supplementary materials


tk5227 scheme

Acta Cryst. (2013). E69, o1071    [ doi:10.1107/S1600536813015195 ]

(3E,5E)-1-Allyl-3,5-bis(4-methoxybenzylidene)piperidin-4-one

A. I. Almansour, R. S. Kumar, N. Arumugam, R. Vishnupriya and J. Suresh

Abstract top

The piperidine ring in the title compound, C24H25NO3, adopts an envelope conformation with the N atom being the flap atom, and each C=C double bond exhibits an E conformation. In the crystal, C-H...O hydrogen bonds link the molecules, forming supramolecular layers that stack along the a axis.

Comment top

Piperidine ring systems are of immense interest in the pharmaceutical industry as they exhibit a wide range of biological activities (Guengerich et al., 1973; Puder et al., 2000). A number of alpha,beta-unsaturated ketones display cytotoxic and anti-cancer properties (Dimmock, Elias et al., 1999; Dimmock, Kandepu et al., 1999) besides being useful synthons for the construction of diverse structurally complex heterocycles. The biological importance of these heterocycles in conjunction with our research interests (Suresh et al., 2007), prompted us to synthesize and report the X-ray studies of the title compound.

In the title compound (Fig 1), the six-membered piperidone ring adopts a sofa conformation which is evidenced by the puckering parameters: q2 = 0.5517 (16) Å, θ = 123.96 (5)°, φ = 178 (6)° (Cremer & Pople, 1975). Both olefinic double bonds have an E configuration, and the aryl rings are not coplanar with either the adjacent olefinic double bonds or the planar portion of the piperidone ring. The aryl rings are rotated to move atoms C5 and C15 from the plane of the other five atoms of the piperidone ring in the opposite direction of the displacement of atom N1. As the result the torsion angles C5—C6—C7—C8 and C10—C11—C13—C14 have values 31.9 (2) and -4.2 (2)° respectively. This lack of co-planarity is caused by non-bonded interactions between one of the ortho-H atoms in the aryl ring and the equatorial H atoms at the 2- and 6- positions of the piperidone ring (H5A/H9A or H9B and H15A/H10A or H10B). These steric repulsions are reduced by the expansion of the bond angle C6—C7—C8 and C11—C13—C14 which are 130.23 (19) and 130.67 (2)° respectively (otherwise 120°).

The C10—H10A···O3 hydrogen bond connect two molecules forming an inverse related dimers which are interlinked by C21—H21C···O2 intermolecular hydrogen bonds to form a supramolecular layer in the bc plane.

Related literature top

For background to piperidine ring systems, see: Guengerich et al. (1973); Puder et al. (2000). For the biological importance of the title compound, see: Dimmock, Elias et al. (1999); Dimmock, Kandepu et al. (1999). For a similar structure, see: Suresh et al. (2007). For ring conformation analysis, see: Cremer & Pople (1975).

Experimental top

A equimolar mixture of (3E,5E)-3,5-bis(4-methoxybenzylidene)piperidin-4-one (0.023 g), allyl chloride (0.100 g) and K2CO3 (0.041 g) in acetone (30 ml) was stirred at room temperature for 30 minutes. After completion of the reaction as evident from TLC, the excess solvent was removed under vacuum and the crude product was extracted with ethyl acetate and recrystallized from the same to afford the title compound. M. pt: 270–272 K. Yield: 92%.

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.97 Å, and with Uiso = 1.2–1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
(3E,5E)-1-Allyl-3,5-bis(4-methoxybenzylidene)piperidin-4-one top
Crystal data top
C24H25NO3F(000) = 800
Mr = 375.45Dx = 1.223 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2000 reflections
a = 19.2409 (15) Åθ = 2–30°
b = 6.8457 (6) ŵ = 0.08 mm1
c = 15.6393 (13) ÅT = 293 K
β = 98.255 (2)°Block, colourless
V = 2038.6 (3) Å30.34 × 0.33 × 0.21 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
5935 independent reflections
Radiation source: fine-focus sealed tube3680 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 0 pixels mm-1θmax = 30.0°, θmin = 2.1°
ω and φ scansh = 2727
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 99
Tmin = 0.973, Tmax = 0.984l = 2222
22074 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0905P)2 + 0.0856P]
where P = (Fo2 + 2Fc2)/3
5935 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C24H25NO3V = 2038.6 (3) Å3
Mr = 375.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.2409 (15) ŵ = 0.08 mm1
b = 6.8457 (6) ÅT = 293 K
c = 15.6393 (13) Å0.34 × 0.33 × 0.21 mm
β = 98.255 (2)°
Data collection top
Bruker Kappa APEXII
diffractometer
5935 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3680 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.984Rint = 0.042
22074 measured reflectionsθmax = 30.0°
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.169Δρmax = 0.19 e Å3
S = 1.03Δρmin = 0.21 e Å3
5935 reflectionsAbsolute structure: ?
254 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.54889 (6)0.02740 (19)0.11269 (10)0.0792 (4)
O20.20688 (7)0.68527 (18)0.21213 (10)0.0775 (4)
O30.14813 (6)0.6458 (2)0.45644 (8)0.0682 (3)
N10.21732 (5)0.20325 (16)0.35611 (7)0.0421 (3)
C10.43254 (8)0.4039 (2)0.16588 (11)0.0598 (4)
H1A0.43460.53850.17400.072*
C20.49119 (8)0.3075 (3)0.14716 (13)0.0651 (5)
H2A0.53250.37610.14440.078*
C30.48852 (8)0.1090 (2)0.13251 (10)0.0550 (4)
C40.42736 (8)0.0081 (2)0.13796 (10)0.0563 (4)
H4A0.42520.12570.12770.068*
C50.36911 (7)0.1063 (2)0.15869 (10)0.0526 (4)
H5A0.32830.03640.16310.063*
C60.37000 (7)0.3065 (2)0.17309 (9)0.0473 (3)
C70.31027 (7)0.4208 (2)0.19275 (9)0.0501 (3)
H7A0.30860.54840.17220.060*
C80.25757 (7)0.3710 (2)0.23565 (9)0.0445 (3)
C90.25089 (7)0.1769 (2)0.27873 (9)0.0449 (3)
H9A0.22300.08890.23900.054*
H9B0.29700.11960.29450.054*
C100.14497 (7)0.2688 (2)0.33075 (9)0.0438 (3)
H10A0.12050.27050.38090.053*
H10B0.12060.17910.28870.053*
C110.14472 (6)0.4704 (2)0.29240 (9)0.0430 (3)
C120.20337 (7)0.5227 (2)0.24397 (10)0.0493 (3)
C130.09767 (7)0.6104 (2)0.30150 (9)0.0456 (3)
H13A0.10670.73000.27700.055*
C140.03457 (7)0.6064 (2)0.34352 (8)0.0448 (3)
C150.00436 (7)0.4391 (2)0.35423 (9)0.0485 (3)
H15A0.01090.31960.33560.058*
C160.06544 (7)0.4458 (2)0.39197 (9)0.0510 (3)
H16A0.09060.33200.39830.061*
C170.08852 (7)0.6221 (2)0.42007 (9)0.0511 (4)
C180.05055 (9)0.7910 (2)0.41030 (11)0.0601 (4)
H18A0.06560.90990.42970.072*
C190.00918 (8)0.7825 (2)0.37195 (10)0.0550 (4)
H19A0.03350.89730.36470.066*
C200.55156 (11)0.1755 (3)0.10006 (14)0.0770 (5)
H20A0.59720.21100.08710.116*
H20B0.51650.21250.05290.116*
H20C0.54290.24150.15160.116*
C210.18746 (8)0.4758 (3)0.47126 (12)0.0704 (5)
H21A0.22790.51300.49710.106*
H21B0.15860.38900.50940.106*
H21C0.20240.41100.41730.106*
C220.21975 (7)0.0227 (2)0.40710 (10)0.0496 (3)
H22A0.20460.08600.36920.060*
H22B0.18750.03350.44910.060*
C230.29171 (9)0.0170 (3)0.45282 (11)0.0654 (4)
H23A0.31250.07800.49070.079*
C240.32751 (11)0.1738 (4)0.44379 (16)0.0994 (8)
H24C0.30850.27200.40650.119*
H24A0.37230.18840.47460.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0652 (7)0.0575 (8)0.1236 (11)0.0088 (6)0.0433 (7)0.0043 (7)
O20.0787 (8)0.0532 (7)0.1092 (10)0.0193 (6)0.0431 (7)0.0334 (7)
O30.0634 (6)0.0774 (9)0.0692 (7)0.0096 (6)0.0277 (6)0.0027 (6)
N10.0428 (5)0.0382 (6)0.0462 (6)0.0033 (5)0.0093 (4)0.0052 (5)
C10.0638 (9)0.0407 (9)0.0803 (11)0.0020 (7)0.0286 (8)0.0058 (7)
C20.0574 (9)0.0503 (10)0.0933 (13)0.0061 (7)0.0308 (8)0.0056 (9)
C30.0543 (8)0.0500 (9)0.0641 (9)0.0048 (7)0.0202 (7)0.0044 (7)
C40.0624 (9)0.0424 (8)0.0669 (9)0.0012 (7)0.0186 (7)0.0032 (7)
C50.0501 (7)0.0487 (9)0.0602 (9)0.0052 (6)0.0125 (6)0.0022 (7)
C60.0506 (7)0.0458 (8)0.0473 (7)0.0027 (6)0.0132 (6)0.0075 (6)
C70.0537 (7)0.0438 (8)0.0548 (8)0.0043 (6)0.0151 (6)0.0097 (6)
C80.0468 (7)0.0404 (8)0.0469 (7)0.0023 (6)0.0085 (5)0.0032 (6)
C90.0460 (6)0.0404 (7)0.0498 (7)0.0026 (6)0.0123 (5)0.0021 (6)
C100.0398 (6)0.0419 (7)0.0503 (7)0.0016 (5)0.0080 (5)0.0021 (6)
C110.0417 (6)0.0404 (7)0.0461 (7)0.0020 (5)0.0035 (5)0.0012 (6)
C120.0511 (7)0.0435 (8)0.0547 (8)0.0061 (6)0.0122 (6)0.0088 (7)
C130.0456 (6)0.0413 (7)0.0491 (7)0.0031 (6)0.0040 (5)0.0037 (6)
C140.0443 (6)0.0434 (8)0.0454 (7)0.0058 (6)0.0014 (5)0.0006 (6)
C150.0427 (6)0.0442 (8)0.0576 (8)0.0043 (6)0.0034 (6)0.0060 (6)
C160.0466 (7)0.0492 (9)0.0565 (8)0.0003 (6)0.0049 (6)0.0011 (7)
C170.0488 (7)0.0611 (10)0.0437 (7)0.0097 (7)0.0078 (6)0.0007 (7)
C180.0688 (9)0.0478 (9)0.0662 (10)0.0134 (8)0.0176 (8)0.0034 (7)
C190.0610 (8)0.0414 (8)0.0643 (9)0.0052 (7)0.0145 (7)0.0023 (7)
C200.0843 (12)0.0616 (12)0.0891 (14)0.0203 (10)0.0259 (10)0.0022 (10)
C210.0566 (9)0.0971 (15)0.0604 (9)0.0052 (9)0.0180 (7)0.0085 (10)
C220.0515 (7)0.0427 (8)0.0566 (8)0.0023 (6)0.0141 (6)0.0092 (6)
C230.0619 (9)0.0723 (12)0.0616 (9)0.0051 (9)0.0075 (7)0.0234 (9)
C240.0765 (12)0.1123 (19)0.1129 (17)0.0407 (13)0.0262 (12)0.0450 (15)
Geometric parameters (Å, º) top
O1—C31.3639 (18)C11—C131.3403 (19)
O1—C201.405 (2)C11—C121.4902 (19)
O2—C121.2253 (18)C13—C141.4614 (19)
O3—C171.3611 (17)C13—H13A0.9300
O3—C211.425 (2)C14—C151.392 (2)
N1—C101.4623 (16)C14—C191.397 (2)
N1—C91.4624 (17)C15—C161.3896 (19)
N1—C221.4681 (18)C15—H15A0.9300
C1—C21.375 (2)C16—C171.380 (2)
C1—C61.394 (2)C16—H16A0.9300
C1—H1A0.9300C17—C181.388 (2)
C2—C31.378 (2)C18—C191.372 (2)
C2—H2A0.9300C18—H18A0.9300
C3—C41.378 (2)C19—H19A0.9300
C4—C51.385 (2)C20—H20A0.9600
C4—H4A0.9300C20—H20B0.9600
C5—C61.389 (2)C20—H20C0.9600
C5—H5A0.9300C21—H21A0.9600
C6—C71.4589 (19)C21—H21B0.9600
C7—C81.3379 (19)C21—H21C0.9600
C7—H7A0.9300C22—C231.489 (2)
C8—C121.4906 (19)C22—H22A0.9700
C8—C91.5033 (19)C22—H22B0.9700
C9—H9A0.9700C23—C241.295 (3)
C9—H9B0.9700C23—H23A0.9300
C10—C111.5040 (19)C24—H24C0.9300
C10—H10A0.9700C24—H24A0.9300
C10—H10B0.9700
C3—O1—C20119.09 (14)C11—C12—C8117.87 (12)
C17—O3—C21118.02 (13)C11—C13—C14130.67 (13)
C10—N1—C9109.25 (11)C11—C13—H13A114.7
C10—N1—C22111.15 (10)C14—C13—H13A114.7
C9—N1—C22111.25 (11)C15—C14—C19116.93 (13)
C2—C1—C6122.13 (15)C15—C14—C13124.46 (13)
C2—C1—H1A118.9C19—C14—C13118.56 (13)
C6—C1—H1A118.9C16—C15—C14121.79 (14)
C1—C2—C3119.80 (14)C16—C15—H15A119.1
C1—C2—H2A120.1C14—C15—H15A119.1
C3—C2—H2A120.1C17—C16—C15119.64 (15)
O1—C3—C4124.88 (15)C17—C16—H16A120.2
O1—C3—C2115.40 (14)C15—C16—H16A120.2
C4—C3—C2119.72 (14)O3—C17—C16124.50 (15)
C3—C4—C5119.90 (15)O3—C17—C18115.81 (14)
C3—C4—H4A120.1C16—C17—C18119.68 (13)
C5—C4—H4A120.1C19—C18—C17120.02 (15)
C4—C5—C6121.71 (13)C19—C18—H18A120.0
C4—C5—H5A119.1C17—C18—H18A120.0
C6—C5—H5A119.1C18—C19—C14121.94 (15)
C5—C6—C1116.72 (13)C18—C19—H19A119.0
C5—C6—C7124.86 (13)C14—C19—H19A119.0
C1—C6—C7118.41 (14)O1—C20—H20A109.5
C8—C7—C6130.23 (14)O1—C20—H20B109.5
C8—C7—H7A114.9H20A—C20—H20B109.5
C6—C7—H7A114.9O1—C20—H20C109.5
C7—C8—C12117.16 (13)H20A—C20—H20C109.5
C7—C8—C9124.73 (12)H20B—C20—H20C109.5
C12—C8—C9118.06 (11)O3—C21—H21A109.5
N1—C9—C8109.79 (11)O3—C21—H21B109.5
N1—C9—H9A109.7H21A—C21—H21B109.5
C8—C9—H9A109.7O3—C21—H21C109.5
N1—C9—H9B109.7H21A—C21—H21C109.5
C8—C9—H9B109.7H21B—C21—H21C109.5
H9A—C9—H9B108.2N1—C22—C23111.66 (12)
N1—C10—C11109.77 (10)N1—C22—H22A109.3
N1—C10—H10A109.7C23—C22—H22A109.3
C11—C10—H10A109.7N1—C22—H22B109.3
N1—C10—H10B109.7C23—C22—H22B109.3
C11—C10—H10B109.7H22A—C22—H22B107.9
H10A—C10—H10B108.2C24—C23—C22124.8 (2)
C13—C11—C12117.03 (13)C24—C23—H23A117.6
C13—C11—C10125.27 (12)C22—C23—H23A117.6
C12—C11—C10117.63 (11)C23—C24—H24C120.0
O2—C12—C11120.98 (13)C23—C24—H24A120.0
O2—C12—C8121.15 (13)H24C—C24—H24A120.0
C6—C1—C2—C31.8 (3)C13—C11—C12—C8178.01 (12)
C20—O1—C3—C42.8 (3)C10—C11—C12—C80.94 (19)
C20—O1—C3—C2177.57 (18)C7—C8—C12—O20.6 (2)
C1—C2—C3—O1178.69 (16)C9—C8—C12—O2178.19 (15)
C1—C2—C3—C40.9 (3)C7—C8—C12—C11179.34 (13)
O1—C3—C4—C5179.97 (15)C9—C8—C12—C111.73 (19)
C2—C3—C4—C50.5 (3)C12—C11—C13—C14179.02 (13)
C3—C4—C5—C61.0 (2)C10—C11—C13—C144.2 (2)
C4—C5—C6—C10.2 (2)C11—C13—C14—C1526.2 (2)
C4—C5—C6—C7178.18 (14)C11—C13—C14—C19156.73 (15)
C2—C1—C6—C51.3 (2)C19—C14—C15—C160.4 (2)
C2—C1—C6—C7179.72 (16)C13—C14—C15—C16177.60 (12)
C5—C6—C7—C831.9 (2)C14—C15—C16—C170.2 (2)
C1—C6—C7—C8149.75 (16)C21—O3—C17—C163.8 (2)
C6—C7—C8—C12179.27 (14)C21—O3—C17—C18177.41 (14)
C6—C7—C8—C93.3 (2)C15—C16—C17—O3178.79 (13)
C10—N1—C9—C865.73 (14)C15—C16—C17—C180.1 (2)
C22—N1—C9—C8171.19 (11)O3—C17—C18—C19178.09 (14)
C7—C8—C9—N1146.84 (14)C16—C17—C18—C190.8 (2)
C12—C8—C9—N130.56 (17)C17—C18—C19—C141.5 (3)
C9—N1—C10—C1166.65 (14)C15—C14—C19—C181.3 (2)
C22—N1—C10—C11170.21 (11)C13—C14—C19—C18178.60 (14)
N1—C10—C11—C13144.68 (13)C10—N1—C22—C23164.76 (13)
N1—C10—C11—C1232.13 (17)C9—N1—C22—C2373.26 (16)
C13—C11—C12—O21.9 (2)N1—C22—C23—C24122.02 (19)
C10—C11—C12—O2178.98 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O3i0.972.593.3710 (18)138
C21—H21C···O2ii0.962.543.466 (2)163
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H25NO3
Mr375.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)19.2409 (15), 6.8457 (6), 15.6393 (13)
β (°) 98.255 (2)
V3)2038.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.34 × 0.33 × 0.21
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.973, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
22074, 5935, 3680
Rint0.042
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.169, 1.03
No. of reflections5935
No. of parameters254
No. of restraints0
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.21

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O3i0.972.593.3710 (18)138
C21—H21C···O2ii0.962.543.466 (2)163
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1/2, z+1/2.
Acknowledgements top

This project was supported by the Research Center, Deanship of Scientific Research, College of Science, King Saud University.

references
References top

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.

Dimmock, J. R., Kandepu, N. M., Nazarali, A. J., Kowalchuk, T. P., Motaganahalli, N., Quail, J. W., Mykytiuk, P. A., Audette, G. F., Prasad, L., Perjési, P., Allen, T. M., Santos, C. L., Szydlowski, J., De Clercq, E. & Balzarini, J. (1999). J. Med. Chem. 42, 1358–1366.

Guengerich, F. P., DiMari, S. J. & Broquist, H. P. (1973). J. Am. Chem. Soc. 95, 2055–2056.

Puder, C., Krastel, P. & Zeeck, A. (2000). J. Nat. Prod. 63, 1258–1260.

Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Suresh, J., Suresh Kumar, R., Perumal, S. & Natarajan, S. (2007). Acta Cryst. C63, o315–o318.