organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of rac-(3aR*,9aS*)-4,4,4-tri­chloro-1,2,3,3a,4,9a-hexa­hydro-4λ5,9λ4-cyclo­penta­[4,5][1,3]tellurazolo[3,2-a]pyridine

aDepartment of Chemistry, Baku State University, 23 Z. Khalilov St, Baku, AZ-1148, Azerbaijan, bR. E. Alekseev Nizhny Novgorod State Technical University, 24 Minin St, Nizhny Novgorod 603950, Russian Federation, cInorganic Chemistry Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklay St, Moscow 117198, Russian Federation, and dA. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilov St, Moscow 119991, Russian Federation
*Correspondence e-mail: rizvankam@bk.ru

Edited by V. Rybakov, Moscow State University, Russia (Received 19 June 2015; accepted 26 June 2015; online 22 July 2015)

The title compound, C10H12Cl3NTe, crystallizes with two crystallographically independent mol­ecules (A and B) in the asymmetric unit. In each case, the coordination around the Te atom is distorted square-pyramidal, with the equatorial plane composed of the three Cl atoms and the C atom of the pyridinium ring. The Te atom is displaced from the mean-square plane by 0.1926 (7) and 0.1981 (8) Å, in mol­ecules A and B, respectivly, away from the apical C atom. The bond lengths from the Te atom to the two Cl atoms arranged trans to each other [2.5009 (7)/2.5145 (7) and 2.5184 (7)/2.5220 (8) Å in mol­ecules A and B, respectivly] are substan­ti­ally shorter than the third Te—Cl distance [2.8786 (7) and 2.8763 (7) Å in mol­ecules A and B, respectivly]. The 1,3-tellurazole ring is almost planar (r.m.s. deviations of 0.042 and 0.045 Å in mol­ecules A and B, respectivly). The cyclopentane rings in both molecules A and B adopt envelope conformations with the carbon atom opposed to the (Te)C—C(N) bond as the flap. In the crystal, mol­ecules form centrosymmetric 2 + 2 associates via Te⋯Cl inter­actions [3.3993 (7) and 3.2030 (7) Å]. As a result of these secondary inter­actions, the Te atom attains a strongly distorted 5 + 1 octa­hedral environment. Further, the 2 + 2 associates are bound by weak C—H⋯Cl hydrogen bonds into a three–dimensional framework.

1. Related literature

For general background and synthesis, see: Petragnani & Stefani (2007[Petragnani, N. & Stefani, H. A. (2007). Tellurium in Organic Synthesis - Best Synthetic Methods, 2nd ed. London: Academic Press.]); Borisov et al. (2013[Borisov, A. V., Matsulevich, Zh. V., Osmanov, V. K. & Borisova, G. N. (2013). Russ. Chem. Bull. 62, 1042-1043.]). For related compounds, see: Singh et al. (1990[Singh, H. B., Sudha, N., West, A. A. & Hamor, T. A. (1990). J. Chem. Soc. Dalton Trans. pp. 907-913.]); Sundberg et al. (1994[Sundberg, M. R., Uggla, R., Laitalainen, T. & Bergman, J. (1994). J. Chem. Soc. Dalton Trans. pp. 3279-3283.]); Zukerman-Schpector et al. (2000[Zukerman-Schpector, J., Camillo, R. L., Comasseto, J. V., Cunha, R. L. O. R. & Caracelli, I. (2000). Acta Cryst. C56, 897-898.]); Kandasamy et al. (2003[Kandasamy, K., Kumar, S., Singh, H. B. & Wolmershäuser, G. (2003). Organometallics, 22, 5069-5078.]); Raghavendra et al. (2006[Raghavendra, K. P., Upreti, S. & Singh, A. K. (2006). Inorg. Chim. Acta, 359, 4619-4626.]); Dutton et al. (2009[Dutton, J. L., Martin, C. D., Sgro, M. J., Jones, N. D. & Ragogna, P. J. (2009). Inorg. Chem. 48, 3239-3247.]); Lee et al. (2010[Lee, L. M., Elder, P. J. W., Cozzolino, A. F., Yang, Q. & Vargas-Baca, I. (2010). Main Group Chem. 9, 117-133.]); Rakesh et al. (2012[Rakesh, P., Singh, H. B. & Butcher, R. J. (2012). Dalton Trans. 41, 10707-10714.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C10H12Cl3NTe

  • Mr = 380.16

  • Monoclinic, P 21 /c

  • a = 14.3279 (6) Å

  • b = 11.2539 (5) Å

  • c = 16.2967 (7) Å

  • β = 94.546 (1)°

  • V = 2619.5 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.85 mm−1

  • T = 120 K

  • 0.20 × 0.15 × 0.15 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.595, Tmax = 0.666

  • 32448 measured reflections

  • 7642 independent reflections

  • 6535 reflections with I > 2σ(I)

  • Rint = 0.037

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.059

  • S = 1.08

  • 7642 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cl3i 0.95 2.78 3.533 (3) 137
C7—H7⋯Cl3ii 0.95 2.78 3.340 (3) 119
C9A—H9A⋯Cl6 1.00 2.57 3.465 (3) 149
C15—H15⋯Cl3ii 0.95 2.63 3.384 (3) 136
C17—H17⋯Cl6iii 0.95 2.74 3.558 (3) 145
C18—H18⋯Cl6iv 0.95 2.73 3.539 (3) 144
C19A—H19A⋯Cl6iv 1.00 2.69 3.544 (3) 144
Symmetry codes: (i) -x, -y+2, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Structural commentary top

It is known that the reaction of arenetellurium trihalides ArTeHal3 with alkenes and acetyl­enes usually gives the products of 1,2–addition at the multiple bonds, β–halo­alkyl­(vinyl)­tellurium dihalides or the products of transannular cyclization with the ring closure by the electron–donating center of the functional group containing in the molecule of the unsaturated substrate, lactones, ordinary cyclic ethers, pyrrolidine and piperidine derivatives (Petragnani & Stefani, 2007).

This work reports the structural characterization of a product of reaction of 2–pyridine­tellurium trichloride - the first representative of hetarenetellurium trihalides containing a nitro­gen base as the hetaryl substituent (Borisov et al., 2013) with cyclo­pentene (Figure 1).

Compound (I), C10H12Cl3NTe, crystallizes with two crystallographically independent molecules in the asymmetric unit (Figure 2). These crystallographically independent molecules are geometrically very similar. The coordination around the tellurium atom is a distorted square–pyramidal. The equatorial plane is composed of the three chlorine atoms and the carbon atom of pyridinium ring. The tellurium atom is displaced from the mean square plane by 0.1926 (7) and 0.1981 (8) Å for the two crystallographically independent molecules, respectively, away from the apical carbon atom. The bond lengths from the tellurium atom to the two chlorine atoms arranged trans to each other [2.5009 (7)/2.5145 (7) and 2.5184 (7)/2.5220 (8) Å for the two crystallographically independent molecules, respectively] are close to those in related complexes (Singh et al., 1990; Sundberg et al., 1994; Zukerman–Schpector et al., 2000; Kandasamy et al., 2003; Raghavendra et al., 2006; Dutton et al., 2009; Lee et al., 2010; Rakesh et al., 2012). The third Te—Cl distance (2.8786 (7) and 2.8763 (7) Å for the two crystallographically independent molecules, respectively) is substanti­ally longer than the other two Te—Cl distances. This geometry is apparently determined by the zwitterionic nature of the complex and the hypervalent configuration of the tellurium atom. The analogous geometry was observed previously for tri­chloro­(ethane–1,2-diolato–O,O')tellurate(IV) (Sundberg et al., 1994). The Te—C distances are in good agreement with typical values found in tellurium(IV) complexes, which range from 2.11 to 2.16 Å. The 1,3–tellurazole ring in (I) is almost planar (r.m.s. deviation is 0.042 and 0.045 Å for the two crystallographically independent molecules, respectively). The cyclo­pentane ring adopts the usual envelope conformation.

In the crystal, the molecules of (I) form centrosymmetrical 2+2–associates via additional non–valent attractive Te···Cl inter­actions (Te4···Cl3 [-x, 2-y, 1-z] 3.3993 (7) Å, Te14···Cl3 [x, 1.5-y, -0.5+z] 3.2030 (7) Å), in which the Cl3 chlorine atom is µ3–bridging, while the Cl6 chlorine atom is terminal (Figure 3). Due to these additional secondary inter­actions, the tellurium atom attains the strongly distorted 5+1–o­cta­hedral environment. Further, the 2+2–associates of (I) are bound by weak inter­molecular C—H···Cl hydrogen bonds into a 3–dimensional framework (Table 1, Figure 4). There are no inter­molecular Cl···Cl inter­actions.

The molecule of (I) possesses two asymmetric centers at the C3A and C9A carbon atoms and can have potentially four diastereomers. The crystal of (I) is racemic and consists of enanti­omeric pairs with the following relative configuration of the centers: rac-3AR*,9AS*.

Synthesis and crystallization top

Complex (I) was prepared according to the procedure described by us earlier (Borisov et al., 2013). The single crystals of (I) suitable for an X–ray diffraction analysis were obtained after recrystallization of the crude product from methyl­ene chloride.

Refinement top

All hydrogen atoms were placed in calculated positions with C—H = 0.95 Å (for aryl–H), 0.99 Å (for methyl­ene–H) and 1.00 Å (for methine–H) and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Related literature top

For general background and synthesis, see: Petragnani & Stefani (2007); Borisov et al. (2013). For related compounds, see: Singh et al. (1990); Sundberg et al. (1994); Zukerman-Schpector et al. (2000); Kandasamy et al. (2003); Raghavendra et al. (2006); Dutton et al. (2009); Lee et al. (2010); Rakesh et al. (2012).

Structure description top

It is known that the reaction of arenetellurium trihalides ArTeHal3 with alkenes and acetyl­enes usually gives the products of 1,2–addition at the multiple bonds, β–halo­alkyl­(vinyl)­tellurium dihalides or the products of transannular cyclization with the ring closure by the electron–donating center of the functional group containing in the molecule of the unsaturated substrate, lactones, ordinary cyclic ethers, pyrrolidine and piperidine derivatives (Petragnani & Stefani, 2007).

This work reports the structural characterization of a product of reaction of 2–pyridine­tellurium trichloride - the first representative of hetarenetellurium trihalides containing a nitro­gen base as the hetaryl substituent (Borisov et al., 2013) with cyclo­pentene (Figure 1).

Compound (I), C10H12Cl3NTe, crystallizes with two crystallographically independent molecules in the asymmetric unit (Figure 2). These crystallographically independent molecules are geometrically very similar. The coordination around the tellurium atom is a distorted square–pyramidal. The equatorial plane is composed of the three chlorine atoms and the carbon atom of pyridinium ring. The tellurium atom is displaced from the mean square plane by 0.1926 (7) and 0.1981 (8) Å for the two crystallographically independent molecules, respectively, away from the apical carbon atom. The bond lengths from the tellurium atom to the two chlorine atoms arranged trans to each other [2.5009 (7)/2.5145 (7) and 2.5184 (7)/2.5220 (8) Å for the two crystallographically independent molecules, respectively] are close to those in related complexes (Singh et al., 1990; Sundberg et al., 1994; Zukerman–Schpector et al., 2000; Kandasamy et al., 2003; Raghavendra et al., 2006; Dutton et al., 2009; Lee et al., 2010; Rakesh et al., 2012). The third Te—Cl distance (2.8786 (7) and 2.8763 (7) Å for the two crystallographically independent molecules, respectively) is substanti­ally longer than the other two Te—Cl distances. This geometry is apparently determined by the zwitterionic nature of the complex and the hypervalent configuration of the tellurium atom. The analogous geometry was observed previously for tri­chloro­(ethane–1,2-diolato–O,O')tellurate(IV) (Sundberg et al., 1994). The Te—C distances are in good agreement with typical values found in tellurium(IV) complexes, which range from 2.11 to 2.16 Å. The 1,3–tellurazole ring in (I) is almost planar (r.m.s. deviation is 0.042 and 0.045 Å for the two crystallographically independent molecules, respectively). The cyclo­pentane ring adopts the usual envelope conformation.

In the crystal, the molecules of (I) form centrosymmetrical 2+2–associates via additional non–valent attractive Te···Cl inter­actions (Te4···Cl3 [-x, 2-y, 1-z] 3.3993 (7) Å, Te14···Cl3 [x, 1.5-y, -0.5+z] 3.2030 (7) Å), in which the Cl3 chlorine atom is µ3–bridging, while the Cl6 chlorine atom is terminal (Figure 3). Due to these additional secondary inter­actions, the tellurium atom attains the strongly distorted 5+1–o­cta­hedral environment. Further, the 2+2–associates of (I) are bound by weak inter­molecular C—H···Cl hydrogen bonds into a 3–dimensional framework (Table 1, Figure 4). There are no inter­molecular Cl···Cl inter­actions.

