organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Chloro-1-methyl-1H-indazol-5-yl)-4-methylbenzene­sulfonamide

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: ouafa_amiri@yahoo.fr

(Received 11 January 2014; accepted 16 January 2014; online 22 January 2014)

The asymmetric unit of the title compound, C15H14ClN3O2S, contains two independent mol­ecules showing different conformations: in one mol­ecule, the indazole ring system makes a dihedral angle of 51.5 (1)° with the benzene ring whereas in the other, the indazole unit is almost perpendicular to the benzene ring [dihedral angle 77.7 (1)°]. In the crystal, the mol­ecules are linked by N—H⋯N and N—H⋯O hydrogen bonds, forming a set of four mol­ecules linked in pairs about an inversion centre.

Related literature

For the biological activity of sulfonamides, see: El-Sayed et al. (2011[El-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714-3720.]); Mustafa et al. (2012[Mustafa, G., Khana, I. U., Ashraf, M., Afzal, I., Shahzadd, S. A. & Shafiq, M. (2012). Bioorg. Med. Chem. 20, 2535-2539.]); Scozzafava et al. (2003[Scozzafava, A., Owa, T., Mastrolorenzo, A. & Supuran, C. T. (2003). Curr. Med. Chem. 10, 925-953.]); Abbassi et al. (2012[Abbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240-249.]); Bouissane et al. (2006[Bouissane, L., El Kazzouli, S., Leonce, S., Pffeifer, P., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078-1088.]). For similar compounds see: Abbassi et al. (2013[Abbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190-o191.]); Chicha et al. (2013[Chicha, H., Kouakou, A., Rakib, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1353.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14ClN3O2S

  • Mr = 335.80

  • Monoclinic, P 21 /n

  • a = 8.4580 (13) Å

  • b = 34.920 (6) Å

  • c = 10.8333 (17) Å

  • β = 97.226 (7)°

  • V = 3174.2 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 296 K

  • 0.43 × 0.34 × 0.29 mm

Data collection
  • Bruker X8 APEX Diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.693, Tmax = 0.747

  • 24523 measured reflections

  • 7548 independent reflections

  • 5730 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.137

  • S = 1.04

  • 7548 reflections

  • 398 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯N5i 0.80 2.16 2.952 (3) 167
N6—H6N⋯O3ii 0.81 2.28 3.022 (2) 152
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Sulfonamides are an important class of compounds which are widely used in the design of diverse classes of drug candidates (El-Sayed et al., 2011; Mustafa et al., 2012; Scozzafava et al., 2003). Recently, some N-[7(6)-indazolyl]arylsulfonamides prepared by our research group showed important antiproliferative activity against some human and murine cell lines (Abbassi et al., 2012; Bouissane et al., 2006). The present work is a continuation of the investigation of the sulfonamides derivatives published recently by our team (Abbassi et al., 2013; Chicha et al., 2013).

Each of the two independent molecules of the title compound is built up from fused five- and six-membered rings linked to a methylbenzenesulfonamide group as shown in Fig. 1. The molecules show different conformations. In the first molecule, the indazole ring system (N1/N2/C1–C7) makes a dihedral angle of 51.5 (1)° with the plane through the atoms forming the benzene ring (C9–C14). On the other hand, in the second molecule, the fused five- and six-membered ring system (N4/N5/C16–C22) is almost perpendicular to the benzene plane (C24–C29), as indicated by the dihedral angle of 77.7 (1)°. In the crystal, the molecules are interconnected by N3–H3N···N5 and N6–H6N···O3 hydrogen bonds (Table 1) in the way to form a set of four molecules linked in pairs by the inversion centre as shown in Fig. 2.

Related literature top

For the biological activity of sulfonamides, see: El-Sayed et al. (2011); Mustafa et al. (2012); Scozzafava et al. (2003); Abbassi et al. (2012); Bouissane et al. (2006). For similar compounds see: Abbassi et al. (2013); Chicha et al. (2013).

Experimental top

A mixture of 3-chloro-1-methyl-5-nitroindazole (1.22 mmol) and anhydrous SnCl2 (1.1 g, 6.1 mmol) in 25 ml of absolute ethanol was heated at 60 °C for 5 h. After reduction, the starting material disappeared, and the solution was allowed to cool down. The pH was made slightly basic (pH 7–8) by addition of 5% aqueous potassium bicarbonate before extraction with ethyl acetate. The organic phase was washed with brine and dried over magnesium sulfate. The solvent was removed to afford the amine, which was immediately dissolved in pyridine (5 ml) and then reacted with 4-methylbenzenesulfonyl chloride (1.25 mmol) at room temperature for 24 h. After the reaction mixture was concentrated in vacuo, the resulting residue was purified by flash chromatography (eluted with ethyl acetate/hexane 2:8 v/). The title compound was recrystallized from ethanol, at room temperature, giving colourless crystals (m.p. 397 K, yield: 56%).

Refinement top

All H atoms were located in a difference Fourier map and treated as riding with N—H = 0.89 Å, C–H = 0.93–0.96 Å, and with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(C) for methyl H atoms. Two outliers (0 1 1, 0 2 1) were omitted in the last cycles of refinement.

Structure description top

Sulfonamides are an important class of compounds which are widely used in the design of diverse classes of drug candidates (El-Sayed et al., 2011; Mustafa et al., 2012; Scozzafava et al., 2003). Recently, some N-[7(6)-indazolyl]arylsulfonamides prepared by our research group showed important antiproliferative activity against some human and murine cell lines (Abbassi et al., 2012; Bouissane et al., 2006). The present work is a continuation of the investigation of the sulfonamides derivatives published recently by our team (Abbassi et al., 2013; Chicha et al., 2013).

Each of the two independent molecules of the title compound is built up from fused five- and six-membered rings linked to a methylbenzenesulfonamide group as shown in Fig. 1. The molecules show different conformations. In the first molecule, the indazole ring system (N1/N2/C1–C7) makes a dihedral angle of 51.5 (1)° with the plane through the atoms forming the benzene ring (C9–C14). On the other hand, in the second molecule, the fused five- and six-membered ring system (N4/N5/C16–C22) is almost perpendicular to the benzene plane (C24–C29), as indicated by the dihedral angle of 77.7 (1)°. In the crystal, the molecules are interconnected by N3–H3N···N5 and N6–H6N···O3 hydrogen bonds (Table 1) in the way to form a set of four molecules linked in pairs by the inversion centre as shown in Fig. 2.

For the biological activity of sulfonamides, see: El-Sayed et al. (2011); Mustafa et al. (2012); Scozzafava et al. (2003); Abbassi et al. (2012); Bouissane et al. (2006). For similar compounds see: Abbassi et al. (2013); Chicha et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The two independent molecules building the asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. A set of four molecules of the title compound interconnected by hydrogen bonds (dashed line) and linked in pairs by an inversion centre.
N-(3-Chloro-1-methyl-1H-indazol-5-yl)-4-methylbenzenesulfonamide top
Crystal data top
C15H14ClN3O2SF(000) = 1392
Mr = 335.80Dx = 1.405 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7548 reflections
a = 8.4580 (13) Åθ = 1.2–27.9°
b = 34.920 (6) ŵ = 0.38 mm1
c = 10.8333 (17) ÅT = 296 K
β = 97.226 (7)°Block, colourless
V = 3174.2 (9) Å30.43 × 0.34 × 0.29 mm
Z = 8
Data collection top
Bruker X8 APEX Diffractometer7548 independent reflections
Radiation source: fine-focus sealed tube5730 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 27.9°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.693, Tmax = 0.747k = 4545
24523 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.066P)2 + 1.0641P]
where P = (Fo2 + 2Fc2)/3
7548 reflections(Δ/σ)max = 0.001
398 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C15H14ClN3O2SV = 3174.2 (9) Å3
Mr = 335.80Z = 8
Monoclinic, P21/nMo Kα radiation
a = 8.4580 (13) ŵ = 0.38 mm1
b = 34.920 (6) ÅT = 296 K
c = 10.8333 (17) Å0.43 × 0.34 × 0.29 mm
β = 97.226 (7)°
Data collection top
Bruker X8 APEX Diffractometer7548 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5730 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 0.747Rint = 0.029
24523 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.04Δρmax = 0.36 e Å3
7548 reflectionsΔρmin = 0.31 e Å3
398 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0746 (3)0.91347 (6)0.79881 (19)0.0504 (5)
C21.0407 (2)0.87989 (6)0.72723 (17)0.0419 (4)
C30.9081 (2)0.85660 (6)0.69368 (18)0.0434 (4)
H30.81090.86190.72160.052*
C40.9252 (2)0.82564 (6)0.61843 (18)0.0423 (4)
C51.0743 (3)0.81730 (6)0.57778 (19)0.0486 (5)
H51.08310.79590.52780.058*
C61.2054 (3)0.83968 (6)0.60973 (19)0.0495 (5)
H61.30290.83390.58300.059*
C71.1868 (2)0.87174 (6)0.68471 (17)0.0420 (4)
C81.4506 (3)0.90628 (9)0.7010 (3)0.0770 (8)
H8A1.47920.88640.64660.115*
H8B1.52340.90610.77650.115*
H8C1.45560.93070.66080.115*
C90.7224 (2)0.81651 (6)0.3369 (2)0.0480 (5)
C100.7436 (3)0.78368 (7)0.2700 (2)0.0555 (5)
H100.71210.76010.29830.067*
C110.8113 (3)0.78596 (8)0.1618 (2)0.0630 (6)
H110.82530.76370.11700.076*
C120.8592 (3)0.82078 (9)0.1178 (2)0.0647 (7)
C130.8353 (3)0.85328 (8)0.1854 (3)0.0699 (7)
H130.86580.87690.15650.084*
C140.7677 (3)0.85179 (7)0.2943 (2)0.0631 (6)
H140.75260.87400.33860.076*
C150.9348 (4)0.82282 (12)0.0009 (3)0.0958 (11)
H15A0.97580.84810.01050.144*
H15B0.85640.81700.07040.144*
H15C1.02030.80460.00260.144*
C160.0868 (3)0.68888 (6)0.5237 (2)0.0461 (5)
C170.1129 (2)0.65302 (6)0.57713 (18)0.0400 (4)
C180.0879 (2)0.61439 (6)0.54823 (17)0.0409 (4)
H180.03570.60770.48070.049*
C190.1426 (2)0.58688 (6)0.62205 (18)0.0424 (4)
C200.2169 (3)0.59712 (7)0.7270 (2)0.0550 (6)
H200.25350.57790.77550.066*
C210.2365 (3)0.63448 (7)0.7594 (2)0.0558 (6)
H210.28250.64090.83020.067*
C220.1853 (2)0.66258 (6)0.68257 (19)0.0439 (4)
C230.2682 (3)0.72545 (7)0.7723 (2)0.0621 (6)
H23A0.34770.74160.72750.093*
H23B0.18790.74110.81810.093*
H23C0.31700.70950.82890.093*
C240.1019 (2)0.52481 (6)0.76926 (18)0.0426 (4)
C250.2386 (3)0.52368 (7)0.7115 (2)0.0555 (6)
H250.23310.51670.62820.067*
C260.3831 (3)0.53297 (7)0.7785 (2)0.0590 (6)
H260.47480.53210.73930.071*
C270.3950 (3)0.54353 (6)0.9019 (2)0.0512 (5)
C280.2566 (3)0.54467 (8)0.9573 (2)0.0630 (6)
H280.26200.55181.04050.076*
C290.1113 (3)0.53550 (7)0.8926 (2)0.0581 (6)
H290.01960.53650.93180.070*
C300.5535 (3)0.55361 (9)0.9739 (2)0.0703 (7)
H30A0.55040.54871.06070.105*
H30B0.57560.58020.96220.105*
H30C0.63560.53830.94470.105*
N11.2903 (2)0.89975 (5)0.72974 (16)0.0508 (4)
N21.2212 (2)0.92559 (5)0.79962 (17)0.0536 (5)
N30.7936 (2)0.80055 (5)0.58368 (17)0.0510 (4)
H3N0.81740.77860.57340.061*
N40.1959 (2)0.70164 (5)0.68515 (17)0.0507 (4)
N50.1351 (2)0.71778 (5)0.58704 (18)0.0511 (4)
N60.1321 (2)0.54756 (5)0.58771 (16)0.0481 (4)
H6N0.10530.54370.51940.048 (6)*
O10.5382 (2)0.78159 (7)0.47439 (19)0.0876 (7)
O20.5960 (2)0.85057 (6)0.51171 (18)0.0796 (6)
O30.06493 (19)0.48003 (4)0.60889 (14)0.0518 (4)
O40.19633 (19)0.51112 (5)0.77251 (15)0.0572 (4)
S10.64646 (7)0.81318 (2)0.47990 (6)0.05832 (17)
S20.08315 (6)0.512747 (14)0.68561 (5)0.04431 (14)
Cl10.94290 (10)0.93782 (2)0.87784 (8)0.0867 (3)
Cl20.00273 (9)0.697034 (19)0.39037 (6)0.06916 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0641 (14)0.0440 (11)0.0436 (11)0.0153 (10)0.0092 (10)0.0055 (9)
C20.0534 (11)0.0389 (10)0.0338 (9)0.0118 (9)0.0069 (8)0.0006 (8)
C30.0489 (11)0.0449 (11)0.0380 (10)0.0096 (9)0.0113 (8)0.0027 (8)
C40.0500 (11)0.0416 (10)0.0357 (9)0.0032 (9)0.0071 (8)0.0031 (8)
C50.0575 (12)0.0465 (12)0.0435 (11)0.0050 (10)0.0131 (9)0.0104 (9)
C60.0505 (11)0.0533 (13)0.0468 (11)0.0059 (10)0.0145 (9)0.0097 (10)
C70.0495 (11)0.0432 (11)0.0334 (9)0.0062 (9)0.0050 (8)0.0019 (8)
C80.0678 (16)0.0822 (19)0.0854 (19)0.0212 (14)0.0272 (14)0.0310 (16)
C90.0411 (10)0.0535 (13)0.0486 (12)0.0007 (9)0.0028 (9)0.0009 (10)
C100.0622 (13)0.0516 (13)0.0525 (13)0.0028 (11)0.0058 (10)0.0013 (10)
C110.0679 (15)0.0713 (17)0.0494 (13)0.0015 (13)0.0058 (11)0.0075 (12)
C120.0559 (13)0.092 (2)0.0455 (12)0.0060 (13)0.0021 (10)0.0076 (13)
C130.0734 (17)0.0663 (17)0.0688 (16)0.0111 (14)0.0046 (13)0.0183 (14)
C140.0682 (15)0.0523 (14)0.0684 (16)0.0010 (12)0.0066 (12)0.0025 (12)
C150.084 (2)0.152 (3)0.0528 (15)0.015 (2)0.0146 (14)0.0132 (19)
C160.0468 (11)0.0431 (11)0.0490 (11)0.0042 (9)0.0083 (9)0.0018 (9)
C170.0390 (9)0.0407 (10)0.0398 (10)0.0011 (8)0.0036 (8)0.0007 (8)
C180.0430 (10)0.0432 (11)0.0369 (9)0.0013 (8)0.0071 (8)0.0018 (8)
C190.0483 (11)0.0366 (10)0.0425 (10)0.0043 (8)0.0060 (8)0.0009 (8)
C200.0732 (15)0.0443 (12)0.0520 (12)0.0069 (11)0.0256 (11)0.0078 (10)
C210.0726 (15)0.0502 (13)0.0488 (12)0.0104 (11)0.0241 (11)0.0028 (10)
C220.0454 (10)0.0399 (11)0.0462 (11)0.0052 (8)0.0051 (8)0.0023 (8)
C230.0732 (16)0.0530 (14)0.0616 (14)0.0132 (12)0.0150 (12)0.0079 (11)
C240.0545 (11)0.0334 (10)0.0416 (10)0.0005 (9)0.0123 (9)0.0024 (8)
C250.0614 (13)0.0672 (15)0.0401 (11)0.0117 (11)0.0156 (10)0.0138 (10)
C260.0577 (13)0.0688 (16)0.0536 (13)0.0105 (12)0.0191 (10)0.0163 (11)
C270.0633 (13)0.0449 (12)0.0459 (11)0.0046 (10)0.0091 (10)0.0046 (9)
C280.0758 (16)0.0758 (17)0.0386 (11)0.0001 (13)0.0127 (11)0.0094 (11)
C290.0641 (14)0.0699 (16)0.0439 (12)0.0031 (12)0.0214 (11)0.0026 (11)
C300.0760 (17)0.0789 (18)0.0556 (14)0.0116 (14)0.0068 (12)0.0109 (13)
N10.0536 (10)0.0516 (11)0.0473 (10)0.0013 (8)0.0073 (8)0.0106 (8)
N20.0667 (12)0.0454 (10)0.0483 (10)0.0062 (9)0.0057 (9)0.0097 (8)
N30.0577 (11)0.0457 (10)0.0506 (10)0.0035 (8)0.0112 (8)0.0002 (8)
N40.0585 (11)0.0412 (10)0.0533 (10)0.0038 (8)0.0107 (8)0.0025 (8)
N50.0547 (10)0.0414 (10)0.0574 (11)0.0030 (8)0.0083 (8)0.0002 (8)
N60.0656 (11)0.0393 (9)0.0410 (9)0.0040 (8)0.0126 (8)0.0009 (7)
O10.0602 (11)0.1231 (18)0.0819 (13)0.0364 (11)0.0190 (9)0.0040 (12)
O20.0652 (11)0.0982 (15)0.0771 (12)0.0316 (10)0.0148 (9)0.0131 (11)
O30.0635 (9)0.0352 (7)0.0582 (9)0.0032 (7)0.0131 (7)0.0004 (6)
O40.0609 (9)0.0524 (9)0.0629 (10)0.0027 (7)0.0257 (8)0.0083 (7)
S10.0431 (3)0.0763 (4)0.0573 (3)0.0024 (3)0.0130 (2)0.0057 (3)
S20.0526 (3)0.0346 (3)0.0478 (3)0.0019 (2)0.0143 (2)0.0037 (2)
Cl10.0885 (5)0.0726 (5)0.1041 (6)0.0191 (4)0.0319 (4)0.0360 (4)
Cl20.0874 (5)0.0592 (4)0.0663 (4)0.0082 (3)0.0308 (3)0.0107 (3)
Geometric parameters (Å, º) top
C1—N21.309 (3)C18—C191.367 (3)
C1—C21.415 (3)C18—H180.9300
C1—Cl11.713 (2)C19—C201.413 (3)
C2—C31.396 (3)C19—N61.428 (3)
C2—C71.401 (3)C20—C211.366 (3)
C3—C41.373 (3)C20—H200.9300
C3—H30.9300C21—C221.390 (3)
C4—C51.418 (3)C21—H210.9300
C4—N31.429 (3)C22—N41.367 (3)
C5—C61.365 (3)C23—N41.450 (3)
C5—H50.9300C23—H23A0.9600
C6—C71.404 (3)C23—H23B0.9600
C6—H60.9300C23—H23C0.9600
C7—N11.361 (3)C24—C291.380 (3)
C8—N11.447 (3)C24—C251.383 (3)
C8—H8A0.9600C24—S21.758 (2)
C8—H8B0.9600C25—C261.379 (3)
C8—H8C0.9600C25—H250.9300
C9—C101.380 (3)C26—C271.379 (3)
C9—C141.386 (3)C26—H260.9300
C9—S11.754 (2)C27—C281.382 (3)
C10—C111.370 (3)C27—C301.505 (3)
C10—H100.9300C28—C291.374 (4)
C11—C121.385 (4)C28—H280.9300
C11—H110.9300C29—H290.9300
C12—C131.379 (4)C30—H30A0.9600
C12—C151.509 (4)C30—H30B0.9600
C13—C141.376 (4)C30—H30C0.9600
C13—H130.9300N1—N21.356 (2)
C14—H140.9300N3—S11.630 (2)
C15—H15A0.9600N3—H3N0.8039
C15—H15B0.9600N4—N51.360 (3)
C15—H15C0.9600N6—S21.6321 (17)
C16—N51.314 (3)N6—H6N0.8114
C16—C171.409 (3)O1—S11.430 (2)
C16—Cl21.712 (2)O2—S11.429 (2)
C17—C221.403 (3)O3—S21.4325 (15)
C17—C181.407 (3)O4—S21.4256 (15)
N2—C1—C2113.42 (18)C21—C20—H20119.0
N2—C1—Cl1120.72 (17)C19—C20—H20119.0
C2—C1—Cl1125.85 (18)C20—C21—C22117.6 (2)
C3—C2—C7120.60 (18)C20—C21—H21121.2
C3—C2—C1136.53 (19)C22—C21—H21121.2
C7—C2—C1102.86 (19)N4—C22—C21131.7 (2)
C4—C3—C2118.20 (18)N4—C22—C17106.89 (18)
C4—C3—H3120.9C21—C22—C17121.34 (19)
C2—C3—H3120.9N4—C23—H23A109.5
C3—C4—C5120.68 (19)N4—C23—H23B109.5
C3—C4—N3120.20 (18)H23A—C23—H23B109.5
C5—C4—N3119.08 (18)N4—C23—H23C109.5
C6—C5—C4122.01 (19)H23A—C23—H23C109.5
C6—C5—H5119.0H23B—C23—H23C109.5
C4—C5—H5119.0C29—C24—C25119.7 (2)
C5—C6—C7117.16 (19)C29—C24—S2120.19 (17)
C5—C6—H6121.4C25—C24—S2120.06 (16)
C7—C6—H6121.4C26—C25—C24119.5 (2)
N1—C7—C2106.86 (17)C26—C25—H25120.3
N1—C7—C6131.81 (19)C24—C25—H25120.3
C2—C7—C6121.33 (19)C27—C26—C25121.6 (2)
N1—C8—H8A109.5C27—C26—H26119.2
N1—C8—H8B109.5C25—C26—H26119.2
H8A—C8—H8B109.5C26—C27—C28117.8 (2)
N1—C8—H8C109.5C26—C27—C30121.1 (2)
H8A—C8—H8C109.5C28—C27—C30121.1 (2)
H8B—C8—H8C109.5C29—C28—C27121.6 (2)
C10—C9—C14120.3 (2)C29—C28—H28119.2
C10—C9—S1119.66 (18)C27—C28—H28119.2
C14—C9—S1120.01 (19)C28—C29—C24119.7 (2)
C11—C10—C9119.8 (2)C28—C29—H29120.1
C11—C10—H10120.1C24—C29—H29120.1
C9—C10—H10120.1C27—C30—H30A109.5
C10—C11—C12121.1 (2)C27—C30—H30B109.5
C10—C11—H11119.4H30A—C30—H30B109.5
C12—C11—H11119.4C27—C30—H30C109.5
C13—C12—C11118.2 (2)H30A—C30—H30C109.5
C13—C12—C15121.3 (3)H30B—C30—H30C109.5
C11—C12—C15120.5 (3)N2—N1—C7112.03 (17)
C14—C13—C12121.9 (3)N2—N1—C8119.78 (19)
C14—C13—H13119.0C7—N1—C8127.85 (19)
C12—C13—H13119.0C1—N2—N1104.81 (17)
C13—C14—C9118.8 (2)C4—N3—S1121.17 (15)
C13—C14—H14120.6C4—N3—H3N114.9
C9—C14—H14120.6S1—N3—H3N110.2
C12—C15—H15A109.5N5—N4—C22111.42 (17)
C12—C15—H15B109.5N5—N4—C23120.21 (18)
H15A—C15—H15B109.5C22—N4—C23128.28 (19)
C12—C15—H15C109.5C16—N5—N4105.25 (17)
H15A—C15—H15C109.5C19—N6—S2124.46 (14)
H15B—C15—H15C109.5C19—N6—H6N115.4
N5—C16—C17113.14 (19)S2—N6—H6N113.2
N5—C16—Cl2120.16 (16)O2—S1—O1120.36 (13)
C17—C16—Cl2126.69 (16)O2—S1—N3107.83 (11)
C22—C17—C18120.18 (18)O1—S1—N3104.45 (12)
C22—C17—C16103.29 (18)O2—S1—C9107.82 (12)
C18—C17—C16136.51 (19)O1—S1—C9108.55 (11)
C19—C18—C17118.18 (18)N3—S1—C9107.12 (10)
C19—C18—H18120.9O4—S2—O3118.79 (10)
C17—C18—H18120.9O4—S2—N6108.81 (10)
C18—C19—C20120.70 (19)O3—S2—N6104.71 (9)
C18—C19—N6119.09 (18)O4—S2—C24107.30 (10)
C20—C19—N6120.11 (18)O3—S2—C24109.65 (10)
C21—C20—C19121.9 (2)N6—S2—C24107.03 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N5i0.802.162.952 (3)167
N6—H6N···O3ii0.812.283.022 (2)152
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N5i0.802.162.952 (3)167.0
N6—H6N···O3ii0.812.283.022 (2)152.3
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAbbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAbbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190–o191.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBouissane, L., El Kazzouli, S., Leonce, S., Pffeifer, P., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChicha, H., Kouakou, A., Rakib, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1353.  CSD CrossRef IUCr Journals Google Scholar
First citationEl-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714–3720.  Web of Science CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMustafa, G., Khana, I. U., Ashraf, M., Afzal, I., Shahzadd, S. A. & Shafiq, M. (2012). Bioorg. Med. Chem. 20, 2535–2539.  Web of Science CrossRef CAS PubMed Google Scholar
First citationScozzafava, A., Owa, T., Mastrolorenzo, A. & Supuran, C. T. (2003). Curr. Med. Chem. 10, 925–953.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds