supplementary materials


Acta Cryst. (2013). E69, i41    [ doi:10.1107/S1600536813016620 ]

Redetermination of katayamalite, KLi3Ca7Ti2(SiO3)12(OH)2

M. B. Andrade, D. Doell, R. T. Downs and H. Yang

Abstract top

The crystal structure of katayamalite, ideally KLi3Ca7Ti2(SiO3)12(OH)2 (potassium trilithium heptacalcium dititanium dodecasilicate dihydroxide), was previously reported in triclinic symmetry (C-1), with isotropic displacement parameters for all atoms and without the H-atom position [Kato & Murakami (1985). Mineral. J. 12, 206-217]. The present study redetermines the katayamalite structure with monoclinic symmetry (space group C2/c) based on single-crystal X-ray diffraction data from a sample from the type locality, Iwagi Island, Ehime Prefecture, Japan, with anisotropic displacement parameters for all non-H atoms, and with the H atoms located by difference Fourier analysis. The structure of katayamalite contains a set of six-membered silicate rings interconnected by sheets of Ca atoms on one side and by an ordered mixture of Li, Ti and K atoms on the other side, forming layers which are stacked normal to (001). From the eight different metal sites, three are located on special positions, viz. one K and one Li atom on twofold rotation axes and one Ca atom on an inversion center. The Raman spectrum of kataymalite shows a band at 3678 cm-1, similar to that observed for hydroxyl-amphiboles, indicating no or very weak hydrogen bonding.

Comment top

Katayamalite, KLi3Ca7Ti2(SiO3)12(OH)2, belongs to the baratovite group of minerals, which includes katayamalite, aleksandrovite [KLi3Ca7Sn2(SiO3)12F2] (Pautov et al., 2010), and baratovite [KLi3Ca7Ti2(SiO3)12F2] (Dusmatov et al., 1975; Fleischer et al., 1976; Menchetti & Sabelli, 1979).

Kato & Murakami (1985) first described the structure of katayamalite with composition (K0.89Na0.11)Li3Ca7(Ti1.95Fe0.05)(Si6O18)2(OH1.76F0.24) from Iwagi Island, Inland Sea, Ehime Prefecture, Japan, with triclinic symmetry in space group C1 and unit-cell parameters a = 9.721 (2) Å, b = 16.923 (3) Å, c = 19.942 (3) Å, α = 91.43 (10)°, β = 104.15 (11)°, γ = 89.94 (10)°. Baur & Kassner (1992), however, proposed that katayamalite is isostructural with baratovite and in fact is monoclinic (space group C2/c). By using the transformation matrix (0 1 0/ 1 0 0/ -0.5 -0.5 -1) from the triclinic to the monoclinic setting the unit-cell parameters become a = 16.923 (3) Å, b = 9.721 (2) Å, c = 20.909 (3) Å, α = 89.98 (10)°, β = 112.40 (10)°, γ = 89.94 (10)°. Recently, aleksandrovite, the Sn analogue of baratovite, was described by Pautov et al. (2010) in space group C2/c and with unit-cell parameters a = 17.01 (2) Å, b = 9.751 (6) Å, c = 21.00 (2) Å, β = 112.45 (8)°. The structure refinement of aleksandrovite has not been reported yet.

The crystal structure of katayamalite is characterized by layers of close-packed six-membered rings of SiO4 tetrahedra (Figs. 1 and 3). There are six non-equivalent Si atoms in the structure. The silicate layers (T) are connected by sheets of Ca atoms on one side and by an ordered mixture of Li, Ti and K, on the other side, forming a sandwich (Fig. 4) of T–Ca–T–(Li,Ti,K) layers. The sandwiches, in turn, are stacked in an ABAC packing scheme. The layer of Ca atoms is similar to a brucite layer with its dangling H atoms. The silicate rings are centered by a K atom in one layer, and by an H atom in the other.

The Ca1, Ca2 and Ca3 atoms are eight coordinated and located on general positions while atom Ca4 is 8-coordinated and has 1 symmetry. Li1 lies on a 2-fold rotation axis and Li2 is at a general position; both are tetrahedrally coordinated. The Ti atom is 6-coordinated in form of an octahedron and lies on a general position. The K atom is located on a special position with twofold rotation symmetry; it is 12-coordinated within a distorted coordination environment.

The Si—O bridging bond lengths range from 1.622 (2) to 1.6367 (19) Å, while the Si—O non-bridging bond lengths range from 1.594 (2) to 1.617 (2) Å. The two mean values are 1.629 and 1.604 Å, respectively, while the overall Si—O mean bond lengths is 1.617 Å.

The O—Si—O angles of the six independent SiO4 tetrahedra range from 101.60 (10)° to 114.59 (11)°; the smallest angle in each tetrahedron is the one involving two bridging oxygen atoms which are bonded to K. The bridging Si—O—Si angles range from 150.52 (15)° to 158.53 (15)° with a mean value of 154.6°.

The H atom was located by Fourier analysis; it exhibits a short O—H distance (0.68 Å). Also, the (O···O) distances are greater than 3.25 Å revealing no or only little hydrogen bonding interactions.

Fig. 5 displays the Raman spectrum of katayamalite. There have been numerous Raman spectroscopic measurements on a variety of structurally related cyclosilicates. A tentative assignement is made according to previous studies, including tourmalines (Alvarez & Coy-Yll, 1978), benitoite (Kim et al., 1993), and joaquinites (Frost & Pinto, 2007). The bands between 900 and 1000 cm-1, and between 1000 and 1200 cm-1 are attributable to the Si—O symmetric and anti-symmetric stretching modes, respectively. The strongest band at 570 cm-1 is ascribable to the Si—O—Si bending. The bands below 500 cm-1 are associated with lattice vibrational modes of Ca—O, Ti—O and K—O. The band at ~3678 cm-1 results from the O—H stretching vibrations, indicating little or no hydrogen bonding (Hawthorne, 1983). The band position is quite comparable to that for other hydroxyl-amphyboles. In fact, the O—H configuration in katayamalite and hydroxyl-amphyboles are remarkably analogous (Figs. 1 and 2).

Related literature top

For previous work on katayamalite, see: Kato & Murakami (1985). For minerals isostructural with or similar to katayamalite, see: Dusmatov et al. (1975); Fleischer et al. (1976); Menchetti & Sabelli (1979); Baur & Kassner (1992); Pautov et al. (2010). For Raman spectroscopic measurements on cyclosilicates and amphyboles, see: Alvarez & Coy-Yll (1978); Hawthorne (1983); Kim et al. (1993); Yang & Evans (1996); Frost & Pinto (2007).

Experimental top

The katayamalite specimen used in this study is from the type locality, Iwagi Island, Inland Sea, Ehime Prefecture, Japan and is in the collection of the RRUFF project (deposition http://rruff.info/R120164). Its chemical composition was measured using a CAMECA SX100 electron microprobe (14 analysis points), yielding the empirical chemical formula, calculated on the basis of 38 anions, (K0.89Na0.12)Σ1.01Li3.21(Ca6.87Mn0.04Ba0.02)Σ6.93(Ti1.79Zr0.14Fe0.04Sn0.02)Σ1.99(SiO3)12(OH1.55F0.45). The Raman spectrum of katayamalite was collected from a randomly oriented crystal at 100% power on a Thermo Almega microRaman system, using a solid-state 532 nm laser, and a thermoelectrically cooled CCD detector. The laser is partially polarized with 4 cm-1 resolution and a spot size of 1 µm.

Refinement top

For simplicity, the ideal chemical formula, KLi3Ca7Ti2(SiO3)12(OH)2, was assumed during the refinement. The structure was refined in space group C2/c, using the coordinates proposed by Baur & Kassner (1992). The maximum residual electron density in the difference Fourier maps was located at (0.4599, 0.5737, 0.1729), 1.49 Å from K and the minimum at (0.2734, 0.5436, 0.1162) 0.62 Å from Si6. The H-atom was located from a difference Fourier synthesis and its position was refined with isotropic displacement parameters and a soft O—H distance restraint. Reflections (202), (244), (242), (712) and (530) were omitted from the refinement due to large differences between calculated and measured intensities.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Xtal-Draw (Downs & Hall-Wallace, 2003); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Six-membered silicate ring in katayamalite. Pink, red, and blue represent SiO4 groups, oxygen and hydrogen atoms, respectively.
[Figure 2] Fig. 2. Six-membered silicate ring in tremolite (Yang & Evans, 1996). Pink, red, and blue represent SiO4 groups, oxygen and hydrogen atoms, respectively.
[Figure 3] Fig. 3. Six-membered silicate rings in the packing of the structure of katayamalite. Pink represents SiO4 groups.
[Figure 4] Fig. 4. The crystal structure of katayamalite with layers stacked normal to (001). The SiO4 ring layers are connected by Ca atoms on one side and by Li, Ti and K atoms on other side. Pink, brown, green, orange and yellow represent SiO4 groups, Ca, Li, Ti and K atoms, respectively. Displacements ellipsoids are drawn at the 99.999% probability level.
[Figure 5] Fig. 5. The Raman spectrum of katayamalite.
Potassium trilithium heptacalcium dititanium dodecasilicate dihydroxide top
Crystal data top
KLi3Ca7Ti2(SiO3)12(OH)2F(000) = 2744
Mr = 1383.38Dx = 2.890 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5222 reflections
a = 16.9093 (10) Åθ = 2.7–32.2°
b = 9.7287 (5) ŵ = 2.36 mm1
c = 20.9019 (12) ÅT = 293 K
β = 112.396 (3)°Block, colourless
V = 3179.1 (3) Å30.06 × 0.05 × 0.05 mm
Z = 4
Data collection top
Bruker X8 APEXII CCD
diffractometer
4873 independent reflections
Radiation source: fine-focus sealed tube3632 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
φ and ω scanθmax = 32.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2525
Tmin = 0.871, Tmax = 0.891k = 1413
26611 measured reflectionsl = 2427
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.083All H-atom parameters refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0414P)2 + 0.7329P]
where P = (Fo2 + 2Fc2)/3
4873 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 0.83 e Å3
1 restraintΔρmin = 0.56 e Å3
Crystal data top
KLi3Ca7Ti2(SiO3)12(OH)2V = 3179.1 (3) Å3
Mr = 1383.38Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.9093 (10) ŵ = 2.36 mm1
b = 9.7287 (5) ÅT = 293 K
c = 20.9019 (12) Å0.06 × 0.05 × 0.05 mm
β = 112.396 (3)°
Data collection top
Bruker X8 APEXII CCD
diffractometer
4873 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3632 reflections with I > 2σ(I)
Tmin = 0.871, Tmax = 0.891Rint = 0.052
26611 measured reflectionsθmax = 32.4°
Refinement top
R[F2 > 2σ(F2)] = 0.035All H-atom parameters refined
wR(F2) = 0.083Δρmax = 0.83 e Å3
S = 1.01Δρmin = 0.56 e Å3
4873 reflectionsAbsolute structure: ?
290 parametersAbsolute structure parameter: ?
1 restraintRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K0.00000.07120 (12)0.25000.0361 (3)
Li10.50000.0835 (7)0.25000.0167 (15)
Li20.2458 (3)0.3180 (5)0.2486 (3)0.0185 (11)
Ca10.22009 (3)0.07260 (5)0.51311 (3)0.01101 (12)
Ca20.14530 (3)0.28347 (5)0.50710 (3)0.01108 (13)
Ca30.07248 (3)0.63859 (5)0.50005 (3)0.01062 (12)
Ca40.00000.00000.50000.01050 (17)
Ti0.33450 (3)0.07041 (4)0.25164 (3)0.00591 (11)
Si10.61419 (4)0.26505 (7)0.36044 (4)0.00846 (16)
Si20.43082 (4)0.32346 (7)0.35974 (4)0.00856 (16)
Si30.36872 (4)0.63501 (7)0.35927 (4)0.00838 (16)
Si40.49109 (4)0.88012 (7)0.36047 (4)0.00828 (16)
Si50.67395 (4)0.81556 (7)0.35909 (4)0.00837 (16)
Si60.73864 (4)0.50791 (7)0.36208 (4)0.00839 (16)
O10.65854 (12)0.40272 (18)0.34511 (11)0.0148 (4)
O20.65931 (12)0.22314 (18)0.44096 (11)0.0123 (4)
O30.61303 (12)0.14415 (18)0.30807 (11)0.0122 (4)
O40.51486 (12)0.31007 (19)0.34026 (11)0.0139 (4)
O50.35276 (11)0.23886 (18)0.30523 (11)0.0118 (4)
O60.45262 (12)0.28303 (19)0.43917 (11)0.0143 (4)
O70.40985 (12)0.48821 (18)0.35090 (12)0.0163 (5)
O80.27342 (12)0.65293 (18)0.30411 (11)0.0133 (4)
O90.37854 (12)0.65030 (19)0.43848 (11)0.0139 (4)
O100.42704 (12)0.74837 (18)0.34065 (11)0.0139 (4)
O110.52072 (12)0.92080 (18)0.44086 (11)0.0124 (4)
O120.44828 (11)0.00452 (18)0.30824 (11)0.0117 (4)
O130.57262 (11)0.82069 (19)0.34535 (11)0.0151 (4)
O140.72871 (12)0.85392 (18)0.43847 (11)0.0136 (4)
O150.69498 (12)0.90701 (18)0.30395 (11)0.0120 (4)
O160.69232 (13)0.65696 (18)0.34465 (11)0.0153 (4)
O170.78572 (12)0.47659 (18)0.30994 (11)0.0117 (4)
O180.80132 (12)0.49800 (19)0.44276 (11)0.0127 (4)
O190.10128 (13)0.0692 (2)0.45750 (11)0.0132 (4)
H10.097 (2)0.074 (4)0.4238 (11)0.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K0.0352 (6)0.0342 (6)0.0410 (8)0.0000.0170 (6)0.000
Li10.006 (3)0.027 (4)0.016 (4)0.0000.004 (3)0.000
Li20.016 (2)0.015 (2)0.023 (3)0.0026 (18)0.006 (2)0.002 (2)
Ca10.0084 (2)0.0101 (2)0.0156 (4)0.00000 (18)0.0057 (2)0.0002 (2)
Ca20.0081 (2)0.0104 (2)0.0155 (4)0.00035 (17)0.0053 (2)0.0002 (2)
Ca30.0079 (2)0.0107 (2)0.0142 (4)0.00007 (17)0.0054 (2)0.0002 (2)
Ca40.0072 (3)0.0101 (3)0.0142 (5)0.0000 (2)0.0042 (3)0.0008 (3)
Ti0.00370 (18)0.00629 (18)0.0081 (3)0.00022 (15)0.00263 (19)0.00032 (17)
Si10.0058 (3)0.0092 (3)0.0110 (5)0.0005 (2)0.0040 (3)0.0009 (3)
Si20.0056 (3)0.0091 (3)0.0107 (5)0.0001 (2)0.0029 (3)0.0008 (3)
Si30.0052 (3)0.0086 (3)0.0108 (5)0.0002 (2)0.0026 (3)0.0000 (3)
Si40.0049 (3)0.0096 (3)0.0101 (5)0.0001 (2)0.0027 (3)0.0009 (3)
Si50.0065 (3)0.0085 (3)0.0112 (5)0.0005 (2)0.0046 (3)0.0006 (3)
Si60.0068 (3)0.0084 (3)0.0112 (5)0.0003 (2)0.0047 (3)0.0002 (3)
O10.0124 (9)0.0130 (9)0.0202 (13)0.0047 (7)0.0076 (9)0.0007 (8)
O20.0107 (9)0.0143 (9)0.0123 (12)0.0003 (7)0.0052 (9)0.0006 (8)
O30.0096 (8)0.0130 (8)0.0155 (12)0.0004 (7)0.0065 (9)0.0036 (8)
O40.0069 (8)0.0185 (9)0.0176 (12)0.0024 (7)0.0060 (9)0.0004 (8)
O50.0076 (8)0.0130 (8)0.0129 (12)0.0005 (7)0.0022 (8)0.0018 (8)
O60.0125 (9)0.0163 (9)0.0144 (13)0.0010 (7)0.0052 (9)0.0003 (8)
O70.0134 (9)0.0088 (8)0.0274 (14)0.0025 (7)0.0085 (10)0.0007 (8)
O80.0063 (8)0.0139 (9)0.0174 (13)0.0013 (7)0.0021 (9)0.0010 (8)
O90.0119 (9)0.0163 (9)0.0132 (13)0.0013 (7)0.0045 (9)0.0000 (8)
O100.0099 (9)0.0154 (9)0.0177 (12)0.0037 (7)0.0067 (9)0.0017 (8)
O110.0112 (9)0.0134 (8)0.0130 (12)0.0006 (7)0.0050 (9)0.0009 (8)
O120.0068 (8)0.0133 (9)0.0149 (12)0.0006 (7)0.0042 (8)0.0023 (8)
O130.0068 (8)0.0172 (9)0.0233 (13)0.0018 (7)0.0081 (9)0.0004 (8)
O140.0128 (9)0.0143 (9)0.0133 (12)0.0000 (7)0.0045 (9)0.0004 (8)
O150.0128 (9)0.0109 (8)0.0144 (12)0.0019 (7)0.0074 (9)0.0030 (7)
O160.0183 (10)0.0103 (9)0.0207 (13)0.0038 (7)0.0110 (10)0.0005 (8)
O170.0124 (9)0.0121 (8)0.0146 (12)0.0006 (7)0.0092 (9)0.0000 (7)
O180.0114 (9)0.0155 (9)0.0107 (12)0.0008 (7)0.0038 (9)0.0001 (8)
O190.0143 (9)0.0152 (9)0.0140 (15)0.0001 (7)0.0059 (10)0.0008 (9)
Geometric parameters (Å, º) top
K—O13i3.083 (2)Si1—O41.6281 (19)
K—O13ii3.083 (2)Si2—O51.604 (2)
K—O4ii3.117 (2)Si2—O61.607 (2)
K—O4i3.117 (2)Si2—O41.626 (2)
K—O1ii3.125 (2)Si2—O71.6367 (19)
K—O1i3.125 (2)Si3—O81.594 (2)
K—O10ii3.141 (2)Si3—O91.607 (2)
K—O10i3.141 (2)Si3—O101.622 (2)
K—O7ii3.142 (2)Si3—O71.6269 (19)
K—O7i3.142 (2)Si4—O12xi1.606 (2)
K—O16i3.207 (2)Si4—O111.609 (2)
K—O16ii3.207 (2)Si4—O101.6266 (19)
Li1—O12iii1.910 (3)Si4—O131.633 (2)
Li1—O121.910 (3)Si5—O151.600 (2)
Li1—O31.925 (3)Si5—O141.606 (2)
Li1—O3iii1.925 (3)Si5—O161.6248 (19)
Li2—O15i1.893 (6)Si5—O131.6265 (19)
Li2—O8ii1.904 (5)Si6—O171.605 (2)
Li2—O51.906 (5)Si6—O181.617 (2)
Li2—O17iii1.915 (5)Si6—O161.6222 (19)
Ca1—O192.348 (2)Si6—O11.6253 (19)
Ca1—O14iv2.3732 (19)O1—Kxii3.125 (2)
Ca1—O9v2.380 (2)O2—Ca1vi2.3943 (19)
Ca1—O2vi2.3943 (19)O2—Ca3xiii2.396 (2)
Ca1—O18i2.462 (2)O2—Ca1xii2.470 (2)
Ca1—O2i2.469 (2)O3—Tiiii1.924 (2)
Ca2—O192.321 (2)O4—Kxii3.117 (2)
Ca2—O18iv2.3901 (19)O6—Ca3xiii2.395 (2)
Ca2—O14iv2.403 (2)O6—Ca2v2.416 (2)
Ca2—O6v2.416 (2)O6—Ca4xii2.4367 (19)
Ca2—O11i2.432 (2)O7—Ca4xii2.903 (2)
Ca2—O14i2.462 (2)O7—Kxii3.142 (2)
Ca3—O6vii2.395 (2)O8—Li2xiv1.904 (5)
Ca3—O2vii2.396 (2)O8—Tixiv1.9266 (19)
Ca3—O9viii2.397 (2)O9—Ca1v2.380 (2)
Ca3—O18iv2.4094 (19)O9—Ca3viii2.397 (2)
Ca3—O11viii2.414 (2)O9—Ca4xii2.4490 (19)
Ca3—O11i2.4414 (19)O10—Kxii3.141 (2)
Ca4—O19ix2.310 (2)O11—Ca3viii2.414 (2)
Ca4—O192.310 (2)O11—Ca2xii2.432 (2)
Ca4—O6i2.4367 (19)O11—Ca3xii2.4414 (19)
Ca4—O6v2.4367 (19)O12—Si4xv1.606 (2)
Ca4—O9i2.4490 (19)O13—Kxii3.083 (2)
Ca4—O9v2.4490 (19)O14—Ca1iv2.3732 (19)
Ca4—O7i2.903 (2)O14—Ca2iv2.403 (2)
Ca4—O7v2.903 (2)O14—Ca2xii2.462 (2)
Ti—O15x1.9195 (19)O15—Li2xii1.893 (6)
Ti—O3iii1.924 (2)O15—Tixvi1.9195 (19)
Ti—O8ii1.9266 (19)O16—Kxii3.207 (2)
Ti—O17i1.9402 (19)O17—Li2iii1.915 (5)
Ti—O51.9422 (19)O17—Tixii1.9402 (19)
Ti—O121.9436 (18)O18—Ca2iv2.3901 (19)
Si1—O31.602 (2)O18—Ca3iv2.4094 (19)
Si1—O21.613 (2)O18—Ca1xii2.462 (2)
Si1—O11.6255 (19)O19—H10.680 (18)
O12iii—Li1—O12132.6 (4)O1—Si1—O4103.60 (10)
O12iii—Li1—O386.53 (8)O5—Si2—O6114.28 (11)
O12—Li1—O3107.89 (9)O5—Si2—O4110.02 (11)
O12iii—Li1—O3iii107.89 (9)O6—Si2—O4111.16 (11)
O12—Li1—O3iii86.53 (8)O5—Si2—O7109.76 (10)
O3—Li1—O3iii144.3 (4)O6—Si2—O7108.12 (11)
O15i—Li2—O8ii136.3 (3)O4—Si2—O7102.86 (11)
O15i—Li2—O5110.5 (3)O8—Si3—O9114.47 (11)
O8ii—Li2—O586.1 (2)O8—Si3—O10106.95 (11)
O15i—Li2—O17iii86.6 (2)O9—Si3—O10110.52 (11)
O8ii—Li2—O17iii111.4 (3)O8—Si3—O7111.97 (11)
O5—Li2—O17iii133.6 (3)O9—Si3—O7108.15 (11)
O15x—Ti—O3iii89.64 (8)O10—Si3—O7104.31 (11)
O15x—Ti—O8ii90.65 (8)O12xi—Si4—O11113.88 (10)
O3iii—Ti—O8ii90.97 (8)O12xi—Si4—O10109.69 (10)
O15x—Ti—O17i85.19 (8)O11—Si4—O10111.83 (11)
O3iii—Ti—O17i173.77 (8)O12xi—Si4—O13109.30 (11)
O8ii—Ti—O17i92.55 (8)O11—Si4—O13109.83 (11)
O15x—Ti—O5174.56 (8)O10—Si4—O13101.60 (10)
O3iii—Ti—O592.76 (8)O15—Si5—O14114.59 (11)
O8ii—Ti—O584.44 (8)O15—Si5—O16106.47 (11)
O17i—Ti—O592.69 (8)O14—Si5—O16109.69 (11)
O15x—Ti—O1293.66 (8)O15—Si5—O13111.35 (11)
O3iii—Ti—O1285.62 (8)O14—Si5—O13109.23 (11)
O8ii—Ti—O12174.48 (8)O16—Si5—O13105.04 (11)
O17i—Ti—O1291.24 (8)O17—Si6—O18113.54 (11)
O5—Ti—O1291.39 (8)O17—Si6—O16109.83 (11)
O3—Si1—O2113.90 (11)O18—Si6—O16110.86 (11)
O3—Si1—O1110.90 (11)O17—Si6—O1108.67 (11)
O2—Si1—O1110.09 (11)O18—Si6—O1110.52 (11)
O3—Si1—O4106.12 (11)O16—Si6—O1102.88 (11)
O2—Si1—O4111.69 (11)
Symmetry codes: (i) x1/2, y1/2, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y, z+1/2; (iv) x+1, y+1, z+1; (v) x+1/2, y+1/2, z+1; (vi) x+1, y, z+1; (vii) x1/2, y+1/2, z; (viii) x+1/2, y+3/2, z+1; (ix) x, y, z+1; (x) x+1, y1, z+1/2; (xi) x, y+1, z; (xii) x+1/2, y+1/2, z; (xiii) x+1/2, y1/2, z; (xiv) x+1/2, y+1/2, z+1/2; (xv) x, y1, z; (xvi) x+1, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaKLi3Ca7Ti2(SiO3)12(OH)2
Mr1383.38
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)16.9093 (10), 9.7287 (5), 20.9019 (12)
β (°) 112.396 (3)
V3)3179.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.36
Crystal size (mm)0.06 × 0.05 × 0.05
Data collection
DiffractometerBruker X8 APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.871, 0.891
No. of measured, independent and
observed [I > 2σ(I)] reflections
26611, 4873, 3632
Rint0.052
(sin θ/λ)max1)0.754
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.083, 1.01
No. of reflections4873
No. of parameters290
No. of restraints1
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.83, 0.56

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Xtal-Draw (Downs & Hall-Wallace, 2003), publCIF (Westrip, 2010).

Acknowledgements top

The authors gratefully acknowledge the Arizona Science Foundation, and the Brazilian government (CNPq 202469/ 2011–5), for the funding support of this study.

references
References top

Alvarez, M. A. & Coy-Yll, R. (1978). Spectrochim. Acta Part A, 34, 899–908.

Baur, W. H. & Kassner, D. (1992). Eur. J. Mineral. 4, 839–841.

Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Downs, R. T. & Hall-Wallace, M. (2003). Am. Mineral. 88, 247–250.

Dusmatov, V. D., Semenov, E. I., Khomayakov, A. P., Bykova, A. V. & Dzharfarov, N. K. (1975). Zap. Vses. Mineral. Obshch. 104, 580–582.

Fleischer, M., Pabst, A. & Cabri, L. J. (1976). Am. Mineral. 61, 1053–1056.

Frost, R. L. & Pinto, C. (2007). J. Raman Spectrosc. 38, 841–845.

Hawthorne, F. C. (1983). Can. Mineral. 21, 173–480.

Kato, T. & Murakami, N. (1985). Mineral. J. 12, 206–217.

Kim, C. C., Bell, M. I. & McKeown, D. A. (1993). Phys. Rev. B, 47, 7869–7877.

Menchetti, S. & Sabelli, C. (1979). Am. Mineral. 64, 383–389.

Pautov, L. A., Agakhanov, A. A., Karpenko, V. Y. & Gafurov, F. G. (2010). New Data on Minerals, 45, 5–16.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Yang, H. & Evans, B. W. (1996). Am. Mineral. 81, 1117–1125.