organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-bromo-2-[(E)-N-(2,2,6,6-tetra­methyl­piperidin-4-yl)carboximido­yl]phenol dihydrate

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eDepartment of Chemistry, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina (Received 9 April 2015; accepted 16 April 2015; online 25 April 2015)

In the title hydrate, C16H23BrN2O·2H2O, the organic mol­ecule features a strong intra­molecular O—H⋯N hydrogen bond. The piperidine ring, in addition, adopts a chair conformation with the exocyclic C—N bond in an equatorial orientation. The water molecules of crystallization are disordered (each over two sets of sites with half occupancy. In the crystal, they associate into corrugated (100) sheets of (H2O)4 tetra­mers linked by O—H⋯O hydrogen bonds. The organic mol­ecules, in turn, are arranged at both sides of these sheets, linked by water–piperidine O—H⋯N hydrogen bonds.

1. Related literature

For various biological applications of piperidine-containing compounds, see: Sánchez-Sancho & Herrandón (1998[Sánchez-Sancho, F. & Herrandón, B. (1998). Tetrahedron Asymmetry, 9, 1951-1965.]); Nithiya et al. (2011[Nithiya, S., Karthik, N. & Jayabharathi, J. (2011). Int. J. Pharm. Pharm. Sci. 3, 254-256.]); Adger et al. (1996[Adger, B., Dyer, U., Hutton, G. & Woods, M. (1996). Tetrahedron Lett. 37, 6399-6402.]); Kozikowski et al. (1998[Kozikowski, A. P., Araldi, G. L., Boja, J., Meil, W. M., Johnson, K. M., Flippen-Anderson, J. L., George, C. & Saiah, E. (1998). J. Med. Chem. 41, 1962-1969.]); Brau et al. (2000[Brau, M. E., Branitzki, P., Olschewski, A., Vogel, W. & Hempelmann, G. (2000). Anesth. Analg. 91, 1499-1505.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H23BrN2O·2H2O

  • Mr = 375.30

  • Monoclinic, C 2/c

  • a = 39.6126 (7) Å

  • b = 6.0497 (1) Å

  • c = 14.8673 (3) Å

  • β = 98.889 (1)°

  • V = 3520.07 (11) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 3.30 mm−1

  • T = 150 K

  • 0.34 × 0.09 × 0.08 mm

2.2. Data collection

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]) Tmin = 0.54, Tmax = 0.77

  • 12901 measured reflections

  • 3428 independent reflections

  • 3113 reflections with I > 2σ(I)

  • Rint = 0.025

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.077

  • S = 1.10

  • 3428 reflections

  • 204 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.84 1.87 2.628 (2) 149
O2—H2B⋯N2 0.84 2.02 2.861 (2) 175
O3—H3A⋯O2i 0.84 2.24 3.059 (2) 167
O3—H3B⋯O2ii 0.84 2.04 2.869 (2) 168
O2A—H2BA⋯N2 0.84 2.02 2.861 (2) 175
O2A—H2D⋯O3Aiii 0.84 2.04 2.869 (2) 170
O3A—H3AA⋯O2Ai 0.84 2.24 3.059 (2) 167
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y-1, z; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Piperidine-bearing compounds have diverse applications in commercial and medicinal fields. The piperidine nucleus is an ubiquitous structural feature of biologically active compounds and numerous secondary metabolites, for example (S)-pipecolic acid a non-proteinogenic amino acid associated with epilepsy (Sánchez-Sancho & Herrandón, 1998; Nithiya et al., 2011; Adger et al., 1996). Moreover, piperidine-containing compounds were evaluated for their effect on plasma glucose level (Kozikowski et al., 1998), insulin normalization and treatment of cocaine abuse (Brau et al., 2000). In this vein and following our strategy for synthesis of bio-active heterocyclic compounds, we report the synthesis and crystal structure of the title compound.

The conformation of the title molecule is determined in part by the strong O1—H1a···N1 hydrogen bond. The substituted piperidine ring adopts a chair conformation with puckering parameters Q = 0.503 (2) Å, θ = 12.0 (2) Å and φ = 176 (1)°. In the crystal, hydrogen bonding between the lattice water molecules generates corrugated layers approximately parallel to (100) with the piperidine nitrogen atoms (N2) hydrogen bonded to both sides (Table 1 and Fig. 2). Although the disorder in the lattice waters makes a precise description of the hydrogen bonding network in the water layer difficult (and generates apparent short H···H contacts), use of one component of the disorder indicates the presence of (H2O)4 units (Fig. 3) which hydrogen bond to the piperidine nitrogen atoms.

Related literature top

For various biological applications of piperidine-containing compounds, see: Sánchez-Sancho & Herrandón (1998); Nithiya et al. (2011); Adger et al. (1996); Kozikowski et al. (1998); Brau et al. (2000).

Experimental top

A mixture of 1 mmol (156 mg) of 2,2,6,6-tetramethylpiperidin-4-amine and 1 mmol (201 mg) of 5-bromo-2-hydroxybenzaldehyde in 30 ml ethanol was heated under reflux for 5 h. The solid product was obtained on cooling, filtered off, dried under vacuum and recrystallized from ethanol to afford pale yellow columns which were suitable for X-ray diffraction. Mp. 361 K.

Refinement top

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen and oxygen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å and O—H = 0.84 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Each lattice water molecule is disordered over two sites with the oxygen and one hydrogen in common. Based on peak heights for the disordered H atoms, the two sites for these atoms were judged to be equally occupied.

Structure description top

Piperidine-bearing compounds have diverse applications in commercial and medicinal fields. The piperidine nucleus is an ubiquitous structural feature of biologically active compounds and numerous secondary metabolites, for example (S)-pipecolic acid a non-proteinogenic amino acid associated with epilepsy (Sánchez-Sancho & Herrandón, 1998; Nithiya et al., 2011; Adger et al., 1996). Moreover, piperidine-containing compounds were evaluated for their effect on plasma glucose level (Kozikowski et al., 1998), insulin normalization and treatment of cocaine abuse (Brau et al., 2000). In this vein and following our strategy for synthesis of bio-active heterocyclic compounds, we report the synthesis and crystal structure of the title compound.

The conformation of the title molecule is determined in part by the strong O1—H1a···N1 hydrogen bond. The substituted piperidine ring adopts a chair conformation with puckering parameters Q = 0.503 (2) Å, θ = 12.0 (2) Å and φ = 176 (1)°. In the crystal, hydrogen bonding between the lattice water molecules generates corrugated layers approximately parallel to (100) with the piperidine nitrogen atoms (N2) hydrogen bonded to both sides (Table 1 and Fig. 2). Although the disorder in the lattice waters makes a precise description of the hydrogen bonding network in the water layer difficult (and generates apparent short H···H contacts), use of one component of the disorder indicates the presence of (H2O)4 units (Fig. 3) which hydrogen bond to the piperidine nitrogen atoms.

For various biological applications of piperidine-containing compounds, see: Sánchez-Sancho & Herrandón (1998); Nithiya et al. (2011); Adger et al. (1996); Kozikowski et al. (1998); Brau et al. (2000).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The the asymmetric unit showing the intra- and intermolecular O—H···N hydrogen bonds as dotted lines. Only one set of the disordered hydrogen atoms is shown.
[Figure 2] Fig. 2. Packing viewed down the b axis with intermolecular O—H···N and O—H···O hydrogen bonds shown, respectively, as purple and red dotted lines. Only one set of the disordered hydrogen atoms is shown.
[Figure 3] Fig. 3. A portion of the layer of lattice water molecules. Only one set of the disordered hydrogen atoms is shown.
4-Bromo-2-[(E)-N-(2,2,6,6-tetramethylpiperidin-4-yl)carboximidoyl]phenol dihydrate top
Crystal data top
C16H23BrN2O·2H2OF(000) = 1568
Mr = 375.30Dx = 1.416 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
a = 39.6126 (7) ÅCell parameters from 9702 reflections
b = 6.0497 (1) Åθ = 6.0–72.1°
c = 14.8673 (3) ŵ = 3.30 mm1
β = 98.889 (1)°T = 150 K
V = 3520.07 (11) Å3Column, pale yellow
Z = 80.34 × 0.09 × 0.08 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3428 independent reflections
Radiation source: INCOATEC IµS micro–focus source3113 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 10.4167 pixels mm-1θmax = 72.2°, θmin = 6.0°
ω scansh = 4845
Absorption correction: numerical
(SADABS; Bruker, 2014)
k = 76
Tmin = 0.54, Tmax = 0.77l = 1815
12901 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: mixed
wR(F2) = 0.077H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0323P)2 + 4.9527P]
where P = (Fo2 + 2Fc2)/3
3428 reflections(Δ/σ)max = 0.002
204 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
C16H23BrN2O·2H2OV = 3520.07 (11) Å3
Mr = 375.30Z = 8
Monoclinic, C2/cCu Kα radiation
a = 39.6126 (7) ŵ = 3.30 mm1
b = 6.0497 (1) ÅT = 150 K
c = 14.8673 (3) Å0.34 × 0.09 × 0.08 mm
β = 98.889 (1)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3428 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 2014)
3113 reflections with I > 2σ(I)
Tmin = 0.54, Tmax = 0.77Rint = 0.025
12901 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.10Δρmax = 0.56 e Å3
3428 reflectionsΔρmin = 0.67 e Å3
204 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen and oxygen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å and O—H = 0.84 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Each lattice water molecule is disordered over two sites with the oxygen and one hydrogen in common. Based on peak heights for the disordered H atoms, the two sites for these atoms were judged to be equally occupied.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.82893 (2)0.47282 (5)0.33146 (2)0.04137 (10)
O10.69904 (4)0.0570 (2)0.41569 (10)0.0300 (3)
H1A0.68350.15270.40800.056 (9)*
N10.66823 (4)0.4316 (3)0.36510 (11)0.0236 (3)
N20.56827 (4)0.6877 (2)0.37146 (10)0.0191 (3)
H2A0.55860.56380.39120.023*
C10.72738 (5)0.3664 (3)0.35750 (12)0.0224 (4)
C20.72757 (5)0.1514 (3)0.39411 (12)0.0251 (4)
C30.75833 (6)0.0340 (3)0.40982 (13)0.0301 (4)
H30.75870.11110.43440.036*
C40.78818 (5)0.1262 (4)0.39007 (13)0.0335 (5)
H40.80890.04500.40080.040*
C50.78768 (5)0.3385 (4)0.35440 (13)0.0288 (4)
C60.75773 (5)0.4580 (3)0.33731 (12)0.0249 (4)
H60.75770.60210.31190.030*
C70.69657 (5)0.5031 (3)0.34611 (12)0.0215 (4)
H70.69770.64970.32390.026*
C80.63930 (4)0.5860 (3)0.35583 (12)0.0210 (4)
H80.64650.73260.33430.025*
C90.62799 (5)0.6125 (3)0.44904 (12)0.0215 (4)
H9A0.64690.67950.49170.026*
H9B0.62330.46460.47280.026*
C100.59592 (4)0.7571 (3)0.44580 (12)0.0200 (4)
C110.57716 (4)0.6334 (3)0.28012 (11)0.0196 (3)
C120.60997 (5)0.4941 (3)0.28757 (12)0.0213 (4)
H12A0.60490.34180.30580.026*
H12B0.61730.48620.22690.026*
C130.60480 (5)1.0012 (3)0.43633 (14)0.0249 (4)
H13A0.61701.02000.38440.037*
H13B0.61931.05120.49200.037*
H13C0.58371.08890.42650.037*
C140.58145 (5)0.7278 (3)0.53433 (12)0.0269 (4)
H14A0.56170.82580.53420.040*
H14B0.59900.76500.58600.040*
H14C0.57430.57400.53970.040*
C150.58037 (5)0.8434 (3)0.22423 (12)0.0247 (4)
H15A0.56060.93940.22720.037*
H15B0.58110.80310.16070.037*
H15C0.60140.92180.24910.037*
C160.54701 (5)0.4976 (3)0.23218 (13)0.0252 (4)
H16A0.54350.36840.26940.038*
H16B0.55190.44850.17270.038*
H16C0.52630.58890.22370.038*
O20.51008 (4)0.9736 (2)0.35246 (11)0.0331 (3)0.5
H2B0.52780.89540.35620.040*0.5
H2C0.50381.00050.29700.040*0.5
O30.51664 (4)0.2904 (3)0.49776 (11)0.0399 (4)0.5
H3A0.51270.21580.54270.048*0.5
H3B0.51240.20810.45190.048*0.5
O2A0.51008 (4)0.9736 (2)0.35246 (11)0.0331 (3)0.5
H2BA0.52780.89540.35620.040*0.5
H2D0.51051.07620.39070.040*0.5
O3A0.51664 (4)0.2904 (3)0.49776 (11)0.0399 (4)0.5
H3AA0.51270.21580.54270.048*0.5
H3C0.50690.41310.50000.048*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01904 (12)0.06914 (19)0.03582 (14)0.00163 (10)0.00390 (9)0.01717 (11)
O10.0346 (8)0.0241 (7)0.0318 (7)0.0020 (6)0.0068 (6)0.0023 (6)
N10.0216 (8)0.0231 (8)0.0259 (8)0.0039 (6)0.0034 (6)0.0019 (6)
N20.0191 (7)0.0207 (7)0.0184 (7)0.0018 (6)0.0054 (5)0.0001 (6)
C10.0228 (9)0.0258 (9)0.0183 (8)0.0036 (7)0.0017 (6)0.0033 (7)
C20.0311 (10)0.0250 (9)0.0186 (8)0.0045 (8)0.0015 (7)0.0035 (7)
C30.0393 (11)0.0286 (10)0.0215 (9)0.0126 (9)0.0013 (8)0.0015 (8)
C40.0306 (10)0.0446 (12)0.0234 (10)0.0181 (9)0.0020 (8)0.0067 (9)
C50.0206 (9)0.0421 (12)0.0227 (9)0.0039 (8)0.0003 (7)0.0109 (8)
C60.0228 (9)0.0308 (10)0.0207 (9)0.0024 (8)0.0023 (7)0.0047 (7)
C70.0227 (9)0.0216 (9)0.0202 (8)0.0033 (7)0.0028 (7)0.0020 (7)
C80.0188 (8)0.0189 (8)0.0257 (9)0.0025 (7)0.0044 (7)0.0041 (7)
C90.0226 (9)0.0200 (8)0.0211 (9)0.0010 (7)0.0014 (7)0.0017 (7)
C100.0213 (8)0.0206 (9)0.0181 (8)0.0001 (7)0.0034 (6)0.0003 (7)
C110.0188 (8)0.0224 (9)0.0182 (8)0.0002 (7)0.0046 (6)0.0001 (7)
C120.0227 (9)0.0211 (9)0.0206 (8)0.0023 (7)0.0051 (7)0.0007 (7)
C130.0262 (10)0.0188 (9)0.0288 (10)0.0001 (7)0.0018 (7)0.0007 (7)
C140.0313 (10)0.0302 (10)0.0201 (9)0.0013 (8)0.0070 (7)0.0011 (8)
C150.0235 (9)0.0289 (10)0.0226 (9)0.0030 (7)0.0066 (7)0.0055 (8)
C160.0220 (9)0.0305 (10)0.0232 (9)0.0017 (7)0.0041 (7)0.0048 (7)
O20.0281 (7)0.0337 (8)0.0376 (8)0.0058 (6)0.0050 (6)0.0057 (6)
O30.0444 (9)0.0318 (8)0.0450 (9)0.0004 (7)0.0113 (7)0.0064 (7)
O2A0.0281 (7)0.0337 (8)0.0376 (8)0.0058 (6)0.0050 (6)0.0057 (6)
O3A0.0444 (9)0.0318 (8)0.0450 (9)0.0004 (7)0.0113 (7)0.0064 (7)
Geometric parameters (Å, º) top
Br1—C51.902 (2)C10—C131.530 (2)
O1—C21.348 (2)C11—C161.532 (2)
O1—H1A0.8400C11—C151.534 (2)
N1—C71.275 (2)C11—C121.538 (2)
N1—C81.468 (2)C12—H12A0.9900
N2—C101.491 (2)C12—H12B0.9900
N2—C111.491 (2)C13—H13A0.9800
N2—H2A0.9099C13—H13B0.9800
C1—C61.398 (3)C13—H13C0.9800
C1—C21.409 (3)C14—H14A0.9800
C1—C71.463 (2)C14—H14B0.9800
C2—C31.399 (3)C14—H14C0.9800
C3—C41.379 (3)C15—H15A0.9800
C3—H30.9500C15—H15B0.9800
C4—C51.388 (3)C15—H15C0.9800
C4—H40.9500C16—H16A0.9800
C5—C61.379 (3)C16—H16B0.9800
C6—H60.9500C16—H16C0.9800
C7—H70.9500O2—H2B0.8400
C8—C121.525 (3)O2—H2C0.8400
C8—C91.529 (2)O3—H3A0.8399
C8—H81.0000O3—H3B0.8400
C9—C101.537 (2)O2A—H2BA0.8400
C9—H9A0.9900O2A—H2D0.8400
C9—H9B0.9900O3A—H3AA0.8399
C10—C141.525 (2)O3A—H3C0.8401
C2—O1—H1A107.4C14—C10—C9109.03 (15)
C7—N1—C8117.69 (15)C13—C10—C9110.57 (15)
C10—N2—C11119.17 (13)N2—C11—C16105.38 (14)
C10—N2—H2A106.8N2—C11—C15111.20 (14)
C11—N2—H2A106.4C16—C11—C15108.43 (15)
C6—C1—C2119.71 (17)N2—C11—C12111.77 (14)
C6—C1—C7118.73 (17)C16—C11—C12109.21 (15)
C2—C1—C7121.42 (17)C15—C11—C12110.66 (14)
O1—C2—C3119.07 (18)C8—C12—C11113.38 (14)
O1—C2—C1121.87 (17)C8—C12—H12A108.9
C3—C2—C1119.06 (19)C11—C12—H12A108.9
C4—C3—C2120.81 (19)C8—C12—H12B108.9
C4—C3—H3119.6C11—C12—H12B108.9
C2—C3—H3119.6H12A—C12—H12B107.7
C3—C4—C5119.57 (18)C10—C13—H13A109.5
C3—C4—H4120.2C10—C13—H13B109.5
C5—C4—H4120.2H13A—C13—H13B109.5
C6—C5—C4121.09 (19)C10—C13—H13C109.5
C6—C5—Br1118.76 (17)H13A—C13—H13C109.5
C4—C5—Br1120.12 (15)H13B—C13—H13C109.5
C5—C6—C1119.75 (19)C10—C14—H14A109.5
C5—C6—H6120.1C10—C14—H14B109.5
C1—C6—H6120.1H14A—C14—H14B109.5
N1—C7—C1122.01 (17)C10—C14—H14C109.5
N1—C7—H7119.0H14A—C14—H14C109.5
C1—C7—H7119.0H14B—C14—H14C109.5
N1—C8—C12109.52 (15)C11—C15—H15A109.5
N1—C8—C9108.38 (14)C11—C15—H15B109.5
C12—C8—C9109.97 (14)H15A—C15—H15B109.5
N1—C8—H8109.6C11—C15—H15C109.5
C12—C8—H8109.6H15A—C15—H15C109.5
C9—C8—H8109.6H15B—C15—H15C109.5
C8—C9—C10112.81 (14)C11—C16—H16A109.5
C8—C9—H9A109.0C11—C16—H16B109.5
C10—C9—H9A109.0H16A—C16—H16B109.5
C8—C9—H9B109.0C11—C16—H16C109.5
C10—C9—H9B109.0H16A—C16—H16C109.5
H9A—C9—H9B107.8H16B—C16—H16C109.5
N2—C10—C14106.03 (14)H2B—O2—H2C106.9
N2—C10—C13110.90 (14)H3A—O3—H3B106.7
C14—C10—C13108.29 (15)H2BA—O2A—H2D116.2
N2—C10—C9111.84 (14)H3AA—O3A—H3C107.5
C6—C1—C2—O1179.19 (17)C7—N1—C8—C9119.20 (18)
C7—C1—C2—O13.7 (3)N1—C8—C9—C10175.48 (14)
C6—C1—C2—C30.2 (3)C12—C8—C9—C1055.78 (19)
C7—C1—C2—C3175.29 (17)C11—N2—C10—C14162.17 (15)
O1—C2—C3—C4178.91 (17)C11—N2—C10—C1380.49 (19)
C1—C2—C3—C40.1 (3)C11—N2—C10—C943.4 (2)
C2—C3—C4—C50.2 (3)C8—C9—C10—N249.0 (2)
C3—C4—C5—C60.8 (3)C8—C9—C10—C14165.96 (15)
C3—C4—C5—Br1177.42 (15)C8—C9—C10—C1375.08 (19)
C4—C5—C6—C11.1 (3)C10—N2—C11—C16161.25 (15)
Br1—C5—C6—C1177.13 (13)C10—N2—C11—C1581.47 (18)
C2—C1—C6—C50.8 (3)C10—N2—C11—C1242.7 (2)
C7—C1—C6—C5174.83 (16)N1—C8—C12—C11174.37 (14)
C8—N1—C7—C1176.84 (16)C9—C8—C12—C1155.37 (19)
C6—C1—C7—N1178.48 (17)N2—C11—C12—C848.0 (2)
C2—C1—C7—N12.9 (3)C16—C11—C12—C8164.17 (15)
C7—N1—C8—C12120.82 (18)C15—C11—C12—C876.55 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.841.872.628 (2)149
O2—H2B···N20.842.022.861 (2)175
O3—H3A···O2i0.842.243.059 (2)167
O3—H3B···O2ii0.842.042.869 (2)168
O2A—H2BA···N20.842.022.861 (2)175
O2A—H2D···O3Aiii0.842.042.869 (2)170
O3A—H3AA···O2Ai0.842.243.059 (2)167
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.841.872.628 (2)149
O2—H2B···N20.842.022.861 (2)175
O3—H3A···O2i0.842.243.059 (2)167
O3—H3B···O2ii0.842.042.869 (2)168
O2A—H2BA···N20.842.022.861 (2)175
O2A—H2D···O3Aiii0.842.042.869 (2)170
O3A—H3AA···O2Ai0.842.243.059 (2)167
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x, y+1, z.
 

Acknowledgements

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAdger, B., Dyer, U., Hutton, G. & Woods, M. (1996). Tetrahedron Lett. 37, 6399–6402.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrau, M. E., Branitzki, P., Olschewski, A., Vogel, W. & Hempelmann, G. (2000). Anesth. Analg. 91, 1499–1505.  PubMed CAS Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKozikowski, A. P., Araldi, G. L., Boja, J., Meil, W. M., Johnson, K. M., Flippen-Anderson, J. L., George, C. & Saiah, E. (1998). J. Med. Chem. 41, 1962–1969.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNithiya, S., Karthik, N. & Jayabharathi, J. (2011). Int. J. Pharm. Pharm. Sci. 3, 254–256.  CAS Google Scholar
First citationSánchez-Sancho, F. & Herrandón, B. (1998). Tetrahedron Asymmetry, 9, 1951–1965.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds