3
3602 reflections(Δ/σ)max = 0.001
241 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C21H13Cl2NO2SV = 1837.14 (9) Å3
Mr = 414.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.6452 (4) ŵ = 0.48 mm1
b = 7.47005 (19) ÅT = 292 K
c = 18.7286 (6) Å0.23 × 0.21 × 0.14 mm
β = 105.772 (3)°
Data collection top
Oxford Diffraction Xcalibur (Eos, Nova)
diffractometer
3602 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2544 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 0.935Rint = 0.047
18937 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.109Δρmax = 0.24 e Å3
S = 1.08Δρmin = 0.29 e Å3
3602 reflectionsAbsolute structure: ?
241 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.03821 (5)0.35913 (10)0.66313 (5)0.0683 (2)
Cl20.27764 (6)0.15904 (12)0.68234 (5)0.0776 (3)
S10.41607 (5)0.64525 (9)0.62033 (3)0.0465 (2)
O10.61507 (12)0.6008 (2)0.61055 (9)0.0449 (4)
O20.75637 (13)0.4439 (3)0.80903 (9)0.0571 (5)
N10.39772 (14)0.8383 (2)0.50261 (9)0.0357 (4)
C10.29751 (17)0.7360 (3)0.57862 (12)0.0384 (5)
C20.20652 (19)0.7169 (3)0.59779 (13)0.0496 (7)
H20.20330.64940.63880.060*
C30.12177 (14)0.8006 (3)0.55448 (11)0.0551 (7)
H30.06000.78920.56610.066*
C40.12656 (14)0.9025 (3)0.49327 (11)0.0524 (7)
H40.06810.95920.46520.063*
C50.21558 (18)0.9210 (3)0.47357 (12)0.0433 (6)
H50.21790.98910.43250.052*
C60.30286 (17)0.8354 (3)0.51649 (11)0.0344 (5)
C70.46196 (17)0.7448 (3)0.55169 (11)0.0335 (5)
C80.56983 (17)0.7178 (3)0.55111 (12)0.0410 (6)
H8A0.57290.66580.50430.049*
H8B0.60560.83150.55740.049*
C90.71332 (16)0.5456 (3)0.61952 (12)0.0359 (5)
C100.76869 (18)0.5827 (3)0.56916 (13)0.0423 (6)
H100.73870.64680.52620.051*
C110.86790 (19)0.5250 (3)0.58258 (14)0.0476 (6)
H110.90460.54900.54850.057*
C120.91267 (17)0.4315 (3)0.64669 (15)0.0455 (6)
C130.85941 (17)0.3962 (3)0.69754 (13)0.0406 (6)
H130.89100.33560.74110.049*
C140.75846 (16)0.4504 (3)0.68441 (12)0.0352 (5)
C150.70758 (17)0.4179 (3)0.74501 (13)0.0364 (5)
C160.60070 (17)0.3519 (3)0.72806 (11)0.0328 (5)
C170.55910 (17)0.2434 (3)0.66717 (12)0.0375 (5)
H170.59750.21370.63480.045*
C180.46132 (18)0.1796 (3)0.65457 (13)0.0413 (6)
H180.43430.10340.61480.050*
C190.40357 (17)0.2297 (3)0.70148 (13)0.0426 (6)
C200.44320 (18)0.3374 (3)0.76184 (13)0.0435 (6)
H200.40350.37050.79290.052*
C210.54231 (18)0.3957 (3)0.77580 (12)0.0388 (6)
H210.57040.46500.81760.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0348 (4)0.0681 (5)0.1045 (6)0.0057 (3)0.0233 (4)0.0048 (4)
Cl20.0439 (5)0.0873 (6)0.1010 (6)0.0192 (4)0.0186 (4)0.0089 (5)
S10.0465 (4)0.0513 (4)0.0448 (4)0.0111 (3)0.0174 (3)0.0183 (3)
O10.0344 (9)0.0520 (10)0.0520 (10)0.0117 (8)0.0180 (8)0.0215 (8)
O20.0495 (11)0.0790 (14)0.0378 (10)0.0129 (10)0.0032 (9)0.0004 (9)
N10.0373 (11)0.0370 (11)0.0321 (10)0.0027 (8)0.0084 (9)0.0035 (8)
C10.0397 (14)0.0370 (13)0.0398 (13)0.0046 (10)0.0131 (11)0.0034 (10)
C20.0507 (17)0.0545 (16)0.0502 (15)0.0031 (13)0.0245 (13)0.0062 (13)
C30.0427 (16)0.0652 (18)0.0626 (18)0.0036 (13)0.0231 (14)0.0006 (14)
C40.0386 (15)0.0629 (18)0.0525 (16)0.0123 (13)0.0068 (13)0.0026 (13)
C50.0421 (15)0.0465 (14)0.0390 (14)0.0040 (11)0.0068 (12)0.0054 (11)
C60.0379 (14)0.0325 (12)0.0327 (12)0.0002 (10)0.0093 (11)0.0035 (10)
C70.0366 (13)0.0302 (12)0.0340 (12)0.0004 (10)0.0102 (10)0.0004 (10)
C80.0385 (14)0.0431 (14)0.0422 (14)0.0059 (11)0.0123 (11)0.0114 (11)
C90.0321 (13)0.0318 (12)0.0454 (14)0.0011 (10)0.0131 (11)0.0007 (10)
C100.0433 (15)0.0406 (14)0.0468 (14)0.0005 (11)0.0187 (12)0.0018 (11)
C110.0454 (15)0.0439 (15)0.0608 (16)0.0051 (12)0.0270 (13)0.0046 (13)
C120.0309 (13)0.0403 (14)0.0673 (17)0.0023 (11)0.0166 (13)0.0105 (13)
C130.0348 (14)0.0359 (13)0.0487 (14)0.0006 (10)0.0073 (12)0.0020 (11)
C140.0320 (13)0.0300 (12)0.0433 (13)0.0014 (10)0.0100 (11)0.0038 (10)
C150.0376 (14)0.0318 (12)0.0377 (14)0.0040 (10)0.0066 (11)0.0034 (10)
C160.0354 (13)0.0303 (12)0.0313 (12)0.0020 (10)0.0065 (10)0.0043 (9)
C170.0453 (15)0.0316 (13)0.0371 (13)0.0047 (11)0.0136 (11)0.0012 (10)
C180.0437 (15)0.0339 (13)0.0440 (14)0.0028 (11)0.0078 (12)0.0039 (10)
C190.0327 (13)0.0417 (14)0.0516 (15)0.0038 (11)0.0083 (12)0.0077 (12)
C200.0440 (15)0.0500 (15)0.0406 (14)0.0002 (12)0.0184 (12)0.0038 (11)
C210.0452 (15)0.0412 (14)0.0295 (12)0.0018 (11)0.0094 (11)0.0014 (10)
Geometric parameters (Å, º) top
Cl1—C121.742 (2)C9—C101.387 (3)
Cl2—C191.739 (2)C9—C141.398 (3)
S1—C11.732 (2)C10—C111.377 (3)
S1—C71.742 (2)C10—H100.9300
O1—C91.369 (2)C11—C121.380 (3)
O1—C81.418 (3)C11—H110.9300
O2—C151.218 (3)C12—C131.372 (3)
N1—C71.290 (3)C13—C141.392 (3)
N1—C61.388 (3)C13—H130.9300
C1—C21.390 (3)C14—C151.502 (3)
C1—C61.399 (3)C15—C161.490 (3)
C2—C31.370 (3)C16—C171.389 (3)
C2—H20.9300C16—C211.389 (3)
C3—C41.3923C17—C181.375 (3)
C3—H30.9300C17—H170.9300
C4—C51.369 (3)C18—C191.382 (3)
C4—H40.9300C18—H180.9300
C5—C61.398 (3)C19—C201.373 (3)
C5—H50.9300C20—C211.376 (3)
C7—C81.489 (3)C20—H200.9300
C8—H8A0.9700C21—H210.9300
C8—H8B0.9700
C1—S1—C788.81 (11)C9—C10—H10119.9
C9—O1—C8119.01 (16)C10—C11—C12119.9 (2)
C7—N1—C6110.21 (18)C10—C11—H11120.1
C2—C1—C6121.4 (2)C12—C11—H11120.1
C2—C1—S1129.33 (18)C13—C12—C11120.6 (2)
C6—C1—S1109.22 (17)C13—C12—Cl1119.9 (2)
C3—C2—C1118.0 (2)C11—C12—Cl1119.50 (19)
C3—C2—H2121.0C12—C13—C14120.5 (2)
C1—C2—H2121.0C12—C13—H13119.8
C2—C3—C4121.07 (13)C14—C13—H13119.8
C2—C3—H3119.5C13—C14—C9118.9 (2)
C4—C3—H3119.5C13—C14—C15117.2 (2)
C5—C4—C3121.37 (13)C9—C14—C15123.62 (19)
C5—C4—H4119.3O2—C15—C16120.2 (2)
C3—C4—H4119.3O2—C15—C14118.5 (2)
C4—C5—C6118.6 (2)C16—C15—C14121.3 (2)
C4—C5—H5120.7C17—C16—C21119.2 (2)
C6—C5—H5120.7C17—C16—C15121.8 (2)
N1—C6—C5125.3 (2)C21—C16—C15119.0 (2)
N1—C6—C1115.25 (19)C18—C17—C16120.3 (2)
C5—C6—C1119.5 (2)C18—C17—H17119.9
N1—C7—C8123.36 (19)C16—C17—H17119.9
N1—C7—S1116.50 (17)C17—C18—C19119.4 (2)
C8—C7—S1120.13 (16)C17—C18—H18120.3
O1—C8—C7107.34 (17)C19—C18—H18120.3
O1—C8—H8A110.2C20—C19—C18121.1 (2)
C7—C8—H8A110.2C20—C19—Cl2119.58 (19)
O1—C8—H8B110.2C18—C19—Cl2119.27 (19)
C7—C8—H8B110.2C19—C20—C21119.3 (2)
H8A—C8—H8B108.5C19—C20—H20120.4
O1—C9—C10123.5 (2)C21—C20—H20120.4
O1—C9—C14116.45 (18)C20—C21—C16120.6 (2)
C10—C9—C14120.0 (2)C20—C21—H21119.7
C11—C10—C9120.2 (2)C16—C21—H21119.7
C11—C10—H10119.9
C7—S1—C1—C2177.6 (2)C10—C11—C12—Cl1179.97 (18)
C7—S1—C1—C60.48 (17)C11—C12—C13—C141.6 (3)
C6—C1—C2—C30.9 (4)Cl1—C12—C13—C14178.83 (17)
S1—C1—C2—C3178.70 (18)C12—C13—C14—C91.7 (3)
C1—C2—C3—C40.3 (3)C12—C13—C14—C15175.9 (2)
C2—C3—C4—C50.85 (17)O1—C9—C14—C13177.90 (19)
C3—C4—C5—C60.2 (3)C10—C9—C14—C130.7 (3)
C7—N1—C6—C5179.2 (2)O1—C9—C14—C154.1 (3)
C7—N1—C6—C10.3 (3)C10—C9—C14—C15174.5 (2)
C4—C5—C6—N1178.5 (2)C13—C14—C15—O240.4 (3)
C4—C5—C6—C10.9 (3)C9—C14—C15—O2133.5 (2)
C2—C1—C6—N1178.0 (2)C13—C14—C15—C16138.4 (2)
S1—C1—C6—N10.2 (2)C9—C14—C15—C1647.7 (3)
C2—C1—C6—C51.5 (3)O2—C15—C16—C17148.8 (2)
S1—C1—C6—C5179.73 (18)C14—C15—C16—C1730.0 (3)
C6—N1—C7—C8178.5 (2)O2—C15—C16—C2129.2 (3)
C6—N1—C7—S10.7 (2)C14—C15—C16—C21152.1 (2)
C1—S1—C7—N10.70 (18)C21—C16—C17—C180.2 (3)
C1—S1—C7—C8178.48 (19)C15—C16—C17—C18177.7 (2)
C9—O1—C8—C7176.11 (18)C16—C17—C18—C192.3 (3)
N1—C7—C8—O1176.87 (19)C17—C18—C19—C202.1 (3)
S1—C7—C8—O12.3 (3)C17—C18—C19—Cl2176.40 (17)
C8—O1—C9—C106.9 (3)C18—C19—C20—C210.2 (4)
C8—O1—C9—C14171.7 (2)Cl2—C19—C20—C21178.73 (18)
O1—C9—C10—C11179.0 (2)C19—C20—C21—C162.3 (3)
C14—C9—C10—C110.4 (3)C17—C16—C21—C202.1 (3)
C9—C10—C11—C120.6 (4)C15—C16—C21—C20179.9 (2)
C10—C11—C12—C130.4 (4)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the S1/C1/C6/N1/C7 thiazole ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.563.429 (3)157
C17—H17···N1ii0.932.623.442 (3)148
C18—H18···Cgiii0.932.833.682 (2)152
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1, y+1, z+1; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC21H13Cl2NO2S
Mr414.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)292
a, b, c (Å)13.6452 (4), 7.47005 (19), 18.7286 (6)
β (°) 105.772 (3)
V3)1837.14 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.23 × 0.21 × 0.14
Data collection
DiffractometerOxford Diffraction Xcalibur (Eos, Nova)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.897, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
18937, 3602, 2544
Rint0.047
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.109, 1.08
No. of reflections3602
No. of parameters241
No. of restraints0
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.29

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the S1/C1/C6/N1/C7 thiazole ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.93002.56003.429 (3)157.00
C17—H17···N1ii0.93002.62003.442 (3)148.00
C18—H18···Cgiii0.932.833.682 (2)152.1
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1, y+1, z+1; (iii) x, y1, z.
Acknowledgements top

We are thankful to SSCU, IISc, India for the Oxford Diffraction facility funded under DST–FIST (Level II) and are grateful to the Durban University of Technology for facilities. KNV thanks the NRF South Africa for a DST/NRF Innovation Postdoctoral Fellowship.

references
References top

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Kelarev, V. I., Kobrakov, K. I. & Rybina, I. I. (2003). Chem. Heterocycl. Compd, 39, 1267–1306.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Nayak, S. K., Venugopala, K. N., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2013). Acta Cryst. E69, o70.

Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.

Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.

Rana, A., Siddiqui, N. & Khan, S. A. (2007). Indian J. Pharm. Sci. 69, 10–17.

Saeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323–1331.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Telvekar, V. N., Bairwa, V. K., Satardekar, K. & Bellubi, A. (2012). Bioorg. Med. Chem. Lett. 22, 649–652.

Venugopala, K. N., Nayak, S. K., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2012). Acta Cryst. E68, o3125.