The molecule of (I) possesses two asymmetric centers at the C3A and C9A carbon atoms and can have potentially four diastereomers. The crystal of (I) is racemic and consists of enanti­omeric pairs with the following relative configuration of the centers: rac-3AR*,9AS*.

For general background and synthesis, see: Petragnani & Stefani (2007); Borisov et al. (2013). For related compounds, see: Singh et al. (1990); Sundberg et al. (1994); Zukerman-Schpector et al. (2000); Kandasamy et al. (2003); Raghavendra et al. (2006); Dutton et al. (2009); Lee et al. (2010); Rakesh et al. (2012).

Synthesis and crystallization top

Complex (I) was prepared according to the procedure described by us earlier (Borisov et al., 2013). The single crystals of (I) suitable for an X–ray diffraction analysis were obtained after recrystallization of the crude product from methyl­ene chloride.

Refinement details top

All hydrogen atoms were placed in calculated positions with C—H = 0.95 Å (for aryl–H), 0.99 Å (for methyl­ene–H) and 1.00 Å (for methine–H) and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The reaction of 2–pyridinetellurium trichloride with cyclopentene.
[Figure 2] Fig. 2. Molecular structure of (I) (the two crystallographically independent molecules are depicted). Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 3] Fig. 3. The centrosymmetrical 2+2–associates of (I). Dashed lines indicate the intermolecular non–valent attractive Te···Cl interactions.
[Figure 4] Fig. 4. Crystal packing of (I). The thick dashed lines indicate the intermolecular non–valent attractive Te···Cl interactions, and the thin dashed lines indicate the intermolecular C—H···Cl hydrogen bonds.
rac-(3aR*,9aS*)-4,4,4-Trichloro-1,2,3,3a,4,9a-hexahydro-4λ5,9λ4-cyclopenta[4,5][1,3]tellurazolo[3,2-a]pyridine top
Crystal data top
C10H12Cl3NTeF(000) = 1456
Mr = 380.16Dx = 1.928 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.3279 (6) ÅCell parameters from 9992 reflections
b = 11.2539 (5) Åθ = 2.2–32.5°
c = 16.2967 (7) ŵ = 2.85 mm1
β = 94.546 (1)°T = 120 K
V = 2619.5 (2) Å3Prism, yellow
Z = 80.20 × 0.15 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
6535 reflections with I > 2σ(I)
Radiation source: fine–focus sealed tubeRint = 0.037
φ and ω scansθmax = 30.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 2020
Tmin = 0.595, Tmax = 0.666k = 1515
32448 measured reflectionsl = 2222
7642 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0215P)2 + 1.2054P]
where P = (Fo2 + 2Fc2)/3
7642 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C10H12Cl3NTeV = 2619.5 (2) Å3
Mr = 380.16Z = 8
Monoclinic, P21/cMo Kα radiation
a = 14.3279 (6) ŵ = 2.85 mm1
b = 11.2539 (5) ÅT = 120 K
c = 16.2967 (7) Å0.20 × 0.15 × 0.15 mm
β = 94.546 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
7642 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
6535 reflections with I > 2σ(I)
Tmin = 0.595, Tmax = 0.666Rint = 0.037
32448 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.08Δρmax = 0.76 e Å3
7642 reflectionsΔρmin = 0.56 e Å3
271 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.05985 (5)0.72835 (7)0.58167 (5)0.02922 (15)
Cl20.14184 (5)0.93448 (6)0.38971 (4)0.02747 (15)
Cl30.12938 (5)1.00286 (6)0.61789 (4)0.02427 (14)
C10.1831 (3)0.5277 (3)0.5165 (2)0.0453 (9)
H1A0.12200.48860.52150.054*
H1B0.22540.47140.49110.054*
C20.2250 (3)0.5689 (3)0.5989 (2)0.0422 (9)
H2A0.29290.58430.59760.051*
H2B0.21550.50910.64200.051*
C30.1724 (2)0.6828 (3)0.61445 (19)0.0329 (7)
H3A0.20830.73370.65520.040*
H3B0.11010.66580.63410.040*
C3A0.16345 (18)0.7410 (2)0.52939 (17)0.0214 (5)
H3C0.21940.79340.52590.026*
Te40.04220 (2)0.84673 (2)0.49461 (2)0.01829 (5)
C4A0.01838 (19)0.7106 (2)0.40406 (17)0.0213 (5)
C50.0573 (2)0.7027 (3)0.34626 (18)0.0275 (6)
H50.10780.75740.34710.033*
C60.0589 (2)0.6143 (3)0.28727 (18)0.0311 (7)
H60.11060.60760.24730.037*
C70.0154 (2)0.5356 (3)0.28687 (18)0.0313 (7)
H70.01490.47430.24680.038*
C80.0895 (2)0.5471 (3)0.34498 (18)0.0272 (6)
H80.14130.49450.34440.033*
N90.08939 (16)0.6327 (2)0.40306 (14)0.0219 (5)
C9A0.1713 (2)0.6402 (3)0.46615 (19)0.0265 (6)
H9A0.22930.65310.43700.032*
Cl40.28653 (5)0.27629 (7)0.24383 (4)0.02950 (16)
Cl50.40398 (6)0.64964 (7)0.11901 (5)0.03456 (17)
Cl60.36234 (5)0.56379 (6)0.35946 (4)0.02687 (15)
C110.5970 (2)0.4070 (3)0.1259 (2)0.0338 (7)
H11A0.64150.35490.09950.041*
H11B0.57440.46960.08650.041*
C120.6412 (2)0.4601 (3)0.2044 (2)0.0369 (8)
H12A0.68200.52800.19270.044*
H12B0.67870.40010.23690.044*
C130.55749 (19)0.5014 (3)0.2505 (2)0.0306 (7)
H13A0.57370.50250.31070.037*
H13B0.53680.58180.23250.037*
C13A0.48125 (18)0.4089 (3)0.22756 (17)0.0220 (6)
H13C0.47770.35430.27560.026*
Te140.34174 (2)0.47397 (2)0.19378 (2)0.01873 (5)
C14A0.36030 (19)0.3737 (3)0.08412 (16)0.0217 (6)
C150.2958 (2)0.3570 (3)0.01782 (17)0.0262 (6)
H150.23880.40040.01380.031*
C160.3149 (2)0.2764 (3)0.04306 (17)0.0307 (7)
H160.27130.26530.08940.037*
C170.3974 (2)0.2124 (3)0.03626 (19)0.0319 (7)
H170.40990.15510.07680.038*
C180.4612 (2)0.2323 (3)0.02985 (18)0.0276 (6)
H180.51860.18980.03470.033*
N190.44226 (16)0.3125 (2)0.08791 (14)0.0222 (5)
C19A0.51593 (18)0.3360 (3)0.15587 (17)0.0234 (6)
H19A0.54050.25820.17790.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0258 (3)0.0311 (4)0.0313 (4)0.0041 (3)0.0053 (3)0.0004 (3)
Cl20.0271 (3)0.0286 (4)0.0263 (4)0.0033 (3)0.0006 (3)0.0069 (3)
Cl30.0208 (3)0.0290 (4)0.0222 (3)0.0004 (3)0.0029 (2)0.0050 (3)
C10.051 (2)0.0229 (16)0.057 (2)0.0052 (15)0.0242 (18)0.0049 (16)
C20.048 (2)0.0284 (17)0.047 (2)0.0007 (15)0.0177 (17)0.0069 (15)
C30.0283 (16)0.0419 (19)0.0277 (16)0.0102 (14)0.0034 (12)0.0090 (14)
C3A0.0181 (12)0.0208 (13)0.0247 (14)0.0035 (10)0.0017 (10)0.0023 (11)
Te40.01718 (8)0.01745 (8)0.01955 (9)0.00076 (6)0.00290 (6)0.00165 (7)
C4A0.0222 (13)0.0208 (13)0.0209 (13)0.0001 (11)0.0021 (10)0.0005 (11)
C50.0299 (15)0.0264 (15)0.0248 (15)0.0027 (12)0.0067 (12)0.0029 (12)
C60.0371 (17)0.0318 (16)0.0233 (15)0.0023 (13)0.0037 (13)0.0031 (13)
C70.0435 (18)0.0300 (16)0.0212 (15)0.0057 (14)0.0084 (13)0.0071 (13)
C80.0335 (16)0.0227 (14)0.0263 (15)0.0031 (12)0.0084 (12)0.0029 (12)
N90.0224 (11)0.0212 (12)0.0223 (12)0.0008 (9)0.0032 (9)0.0002 (9)
C9A0.0214 (14)0.0258 (15)0.0317 (16)0.0061 (11)0.0027 (12)0.0038 (12)
Cl40.0306 (4)0.0338 (4)0.0233 (3)0.0059 (3)0.0024 (3)0.0080 (3)
Cl50.0336 (4)0.0306 (4)0.0393 (4)0.0030 (3)0.0012 (3)0.0096 (3)
Cl60.0283 (4)0.0286 (4)0.0239 (3)0.0009 (3)0.0033 (3)0.0047 (3)
C110.0202 (14)0.050 (2)0.0319 (17)0.0041 (14)0.0028 (12)0.0112 (15)
C120.0240 (15)0.048 (2)0.0391 (19)0.0058 (14)0.0030 (13)0.0151 (16)
C130.0201 (14)0.0386 (18)0.0321 (17)0.0015 (12)0.0044 (12)0.0116 (14)
C13A0.0165 (12)0.0299 (15)0.0190 (13)0.0028 (11)0.0023 (10)0.0020 (11)
Te140.01635 (8)0.02350 (9)0.01601 (8)0.00111 (7)0.00087 (6)0.00012 (7)
C14A0.0215 (13)0.0270 (15)0.0165 (13)0.0005 (11)0.0016 (10)0.0042 (11)
C150.0227 (14)0.0365 (17)0.0189 (14)0.0001 (12)0.0007 (11)0.0016 (12)
C160.0292 (15)0.047 (2)0.0154 (13)0.0090 (14)0.0004 (11)0.0029 (13)
C170.0330 (16)0.0387 (18)0.0241 (15)0.0061 (14)0.0030 (12)0.0100 (13)
C180.0284 (15)0.0295 (16)0.0254 (15)0.0015 (12)0.0047 (12)0.0066 (12)
N190.0227 (12)0.0262 (12)0.0175 (11)0.0017 (9)0.0004 (9)0.0030 (9)
C19A0.0186 (13)0.0282 (15)0.0222 (14)0.0027 (11)0.0045 (10)0.0062 (12)
Geometric parameters (Å, º) top
Cl1—Te42.5009 (7)Cl4—Te142.5184 (7)
Cl2—Te42.5145 (7)Cl5—Te142.5220 (8)
Cl3—Te42.8786 (7)Cl6—Te142.8763 (7)
C1—C21.501 (5)C11—C121.506 (4)
C1—C9A1.510 (4)C11—C19A1.521 (4)
C1—H1A0.9900C11—H11A0.9900
C1—H1B0.9900C11—H11B0.9900
C2—C31.518 (5)C12—C131.536 (4)
C2—H2A0.9900C12—H12A0.9900
C2—H2B0.9900C12—H12B0.9900
C3—C3A1.529 (4)C13—C13A1.533 (4)
C3—H3A0.9900C13—H13A0.9900
C3—H3B0.9900C13—H13B0.9900
C3A—C9A1.543 (4)C13A—C19A1.542 (4)
C3A—Te42.144 (3)C13A—Te142.159 (3)
C3A—H3C1.0000C13A—H13C1.0000
Te4—C4A2.136 (3)Te14—C14A2.148 (3)
C4A—N91.344 (3)C14A—N191.359 (3)
C4A—C51.382 (4)C14A—C151.377 (4)
C5—C61.382 (4)C15—C161.388 (4)
C5—H50.9500C15—H150.9500
C6—C71.385 (4)C16—C171.381 (4)
C6—H60.9500C16—H160.9500
C7—C81.372 (4)C17—C181.375 (4)
C7—H70.9500C17—H170.9500
C8—N91.351 (4)C18—N191.350 (4)
C8—H80.9500C18—H180.9500
N9—C9A1.500 (4)N19—C19A1.492 (3)
C9A—H9A1.0000C19A—H19A1.0000
C2—C1—C9A104.3 (3)C12—C11—C19A102.5 (2)
C2—C1—H1A110.9C12—C11—H11A111.3
C9A—C1—H1A110.9C19A—C11—H11A111.3
C2—C1—H1B110.9C12—C11—H11B111.3
C9A—C1—H1B110.9C19A—C11—H11B111.3
H1A—C1—H1B108.9H11A—C11—H11B109.2
C1—C2—C3104.0 (3)C11—C12—C13104.1 (2)
C1—C2—H2A111.0C11—C12—H12A110.9
C3—C2—H2A111.0C13—C12—H12A110.9
C1—C2—H2B111.0C11—C12—H12B110.9
C3—C2—H2B111.0C13—C12—H12B110.9
H2A—C2—H2B109.0H12A—C12—H12B109.0
C2—C3—C3A102.6 (3)C13A—C13—C12104.1 (2)
C2—C3—H3A111.3C13A—C13—H13A110.9
C3A—C3—H3A111.3C12—C13—H13A110.9
C2—C3—H3B111.3C13A—C13—H13B110.9
C3A—C3—H3B111.3C12—C13—H13B110.9
H3A—C3—H3B109.2H13A—C13—H13B109.0
C3—C3A—C9A106.6 (2)C13—C13A—C19A106.3 (2)
C3—C3A—Te4119.02 (19)C13—C13A—Te14117.36 (19)
C9A—C3A—Te4109.39 (17)C19A—C13A—Te14109.55 (17)
C3—C3A—H3C107.1C13—C13A—H13C107.8
C9A—C3A—H3C107.1C19A—C13A—H13C107.8
Te4—C3A—H3C107.1Te14—C13A—H13C107.8
C4A—Te4—C3A82.32 (10)C14A—Te14—C13A82.00 (10)
C4A—Te4—Cl186.64 (8)C14A—Te14—Cl482.42 (7)
C3A—Te4—Cl193.00 (8)C13A—Te14—Cl485.77 (8)
C4A—Te4—Cl283.11 (8)C14A—Te14—Cl586.45 (8)
C3A—Te4—Cl284.59 (8)C13A—Te14—Cl591.91 (8)
Cl1—Te4—Cl2169.70 (3)Cl4—Te14—Cl5168.84 (3)
N9—C4A—C5120.2 (3)N19—C14A—C15119.4 (3)
N9—C4A—Te4113.36 (19)N19—C14A—Te14113.09 (18)
C5—C4A—Te4126.2 (2)C15—C14A—Te14127.2 (2)
C4A—C5—C6119.3 (3)C14A—C15—C16119.4 (3)
C4A—C5—H5120.4C14A—C15—H15120.3
C6—C5—H5120.4C16—C15—H15120.3
C5—C6—C7119.6 (3)C17—C16—C15120.0 (3)
C5—C6—H6120.2C17—C16—H16120.0
C7—C6—H6120.2C15—C16—H16120.0
C8—C7—C6119.3 (3)C18—C17—C16119.3 (3)
C8—C7—H7120.3C18—C17—H17120.4
C6—C7—H7120.3C16—C17—H17120.4
N9—C8—C7120.4 (3)N19—C18—C17120.0 (3)
N9—C8—H8119.8N19—C18—H18120.0
C7—C8—H8119.8C17—C18—H18120.0
C4A—N9—C8121.1 (2)C18—N19—C14A121.8 (2)
C4A—N9—C9A120.5 (2)C18—N19—C19A118.0 (2)
C8—N9—C9A118.4 (2)C14A—N19—C19A120.1 (2)
N9—C9A—C1111.9 (2)N19—C19A—C11111.6 (2)
N9—C9A—C3A113.9 (2)N19—C19A—C13A113.9 (2)
C1—C9A—C3A105.3 (3)C11—C19A—C13A105.3 (2)
N9—C9A—H9A108.5N19—C19A—H19A108.6
C1—C9A—H9A108.5C11—C19A—H19A108.6
C3A—C9A—H9A108.5C13A—C19A—H19A108.6
C9A—C1—C2—C340.7 (4)C19A—C11—C12—C1342.7 (3)
C1—C2—C3—C3A39.5 (4)C11—C12—C13—C13A34.0 (3)
C2—C3—C3A—C9A23.5 (3)C12—C13—C13A—C19A12.0 (3)
C2—C3—C3A—Te4147.7 (2)C12—C13—C13A—Te14134.9 (2)
N9—C4A—C5—C60.4 (4)N19—C14A—C15—C161.2 (4)
Te4—C4A—C5—C6174.7 (2)Te14—C14A—C15—C16171.3 (2)
C4A—C5—C6—C70.2 (5)C14A—C15—C16—C171.0 (5)
C5—C6—C7—C80.3 (5)C15—C16—C17—C182.1 (5)
C6—C7—C8—N91.3 (5)C16—C17—C18—N191.1 (5)
C5—C4A—N9—C81.5 (4)C17—C18—N19—C14A1.2 (4)
Te4—C4A—N9—C8174.2 (2)C17—C18—N19—C19A176.6 (3)
C5—C4A—N9—C9A179.4 (3)C15—C14A—N19—C182.4 (4)
Te4—C4A—N9—C9A4.9 (3)Te14—C14A—N19—C18171.2 (2)
C7—C8—N9—C4A2.0 (4)C15—C14A—N19—C19A175.4 (3)
C7—C8—N9—C9A178.9 (3)Te14—C14A—N19—C19A11.1 (3)
C4A—N9—C9A—C1120.3 (3)C18—N19—C19A—C1172.4 (3)
C8—N9—C9A—C160.6 (4)C14A—N19—C19A—C11105.4 (3)
C4A—N9—C9A—C3A1.0 (4)C18—N19—C19A—C13A168.5 (3)
C8—N9—C9A—C3A179.9 (2)C14A—N19—C19A—C13A13.7 (4)
C2—C1—C9A—N9149.5 (3)C12—C11—C19A—N19158.9 (2)
C2—C1—C9A—C3A25.2 (4)C12—C11—C19A—C13A34.8 (3)
C3—C3A—C9A—N9123.7 (3)C13—C13A—C19A—N19136.5 (2)
Te4—C3A—C9A—N96.2 (3)Te14—C13A—C19A—N198.8 (3)
C3—C3A—C9A—C10.8 (3)C13—C13A—C19A—C1113.9 (3)
Te4—C3A—C9A—C1129.1 (2)Te14—C13A—C19A—C11113.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Cl3i0.952.783.533 (3)137
C7—H7···Cl3ii0.952.783.340 (3)119
C9A—H9A···Cl61.002.573.465 (3)149
C15—H15···Cl3ii0.952.633.384 (3)136
C17—H17···Cl6iii0.952.743.558 (3)145
C18—H18···Cl6iv0.952.733.539 (3)144
C19A—H19A···Cl6iv1.002.693.544 (3)144
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+3/2, z1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Cl3i0.952.783.533 (3)136.8
C7—H7···Cl3ii0.952.783.340 (3)118.8
C9A—H9A···Cl61.002.573.465 (3)148.5
C15—H15···Cl3ii0.952.633.384 (3)136.1
C17—H17···Cl6iii0.952.743.558 (3)144.9
C18—H18···Cl6iv0.952.733.539 (3)144.0
C19A—H19A···Cl6iv1.002.693.544 (3)143.6
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+3/2, z1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y1/2, z+1/2.
 

Acknowledgements

We thank the Russian Foundation for Basic Research (grant No. 14–03–00914) for financial support of this work.

References

First citationBorisov, A. V., Matsulevich, Zh. V., Osmanov, V. K. & Borisova, G. N. (2013). Russ. Chem. Bull. 62, 1042–1043.  CrossRef CAS Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDutton, J. L., Martin, C. D., Sgro, M. J., Jones, N. D. & Ragogna, P. J. (2009). Inorg. Chem. 48, 3239–3247.  CSD CrossRef PubMed CAS Google Scholar
First citationKandasamy, K., Kumar, S., Singh, H. B. & Wolmershäuser, G. (2003). Organometallics, 22, 5069–5078.  CSD CrossRef CAS Google Scholar
First citationLee, L. M., Elder, P. J. W., Cozzolino, A. F., Yang, Q. & Vargas–Baca, I. (2010). Main Group Chem. 9, 117–133.  CAS Google Scholar
First citationPetragnani, N. & Stefani, H. A. (2007). Tellurium in Organic Synthesis – Best Synthetic Methods, 2nd ed. London: Academic Press.  Google Scholar
First citationRaghavendra, K. P., Upreti, S. & Singh, A. K. (2006). Inorg. Chim. Acta, 359, 4619–4626.  CSD CrossRef CAS Google Scholar
First citationRakesh, P., Singh, H. B. & Butcher, R. J. (2012). Dalton Trans. 41, 10707–10714.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, H. B., Sudha, N., West, A. A. & Hamor, T. A. (1990). J. Chem. Soc. Dalton Trans. pp. 907–913.  CSD CrossRef Web of Science Google Scholar
First citationSundberg, M. R., Uggla, R., Laitalainen, T. & Bergman, J. (1994). J. Chem. Soc. Dalton Trans. pp. 3279–3283.  CSD CrossRef Google Scholar
First citationZukerman-Schpector, J., Camillo, R. L., Comasseto, J. V., Cunha, R. L. O. R. & Caracelli, I. (2000). Acta Cryst. C56, 897–898.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds