organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo-3-ethyl­sulfinyl-2-(4-methyl­phen­yl)-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 11 June 2014; accepted 19 June 2014; online 25 June 2014)

In the title compound, C17H15BrO2S, the dihedral angle between the plane of the benzo­furan ring system [r.m.s. deviation = 0.004 (3) Å] and that of the 4-methyl­phenyl ring is 0.9 (2)°. In the crystal, mol­ecules are linked by C—H⋯O, C—H⋯π and Br⋯π [3.636 (2) Å] inter­actions, and by ππ inter­actions between the 4-methyl­phenyl and furan rings of neighbouring mol­ecules [centroid–centroid distance = 3.650 (2) Å], forming a three-dimensional network.

Keywords: crystal structure.

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2010[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o323.], 2012[Choi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o3292.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15BrO2S

  • Mr = 363.26

  • Monoclinic, P 21 /n

  • a = 5.0202 (3) Å

  • b = 25.0471 (12) Å

  • c = 12.2430 (6) Å

  • β = 100.340 (2)°

  • V = 1514.45 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.85 mm−1

  • T = 173 K

  • 0.60 × 0.14 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.541, Tmax = 0.746

  • 26373 measured reflections

  • 3868 independent reflections

  • 3104 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.139

  • S = 1.06

  • 3868 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 1.97 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C9–C14 4-methyl­phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O2i 0.95 2.58 3.507 (4) 164
C16—H16B⋯O2ii 0.99 2.26 3.110 (5) 144
C15—H15CCg1ii 0.99 2.78 3.607 (3) 143
Symmetry codes: (i) [x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXS97.

Supporting information


Comment top

As a part of our ongoing project of 2-aryl-5-bromo-1-benzofuran derivatives containing [3-ethylsulfinyl-2-(4-fluorophenyl)] (Choi et al., 2010) and [2-(4-methylphenyl)-3-methylsulfinyl] (Choi et al., 2012) substituents. We report herein on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.004 (3) Å from the least-squares plane defined by the nine constituent atoms. The 4-methylphenyl ring is essentially planar, with a mean deviation of 0.002 (3) Å from the least-squares plane defined by the six constituent atoms. The dihedral angle formed by the benzofuran ring system and the 4-methylphenyl ring is 0.9 (2)°. In the crystal structure (Fig. 2), molecules are linked by C—H···O and C—H···π hydrogen bonds (Table 1, Cg1 is the centroid of the C9–C14 4-methylphenyl ring) and C4—Br1···π interactions between the bromine atom and the benzene ring of a neighbouring molecule with a Br1···Cg3iii = 3.636 (2) Å (Cg3 is the centroid of the C2–C7 benzene ring). The crystal packing (Fig. 2) also exhibits π···π interactions between the 4-methylphenyl and furan rings of neighbouring molecules, with a Cg1···Cg2ii distance of 3.650 (2) Å (Cg2 is the centroid of the C1/C2/C7/O1/C8 furan ring), forming a three-dimensional network.

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2010, 2012).

Experimental top

3-Chloroperoxybenzoic acid (77%, 269 mg, 1.2 mmol) was added in small portions to a stirred solution of 5-bromo-3-ethylsulfanyl-2-(4-methylphenyl)-1-benzofuran (382 mg, 1.1 mmol) in dichloromethane (35 mL) at 273 K. After being stirred at room temperature for 5h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 71%, m.p. 404–405 K; Rf = 0.54 (hexane–ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl, 0.99 Å for methylene and 0.98 Å for methyl H atoms, respectively. Uiso (H) = 1.2Ueq (C) for aryl and methylene, and 1.5Ueq (C) for methyl H atoms. The positions of methyl hydrogens were optimized using the SHELXL-97's command AFIX 137 (Sheldrick, 2008). The highest peak in the difference map is 0.91 Å from Br1 and the largest hole is 0.59 Å from Br1.

Structure description top

As a part of our ongoing project of 2-aryl-5-bromo-1-benzofuran derivatives containing [3-ethylsulfinyl-2-(4-fluorophenyl)] (Choi et al., 2010) and [2-(4-methylphenyl)-3-methylsulfinyl] (Choi et al., 2012) substituents. We report herein on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.004 (3) Å from the least-squares plane defined by the nine constituent atoms. The 4-methylphenyl ring is essentially planar, with a mean deviation of 0.002 (3) Å from the least-squares plane defined by the six constituent atoms. The dihedral angle formed by the benzofuran ring system and the 4-methylphenyl ring is 0.9 (2)°. In the crystal structure (Fig. 2), molecules are linked by C—H···O and C—H···π hydrogen bonds (Table 1, Cg1 is the centroid of the C9–C14 4-methylphenyl ring) and C4—Br1···π interactions between the bromine atom and the benzene ring of a neighbouring molecule with a Br1···Cg3iii = 3.636 (2) Å (Cg3 is the centroid of the C2–C7 benzene ring). The crystal packing (Fig. 2) also exhibits π···π interactions between the 4-methylphenyl and furan rings of neighbouring molecules, with a Cg1···Cg2ii distance of 3.650 (2) Å (Cg2 is the centroid of the C1/C2/C7/O1/C8 furan ring), forming a three-dimensional network.

For background information and the crystal structures of related compounds, see: Choi et al. (2010, 2012).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXS97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. The hydrogen atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···O, C—H···π, Br···π and π···π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) x + 3/2, - y + 1/2, z + 1/2; (ii) x + 1, y, z; (iii) x - 1, y, z; (iv) x - 3/2, - y + 1/2, z - 1/2.]
5-Bromo-3-ethylsulfinyl-2-(4-methylphenyl)-1-benzofuran top
Crystal data top
C17H15BrO2SF(000) = 736
Mr = 363.26Dx = 1.593 Mg m3
Monoclinic, P21/nMelting point = 405–404 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 5.0202 (3) ÅCell parameters from 7637 reflections
b = 25.0471 (12) Åθ = 2.4–27.2°
c = 12.2430 (6) ŵ = 2.85 mm1
β = 100.340 (2)°T = 173 K
V = 1514.45 (14) Å3Block, colourless
Z = 40.60 × 0.14 × 0.12 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3868 independent reflections
Radiation source: rotating anode3104 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.058
Detector resolution: 10.0 pixels mm-1θmax = 28.6°, θmin = 1.6°
φ and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 3332
Tmin = 0.541, Tmax = 0.746l = 1616
26373 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: difference Fourier map
wR(F2) = 0.139H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0648P)2 + 3.2187P]
where P = (Fo2 + 2Fc2)/3
3868 reflections(Δ/σ)max = 0.002
192 parametersΔρmax = 1.97 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
C17H15BrO2SV = 1514.45 (14) Å3
Mr = 363.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.0202 (3) ŵ = 2.85 mm1
b = 25.0471 (12) ÅT = 173 K
c = 12.2430 (6) Å0.60 × 0.14 × 0.12 mm
β = 100.340 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3868 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3104 reflections with I > 2σ(I)
Tmin = 0.541, Tmax = 0.746Rint = 0.058
26373 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.06Δρmax = 1.97 e Å3
3868 reflectionsΔρmin = 0.83 e Å3
192 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.00958 (8)0.504511 (15)0.82039 (3)0.03501 (14)
S10.56805 (19)0.35409 (3)0.54542 (7)0.0275 (2)
O10.8410 (5)0.33583 (9)0.86960 (18)0.0242 (5)
O20.2710 (5)0.36245 (11)0.5189 (2)0.0368 (6)
C10.6586 (7)0.35476 (13)0.6920 (3)0.0229 (6)
C20.5277 (7)0.38802 (13)0.7630 (3)0.0220 (6)
C30.3264 (7)0.42681 (13)0.7465 (3)0.0258 (7)
H30.23910.43680.67400.031*
C40.2582 (7)0.45033 (14)0.8400 (3)0.0266 (7)
C50.3796 (8)0.43619 (15)0.9476 (3)0.0308 (8)
H50.32570.45321.00950.037*
C60.5790 (8)0.39732 (15)0.9641 (3)0.0304 (8)
H60.66440.38691.03660.037*
C70.6481 (7)0.37435 (13)0.8707 (3)0.0236 (7)
C80.8441 (7)0.32375 (12)0.7603 (2)0.0208 (6)
C91.0400 (7)0.28307 (13)0.7429 (3)0.0214 (6)
C101.0737 (7)0.26723 (14)0.6372 (3)0.0253 (7)
H100.96560.28300.57380.030*
C111.2624 (7)0.22877 (14)0.6235 (3)0.0272 (7)
H111.28150.21850.55050.033*
C121.4238 (7)0.20489 (13)0.7136 (3)0.0250 (7)
C131.3907 (8)0.22062 (15)0.8188 (3)0.0304 (8)
H131.49910.20450.88170.037*
C141.2043 (8)0.25910 (14)0.8346 (3)0.0282 (7)
H141.18730.26940.90770.034*
C151.6299 (8)0.16284 (15)0.6982 (3)0.0326 (8)
H15A1.63460.15890.61890.049*
H15B1.57960.12870.72800.049*
H15C1.80910.17370.73760.049*
C160.7154 (8)0.41740 (17)0.5188 (3)0.0343 (8)
H16A0.65770.44530.56690.041*
H16B0.91540.41490.53590.041*
C170.6247 (12)0.4323 (2)0.3983 (4)0.0561 (13)
H17A0.68210.40460.35100.084*
H17B0.70620.46650.38350.084*
H17C0.42700.43550.38220.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0368 (2)0.0297 (2)0.0398 (2)0.00835 (15)0.01023 (16)0.00114 (15)
S10.0371 (5)0.0267 (4)0.0158 (4)0.0048 (3)0.0031 (3)0.0012 (3)
O10.0324 (13)0.0245 (12)0.0153 (10)0.0040 (9)0.0033 (9)0.0006 (9)
O20.0348 (15)0.0414 (16)0.0300 (13)0.0066 (12)0.0056 (11)0.0023 (12)
C10.0293 (17)0.0211 (15)0.0174 (14)0.0008 (12)0.0019 (12)0.0020 (12)
C20.0274 (16)0.0197 (15)0.0181 (14)0.0028 (12)0.0021 (12)0.0032 (12)
C30.0268 (16)0.0233 (16)0.0257 (16)0.0008 (13)0.0005 (13)0.0001 (13)
C40.0255 (16)0.0254 (16)0.0289 (17)0.0001 (13)0.0051 (13)0.0010 (13)
C50.041 (2)0.0293 (18)0.0246 (17)0.0030 (15)0.0126 (15)0.0033 (14)
C60.040 (2)0.0336 (19)0.0170 (15)0.0051 (15)0.0032 (14)0.0002 (13)
C70.0298 (17)0.0207 (15)0.0195 (15)0.0009 (13)0.0022 (13)0.0016 (12)
C80.0287 (16)0.0192 (14)0.0134 (13)0.0034 (12)0.0004 (11)0.0011 (11)
C90.0266 (16)0.0194 (14)0.0172 (14)0.0023 (12)0.0015 (12)0.0001 (11)
C100.0318 (17)0.0253 (16)0.0178 (15)0.0022 (13)0.0021 (13)0.0045 (12)
C110.0346 (18)0.0261 (17)0.0215 (16)0.0004 (14)0.0069 (13)0.0033 (13)
C120.0262 (16)0.0223 (16)0.0265 (17)0.0013 (13)0.0048 (13)0.0014 (13)
C130.0362 (19)0.0324 (19)0.0203 (16)0.0053 (15)0.0014 (14)0.0046 (14)
C140.0377 (19)0.0297 (18)0.0164 (15)0.0064 (14)0.0024 (13)0.0010 (13)
C150.0338 (19)0.0272 (18)0.037 (2)0.0016 (15)0.0054 (15)0.0017 (15)
C160.0335 (19)0.042 (2)0.0271 (18)0.0040 (16)0.0052 (15)0.0024 (16)
C170.079 (4)0.056 (3)0.032 (2)0.011 (3)0.004 (2)0.016 (2)
Geometric parameters (Å, º) top
Br1—C41.895 (4)C9—C141.403 (4)
S1—O21.483 (3)C10—C111.382 (5)
S1—C11.770 (3)C10—H100.9500
S1—C161.804 (4)C11—C121.383 (5)
O1—C71.369 (4)C11—H110.9500
O1—C81.375 (4)C12—C131.384 (5)
C1—C81.375 (4)C12—C151.512 (5)
C1—C21.445 (4)C13—C141.381 (5)
C2—C31.390 (5)C13—H130.9500
C2—C71.391 (4)C14—H140.9500
C3—C41.383 (5)C15—H15A0.9800
C3—H30.9500C15—H15B0.9800
C4—C51.395 (5)C15—H15C0.9800
C5—C61.385 (5)C16—C171.511 (6)
C5—H50.9500C16—H16A0.9900
C6—C71.379 (5)C16—H16B0.9900
C6—H60.9500C17—H17A0.9800
C8—C91.458 (5)C17—H17B0.9800
C9—C101.392 (5)C17—H17C0.9800
O2—S1—C1106.61 (16)C11—C10—H10119.6
O2—S1—C16105.37 (17)C9—C10—H10119.6
C1—S1—C1697.81 (17)C10—C11—C12121.4 (3)
C7—O1—C8107.2 (2)C10—C11—H11119.3
C8—C1—C2106.9 (3)C12—C11—H11119.3
C8—C1—S1129.3 (3)C11—C12—C13117.9 (3)
C2—C1—S1123.6 (2)C11—C12—C15121.2 (3)
C3—C2—C7119.4 (3)C13—C12—C15120.9 (3)
C3—C2—C1135.5 (3)C14—C13—C12121.8 (3)
C7—C2—C1105.1 (3)C14—C13—H13119.1
C4—C3—C2117.3 (3)C12—C13—H13119.1
C4—C3—H3121.3C13—C14—C9120.1 (3)
C2—C3—H3121.3C13—C14—H14119.9
C3—C4—C5122.8 (3)C9—C14—H14119.9
C3—C4—Br1118.4 (3)C12—C15—H15A109.5
C5—C4—Br1118.7 (3)C12—C15—H15B109.5
C6—C5—C4119.8 (3)H15A—C15—H15B109.5
C6—C5—H5120.1C12—C15—H15C109.5
C4—C5—H5120.1H15A—C15—H15C109.5
C7—C6—C5117.1 (3)H15B—C15—H15C109.5
C7—C6—H6121.5C17—C16—S1109.4 (3)
C5—C6—H6121.5C17—C16—H16A109.8
O1—C7—C6125.8 (3)S1—C16—H16A109.8
O1—C7—C2110.6 (3)C17—C16—H16B109.8
C6—C7—C2123.5 (3)S1—C16—H16B109.8
C1—C8—O1110.1 (3)H16A—C16—H16B108.2
C1—C8—C9135.0 (3)C16—C17—H17A109.5
O1—C8—C9114.9 (3)C16—C17—H17B109.5
C10—C9—C14118.0 (3)H17A—C17—H17B109.5
C10—C9—C8122.2 (3)C16—C17—H17C109.5
C14—C9—C8119.8 (3)H17A—C17—H17C109.5
C11—C10—C9120.8 (3)H17B—C17—H17C109.5
O2—S1—C1—C8141.1 (3)C2—C1—C8—O10.8 (4)
C16—S1—C1—C8110.3 (3)S1—C1—C8—O1177.1 (2)
O2—S1—C1—C234.7 (3)C2—C1—C8—C9179.4 (3)
C16—S1—C1—C274.0 (3)S1—C1—C8—C94.3 (6)
C8—C1—C2—C3179.6 (4)C7—O1—C8—C11.0 (4)
S1—C1—C2—C33.0 (6)C7—O1—C8—C9179.9 (3)
C8—C1—C2—C70.3 (4)C1—C8—C9—C100.2 (6)
S1—C1—C2—C7176.9 (3)O1—C8—C9—C10178.3 (3)
C7—C2—C3—C40.6 (5)C1—C8—C9—C14179.4 (4)
C1—C2—C3—C4179.5 (4)O1—C8—C9—C140.8 (4)
C2—C3—C4—C50.9 (5)C14—C9—C10—C110.4 (5)
C2—C3—C4—Br1178.6 (2)C8—C9—C10—C11179.6 (3)
C3—C4—C5—C60.5 (6)C9—C10—C11—C120.1 (5)
Br1—C4—C5—C6179.0 (3)C10—C11—C12—C130.1 (5)
C4—C5—C6—C70.2 (6)C10—C11—C12—C15180.0 (3)
C8—O1—C7—C6179.5 (3)C11—C12—C13—C140.4 (6)
C8—O1—C7—C20.8 (4)C15—C12—C13—C14179.8 (4)
C5—C6—C7—O1179.3 (3)C12—C13—C14—C90.7 (6)
C5—C6—C7—C20.4 (6)C10—C9—C14—C130.7 (5)
C3—C2—C7—O1179.8 (3)C8—C9—C14—C13179.9 (3)
C1—C2—C7—O10.3 (4)O2—S1—C16—C1760.2 (4)
C3—C2—C7—C60.0 (5)C1—S1—C16—C17169.9 (3)
C1—C2—C7—C6179.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 4-methylphenyl ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.952.583.507 (4)164
C16—H16B···O2ii0.992.263.110 (5)144
C15—H15C···Cg1ii0.992.783.607 (3)143
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9–C14 4-methylphenyl ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.952.583.507 (4)164.2
C16—H16B···O2ii0.992.263.110 (5)143.8
C15—H15C···Cg1ii0.992.783.607 (3)142.9
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y, z.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o3292.  CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o323.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds