organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-4,4′-(but-2-ene-1,4-di­yl)bis­­(2-meth­­oxy­phenol)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, The University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
*Correspondence e-mail: kyle-knight@utc.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 9 June 2015; accepted 15 June 2015; online 20 June 2015)

The title compound, C18H20O4, was synthesized via the ruthenium-catalyzed alkene methathesis dimerization of eugenol. The whole mol­ecule is generated by inversion symmetry; the center of inversion being located at the mid-point of the trans C=C bond. The phenol ring is inclined to the mean plane of the central C—C=C—C unit (r.m.s. deviation = 0.014 Å) by 68.83 (16)°. In the crystal, mol­ecules are linked via O—H⋯O hydrogen bonds, involving the hy­droxy and meth­oxy groups, forming undulating sheets parallel to (010).

1. Related literature

For a general review of alkene metathesis catalyzed by ruthenium carbenes, see: Grubbs (2004[Grubbs, R. H. (2004). Tetrahedron, 60, 7117-7140.]). For the second generation Grubbs ruthenium carbene catalyst, see: Scholl et al. (1999[Scholl, M., Ding, S., Lee, C. W. & Grubbs, R. H. (1999). Org. Lett. 1, 953-956.]). For the synthesis of the title compound, see: Taber & Frankowski (2006[Taber, D. F. & Frankowski, K. J. (2006). J. Chem. Educ. 83, 283-284.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H20O4

  • Mr = 300.34

  • Orthorhombic, P b c a

  • a = 4.8846 (2) Å

  • b = 10.7002 (4) Å

  • c = 29.5666 (11) Å

  • V = 1545.33 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 198 K

  • 0.6 × 0.55 × 0.2 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.927, Tmax = 1.000

  • 25610 measured reflections

  • 1352 independent reflections

  • 1199 reflections with I > 2σ(I)

  • Rint = 0.036

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.096

  • S = 1.05

  • 1352 reflections

  • 105 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8⋯O1i 0.78 (2) 2.57 (2) 3.1784 (13) 136 (1)
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: OLEX2.

Supporting information


Synthesis and crystallization top

The title compound was prepared from eugenol by alkene metathesis dimerization using the second generation Grubbs ruthenium carbene catalyst (Scholl et al., 1999) as described previously (Taber & Frankowski, 2006).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydroxyl H atom was located in a difference Fourier map and refined with Uiso(H) = 1.2Ueq(O). The C-bound H atoms were positioned geometrically and constrained to ride on their parent atoms: C—H = 0.95 - 1.0 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq (C) for other H atoms.

Related literature top

For a general review of alkene metathesis catalyzed by ruthenium carbenes, see: Grubbs (2004). For the second generation Grubbs ruthenium carbene catalyst, see: Scholl et al. (1999). For the synthesis of the title compound, see: Taber & Frankowski (2006).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to the labelled atoms by inversion symmetry (symmetry code: -x + 1, -y + 2, -z).
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound, with hydrogen bonds shown as dashed lines (see Table 1 for details). C-bound H atoms have been omitted for clarity.
(E)-4,4'-(But-2-ene-1,4-diyl)bis(2-methoxyphenol) top
Crystal data top
C18H20O4Dx = 1.291 Mg m3
Mr = 300.34Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9944 reflections
a = 4.8846 (2) Åθ = 2.8–24.8°
b = 10.7002 (4) ŵ = 0.09 mm1
c = 29.5666 (11) ÅT = 198 K
V = 1545.33 (10) Å3Plate, colorless
Z = 40.6 × 0.55 × 0.2 mm
F(000) = 640
Data collection top
Bruker APEXII CCD
diffractometer
1199 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 55
Tmin = 0.927, Tmax = 1.000k = 1212
25610 measured reflectionsl = 3535
1352 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.352P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1352 reflectionsΔρmax = 0.16 e Å3
105 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.009 (3)
Crystal data top
C18H20O4V = 1545.33 (10) Å3
Mr = 300.34Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 4.8846 (2) ŵ = 0.09 mm1
b = 10.7002 (4) ÅT = 198 K
c = 29.5666 (11) Å0.6 × 0.55 × 0.2 mm
Data collection top
Bruker APEXII CCD
diffractometer
1352 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1199 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 1.000Rint = 0.036
25610 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.05Δρmax = 0.16 e Å3
1352 reflectionsΔρmin = 0.13 e Å3
105 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3753 (2)0.94521 (9)0.20535 (3)0.0531 (3)
C10.1882 (3)1.04703 (13)0.20379 (5)0.0505 (4)
H1A0.25991.11200.18370.076*
H1B0.16461.08150.23430.076*
H1C0.01111.01780.19240.076*
C20.4437 (3)0.88991 (11)0.16499 (4)0.0395 (3)
C30.3285 (3)0.91684 (12)0.12337 (4)0.0454 (3)
H30.19220.97980.12110.054*
C40.4108 (3)0.85237 (13)0.08473 (4)0.0475 (4)
C50.2924 (3)0.88644 (16)0.03888 (4)0.0605 (4)
H5A0.31360.81460.01810.073*
H5B0.09410.90350.04220.073*
C60.4294 (3)0.99880 (15)0.01871 (4)0.0554 (4)
H60.41161.07540.03470.066*
C70.6459 (3)0.79875 (11)0.16851 (4)0.0419 (3)
O80.7636 (2)0.77137 (10)0.20946 (3)0.0556 (3)
H80.699 (3)0.8143 (16)0.2278 (6)0.067*
C90.6067 (3)0.76024 (14)0.08901 (4)0.0552 (4)
H90.66190.71430.06310.066*
C100.7244 (3)0.73365 (14)0.13057 (5)0.0536 (4)
H100.85980.67020.13290.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0688 (7)0.0527 (6)0.0378 (5)0.0162 (5)0.0078 (4)0.0042 (4)
C10.0538 (8)0.0470 (8)0.0505 (8)0.0073 (6)0.0032 (6)0.0004 (6)
C20.0455 (7)0.0381 (6)0.0349 (6)0.0030 (5)0.0011 (5)0.0016 (5)
C30.0491 (8)0.0459 (7)0.0413 (7)0.0003 (6)0.0055 (5)0.0057 (6)
C40.0534 (8)0.0541 (8)0.0349 (7)0.0139 (7)0.0006 (5)0.0057 (5)
C50.0676 (10)0.0772 (10)0.0368 (7)0.0170 (8)0.0082 (6)0.0073 (6)
C60.0660 (10)0.0653 (9)0.0348 (6)0.0031 (8)0.0081 (6)0.0054 (6)
C70.0456 (7)0.0415 (7)0.0386 (6)0.0018 (5)0.0004 (5)0.0071 (5)
O80.0644 (7)0.0597 (6)0.0426 (6)0.0163 (5)0.0077 (5)0.0057 (4)
C90.0643 (9)0.0621 (9)0.0393 (7)0.0016 (7)0.0112 (6)0.0037 (6)
C100.0564 (8)0.0544 (8)0.0500 (8)0.0109 (7)0.0084 (6)0.0038 (6)
Geometric parameters (Å, º) top
O1—C11.4228 (16)C5—H5A0.9900
O1—C21.3732 (15)C5—H5B0.9900
C1—H1A0.9800C5—C61.500 (2)
C1—H1B0.9800C6—C6i1.304 (3)
C1—H1C0.9800C6—H60.9500
C2—C31.3834 (17)C7—O81.3720 (15)
C2—C71.3921 (18)C7—C101.3751 (19)
C3—H30.9500O8—H80.777 (17)
C3—C41.3938 (18)C9—H90.9500
C4—C51.5183 (17)C9—C101.386 (2)
C4—C91.380 (2)C10—H100.9500
C2—O1—C1117.26 (10)H5A—C5—H5B107.9
O1—C1—H1A109.5C6—C5—C4112.18 (12)
O1—C1—H1B109.5C6—C5—H5A109.2
O1—C1—H1C109.5C6—C5—H5B109.2
H1A—C1—H1B109.5C5—C6—H6116.9
H1A—C1—H1C109.5C6i—C6—C5126.11 (19)
H1B—C1—H1C109.5C6i—C6—H6116.9
O1—C2—C3125.76 (12)O8—C7—C2120.87 (11)
O1—C2—C7114.17 (10)O8—C7—C10119.65 (12)
C3—C2—C7120.07 (11)C10—C7—C2119.46 (11)
C2—C3—H3119.7C7—O8—H8108.7 (13)
C2—C3—C4120.59 (13)C4—C9—H9119.5
C4—C3—H3119.7C4—C9—C10121.05 (12)
C3—C4—C5120.21 (13)C10—C9—H9119.5
C9—C4—C3118.58 (12)C7—C10—C9120.23 (13)
C9—C4—C5121.19 (13)C7—C10—H10119.9
C4—C5—H5A109.2C9—C10—H10119.9
C4—C5—H5B109.2
O1—C2—C3—C4178.58 (12)C3—C2—C7—C101.74 (19)
O1—C2—C7—O81.02 (18)C3—C4—C5—C680.50 (17)
O1—C2—C7—C10177.67 (12)C3—C4—C9—C101.4 (2)
C1—O1—C2—C36.20 (19)C4—C5—C6—C6i116.9 (2)
C1—O1—C2—C7174.44 (11)C4—C9—C10—C70.4 (2)
C2—C3—C4—C5177.32 (12)C5—C4—C9—C10176.73 (13)
C2—C3—C4—C90.8 (2)C7—C2—C3—C40.75 (19)
C2—C7—C10—C91.2 (2)O8—C7—C10—C9179.89 (13)
C3—C2—C7—O8179.57 (12)C9—C4—C5—C697.55 (17)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O1ii0.78 (2)2.57 (2)3.1784 (13)136 (1)
Symmetry code: (ii) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O1i0.778 (17)2.571 (17)3.1784 (13)136.2 (14)
Symmetry code: (i) x+1/2, y, z+1/2.
 

Acknowledgements

We are grateful to the National Science Foundation MRI Program (CHE-0951711), the Grote Chemistry Fund at the University of Tennessee at Chattanooga, and to Materia Inc. of Pasadena, CA, USA, for their generous support of our work.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGrubbs, R. H. (2004). Tetrahedron, 60, 7117–7140.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationScholl, M., Ding, S., Lee, C. W. & Grubbs, R. H. (1999). Org. Lett. 1, 953–956.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTaber, D. F. & Frankowski, K. J. (2006). J. Chem. Educ. 83, 283–284.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds