organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o803-o804

Crystal structure of (E)-4-[N-(7-methyl-2-phenyl­imidazo[1,2-a]pyridin-3-yl)carboximido­yl]phenol

CROSSMARK_Color_square_no_text.svg

aLaboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, University Mohammed Premier, Oujda, Morocco, bObservatoire de la Lagune Marchica de Nador et Région Limitrophe, Université Mohammed Premier, Faculté Pluridisciplinaire de Nador, BP 300, Selouane 62702 Nador, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: a_elaatiaoui@yahoo.fr

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 17 September 2015; accepted 23 September 2015; online 30 September 2015)

The mol­ecule of the title compound, C21H17N3O, is built up from fused five- and six-membered rings connected to a methyl group, a phenyl ring and an (imino­meth­yl)phenol group. The fused ring system is almost planar (r.m.s. deviation = 0.031 Å) and forms dihedral angles of 64.97 (7) and 18.52 (6)° with the phenyl ring and the (imino­meth­yl)phenol group, respectively. In the crystal, centrosymmetric mol­ecules are linked by pairs of C—H⋯π inter­actions into dimeric units, which are further connected by O–H⋯N hydrogen bonds to form layers parallel to (101).

1. Related literature

For the biological activities of imidazo[1,2a]pyridine derivatives, see: Solomons et al. (1997[Solomons, K. R. H., Lieberman, H. E., Groundwater, P. W., Hibbs, D. E. & Hursthouse, M. B. (1997). Anti-Cancer Drug Des. 12, 635-647.]); Bhandari et al. (2008[Bhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822-1831.]); Ertl et al. (2000[Ertl, P., Rohde, B. & Selzer, P. (2000). J. Med. Chem. 43, 3714-3717.]). For the synthesis of related compounds, see: Radi et al. (2015[Radi, S., Tighadouini, S., Feron, O., Riant, O., Nasser, Y., Salim, M., Al-Showiman, S., Ben Hadda, T., El-Youbi, M., Benabbes, R. & Saalaoui, E. (2015). Int. J. Pharm. 5, 39-45.]); Elaatiaoui et al. (2014[Elaatiaoui, A., Koudad, M., Saddik, R., Benchat, N. & El Ammari, L. (2014). Acta Cryst. E70, o1189-o1190.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H17N3O

  • Mr = 327.38

  • Monoclinic P 21 /n

  • a = 12.295 (3) Å

  • b = 9.587 (2) Å

  • c = 14.977 (4) Å

  • β = 101.548 (1)°

  • V = 1729.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.42 × 0.31 × 0.26 mm

2.2. Data collection

  • Bruker X8 APEX Diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.673, Tmax = 0.746

  • 26727 measured reflections

  • 4126 independent reflections

  • 2970 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.140

  • S = 1.02

  • 4126 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯Cg1i 0.93 2.74 3.6705 (18) 175
O1—H1⋯N1ii 0.82 1.86 2.6699 (17) 170
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Our interest on imidazo[1,2a]pyridine derivatives allowed us to investigate on the synthesis with a good yield of novel Schiff base compounds from this series by using acetic acid as catalyst (Radi et al., 2015). Schiff bases are known for their important therapeutic properties (Solomons et al., 1997; Bhandari et al., 2008; Ertl et al., 2000). The present paper is a continuation of our research work devoted to the development of imidazo[1,2a]pyridine derivatives with potential pharmacological activities (Elaatiaoui et al., 2014).

The molecular structure of the title compound is shown in Fig. 1. The fused five- and six-membered rings are almost coplanar, with a maximum deviation of 0.054 (2) Å for atom C4. The mean plane through the fused ring system makes dihedral angles of 64.97 (7)° and 18.52 (6)° with the phenyl ring (C8–C13) and the (iminomethyl)phenol group (N3/C14–C20), respectively. The dihedral angle between the two aromatic rings C8–C13 and C15–C20 is 69.25 (7)°. The cohesion of the crystal structure is ensured by C—H···π interactions (Table 1) linking centrosymmetrically-related molecules into dimeric units, which are further connected by O—H···N hydrogen bonds (Table 1) to form layers parallel to the (1 0 1) plane as shown in Fig. 2.

Related literature top

For the biological activities of imidazo[1,2a]pyridine derivatives, see: Solomons et al. (1997); Bhandari et al. (2008); Ertl et al. (2000). For the synthesis of related compounds, see: Radi et al. (2015); Elaatiaoui et al. (2014).

Experimental top

To 7-Methyl-2-phenylimidazo[1,2-a]pyridin-3-amine (2.39 mmol) dissolved in 20 ml of dry diethyl ether two drops of acetic acid as catalyst (0.3 ml) were added, and the solution was stirred for 15–20 minutes at room temperature. Then 4-hydroxybenzaldehyde (2.39 mmol) was added and the reaction mixture stirred for 24 h at room temperature. The reaction was monitored by TLC. The formed product was filtered and washed with dry ether. The final purification was performed by recrystallization from hot methanol to give a crystalline powder. The powder was recrystallized from methanol and after 3 days the formed green crystals were filtered on Hotman paper (Yield 92.15%).

Spectral data. Rf = 0.50 (silica, CH2Cl2/CH3OH: 9/1). 1HNMR (300 MHz, DMSO, δ p.p.m.): 8.659 (s, 1H, HC18=N); 8.322 (d, 1H, C3H, J= 6.99 Hz); 7.842 (d, 2H, C12H C16H, J=7.29 Hz); 7.654 (d, 2H, C15H + C13H, J=22,2 Hz); 7.35 (q, 4H, C6H + C14H, C24H + C20H); 6.75 (d, 3H, C2H + C23H + C21H, J = 6.09 Hz); 2.41 (s, 3H, C17H). 13C NMR (75 MHz, DMSO, δ p.p.m.): 171.94; 160.87; 158.06; 142.28; 135.41; 134.78; 132.47; 130.38; 128.55; 128.48; 127.54; 127.26; 123.04; 115.80; 115.22; 115.02; 20.76. m/z (M+): 328.00. IR: ν (CHN, imine) = 1655 cm-1; ν(OH)=3450 cm-1.

Refinement top

H atoms were located in a difference map and treated as riding with C–H = 0.93-0.96 Å, O–H = 0.82 Å, and with Uiso(H) = 1.5 Ueq(C, O) for methyl and hydroxide H atoms and Uiso(H) = 1.2 Ueq(C) for aromatic H atoms. One reflection (1 0 1) affected by beamstop was removed during the last cycles of refinement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles of arbitrary radius.
[Figure 2] Fig. 2. Packing diagram of the title compound showing the fornation of a layer parallel to the (1 0 1) plane by O—H···N hydrogen bonds cyan dotted lines) and C—H···π hydrogen interactions (red dotted lines). Hydrogen atoms not invoolved in hydrogen bonding are omitted.
(E)-4-[N-(7-Methyl-2-phenylimidazo[1,2-a]pyridin-3-yl)carboximidoyl]phenol top
Crystal data top
C21H17N3OF(000) = 688
Mr = 327.38Dx = 1.257 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.295 (3) ÅCell parameters from 4126 reflections
b = 9.587 (2) Åθ = 2.4–27.9°
c = 14.977 (4) ŵ = 0.08 mm1
β = 101.548 (1)°T = 296 K
V = 1729.6 (7) Å3Block, green
Z = 40.42 × 0.31 × 0.26 mm
Data collection top
Bruker X8 APEX Diffractometer4126 independent reflections
Radiation source: fine-focus sealed tube2970 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 27.9°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1616
Tmin = 0.673, Tmax = 0.746k = 1212
26727 measured reflectionsl = 1519
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0656P)2 + 0.4096P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4126 reflectionsΔρmax = 0.30 e Å3
226 parametersΔρmin = 0.18 e Å3
Crystal data top
C21H17N3OV = 1729.6 (7) Å3
Mr = 327.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.295 (3) ŵ = 0.08 mm1
b = 9.587 (2) ÅT = 296 K
c = 14.977 (4) Å0.42 × 0.31 × 0.26 mm
β = 101.548 (1)°
Data collection top
Bruker X8 APEX Diffractometer4126 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2970 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.746Rint = 0.033
26727 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.02Δρmax = 0.30 e Å3
4126 reflectionsΔρmin = 0.18 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.54952 (12)0.49279 (15)0.29735 (10)0.0451 (3)
C20.50833 (14)0.40312 (17)0.22392 (11)0.0535 (4)
H20.55520.37130.18670.064*
C30.39967 (15)0.36297 (19)0.20743 (12)0.0615 (4)
C40.33099 (15)0.4141 (2)0.26548 (14)0.0695 (5)
H40.25720.38580.25550.083*
C50.36876 (13)0.5026 (2)0.33486 (13)0.0620 (5)
H50.32190.53490.37190.074*
C60.53862 (12)0.62960 (16)0.41673 (10)0.0452 (3)
C70.64653 (12)0.62297 (15)0.40304 (9)0.0418 (3)
C80.75103 (12)0.68006 (16)0.45771 (9)0.0436 (3)
C90.83189 (14)0.58748 (19)0.50032 (11)0.0561 (4)
H90.81930.49200.49400.067*
C100.93079 (16)0.6352 (2)0.55190 (12)0.0696 (5)
H100.98390.57190.58050.083*
C110.95080 (16)0.7758 (3)0.56102 (14)0.0751 (6)
H111.01700.80790.59640.090*
C120.87302 (17)0.8688 (2)0.51789 (14)0.0727 (5)
H120.88720.96410.52320.087*
C130.77345 (14)0.82168 (18)0.46638 (12)0.0579 (4)
H130.72120.88560.43740.069*
C140.52384 (14)0.78868 (19)0.52891 (12)0.0562 (4)
H140.59410.81930.52370.067*
C150.47106 (12)0.85783 (17)0.59525 (10)0.0484 (4)
C160.36939 (12)0.81542 (16)0.61444 (10)0.0470 (3)
H160.33180.74080.58260.056*
C170.32421 (12)0.88222 (16)0.67956 (10)0.0464 (3)
H170.25740.85110.69240.056*
C180.37814 (12)0.99643 (16)0.72644 (10)0.0457 (3)
C190.47875 (13)1.04114 (19)0.70700 (11)0.0556 (4)
H190.51521.11770.73730.067*
C200.52369 (13)0.9715 (2)0.64294 (11)0.0586 (4)
H200.59141.00130.63110.070*
C210.3546 (2)0.2628 (2)0.13212 (16)0.0885 (7)
H21A0.27720.24690.13080.133*
H21B0.36360.30140.07490.133*
H21C0.39420.17610.14250.133*
N10.65214 (10)0.53861 (13)0.32982 (8)0.0456 (3)
N20.47802 (10)0.54401 (13)0.34959 (8)0.0465 (3)
N30.48107 (11)0.68926 (14)0.47735 (9)0.0506 (3)
O10.33670 (9)1.06880 (13)0.78932 (7)0.0589 (3)
H10.27771.03390.79530.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0404 (7)0.0465 (8)0.0483 (8)0.0019 (6)0.0084 (6)0.0070 (6)
C20.0550 (9)0.0524 (9)0.0513 (9)0.0014 (7)0.0063 (7)0.0013 (7)
C30.0577 (10)0.0605 (10)0.0600 (10)0.0065 (8)0.0028 (8)0.0048 (8)
C40.0408 (9)0.0817 (13)0.0793 (13)0.0094 (9)0.0039 (8)0.0051 (10)
C50.0361 (8)0.0752 (11)0.0742 (11)0.0034 (8)0.0096 (8)0.0066 (9)
C60.0412 (8)0.0482 (8)0.0463 (8)0.0044 (6)0.0095 (6)0.0059 (6)
C70.0411 (7)0.0428 (7)0.0422 (7)0.0013 (6)0.0096 (6)0.0064 (6)
C80.0408 (7)0.0510 (8)0.0399 (7)0.0002 (6)0.0106 (6)0.0044 (6)
C90.0544 (9)0.0591 (9)0.0527 (9)0.0081 (8)0.0053 (7)0.0004 (7)
C100.0537 (10)0.0908 (14)0.0582 (10)0.0154 (10)0.0031 (8)0.0059 (10)
C110.0495 (10)0.1046 (16)0.0673 (12)0.0103 (11)0.0020 (8)0.0204 (11)
C120.0654 (12)0.0690 (12)0.0826 (13)0.0206 (10)0.0119 (10)0.0095 (10)
C130.0540 (9)0.0538 (9)0.0642 (10)0.0036 (8)0.0078 (8)0.0086 (8)
C140.0481 (9)0.0665 (10)0.0577 (9)0.0027 (8)0.0193 (7)0.0031 (8)
C150.0444 (8)0.0551 (9)0.0469 (8)0.0026 (7)0.0121 (6)0.0052 (7)
C160.0457 (8)0.0453 (8)0.0497 (8)0.0000 (6)0.0092 (6)0.0052 (6)
C170.0381 (7)0.0524 (8)0.0500 (8)0.0015 (6)0.0118 (6)0.0073 (7)
C180.0406 (8)0.0560 (8)0.0403 (7)0.0008 (6)0.0077 (6)0.0037 (6)
C190.0467 (8)0.0688 (10)0.0520 (9)0.0129 (8)0.0116 (7)0.0071 (8)
C200.0435 (8)0.0778 (11)0.0576 (9)0.0110 (8)0.0180 (7)0.0022 (8)
C210.0867 (15)0.0875 (15)0.0824 (14)0.0259 (12)0.0044 (12)0.0115 (12)
N10.0410 (6)0.0489 (7)0.0476 (7)0.0011 (5)0.0108 (5)0.0019 (5)
N20.0366 (6)0.0509 (7)0.0513 (7)0.0028 (5)0.0068 (5)0.0054 (6)
N30.0474 (7)0.0553 (8)0.0508 (7)0.0083 (6)0.0139 (6)0.0045 (6)
O10.0498 (6)0.0726 (8)0.0577 (7)0.0102 (5)0.0184 (5)0.0137 (6)
Geometric parameters (Å, º) top
C1—N11.3326 (19)C11—H110.9300
C1—N21.3789 (19)C12—C131.386 (3)
C1—C21.408 (2)C12—H120.9300
C2—C31.364 (2)C13—H130.9300
C2—H20.9300C14—N31.272 (2)
C3—C41.415 (3)C14—C151.451 (2)
C3—C211.500 (3)C14—H140.9300
C4—C51.350 (3)C15—C201.390 (2)
C4—H40.9300C15—C161.398 (2)
C5—N21.375 (2)C16—C171.374 (2)
C5—H50.9300C16—H160.9300
C6—N31.3818 (19)C17—C181.395 (2)
C6—C71.384 (2)C17—H170.9300
C6—N21.393 (2)C18—O11.3491 (18)
C7—N11.3753 (19)C18—C191.394 (2)
C7—C81.483 (2)C19—C201.372 (2)
C8—C131.386 (2)C19—H190.9300
C8—C91.389 (2)C20—H200.9300
C9—C101.382 (2)C21—H21A0.9600
C9—H90.9300C21—H21B0.9600
C10—C111.372 (3)C21—H21C0.9600
C10—H100.9300O1—H10.8200
C11—C121.371 (3)
N1—C1—N2109.89 (13)C12—C13—C8120.56 (17)
N1—C1—C2130.74 (14)C12—C13—H13119.7
N2—C1—C2119.36 (14)C8—C13—H13119.7
C3—C2—C1119.98 (16)N3—C14—C15124.79 (16)
C3—C2—H2120.0N3—C14—H14117.6
C1—C2—H2120.0C15—C14—H14117.6
C2—C3—C4118.30 (16)C20—C15—C16117.76 (14)
C2—C3—C21121.16 (19)C20—C15—C14118.96 (14)
C4—C3—C21120.50 (18)C16—C15—C14123.28 (15)
C5—C4—C3122.34 (16)C17—C16—C15121.05 (15)
C5—C4—H4118.8C17—C16—H16119.5
C3—C4—H4118.8C15—C16—H16119.5
C4—C5—N2118.64 (17)C16—C17—C18120.29 (14)
C4—C5—H5120.7C16—C17—H17119.9
N2—C5—H5120.7C18—C17—H17119.9
N3—C6—C7138.47 (15)O1—C18—C19117.56 (14)
N3—C6—N2116.61 (13)O1—C18—C17123.18 (13)
C7—C6—N2104.84 (12)C19—C18—C17119.25 (14)
N1—C7—C6110.35 (13)C20—C19—C18119.66 (16)
N1—C7—C8118.76 (12)C20—C19—H19120.2
C6—C7—C8130.65 (13)C18—C19—H19120.2
C13—C8—C9118.18 (15)C19—C20—C15121.97 (15)
C13—C8—C7123.17 (14)C19—C20—H20119.0
C9—C8—C7118.62 (14)C15—C20—H20119.0
C10—C9—C8120.95 (17)C3—C21—H21A109.5
C10—C9—H9119.5C3—C21—H21B109.5
C8—C9—H9119.5H21A—C21—H21B109.5
C11—C10—C9120.06 (18)C3—C21—H21C109.5
C11—C10—H10120.0H21A—C21—H21C109.5
C9—C10—H10120.0H21B—C21—H21C109.5
C12—C11—C10119.85 (18)C1—N1—C7106.85 (12)
C12—C11—H11120.1C5—N2—C1121.28 (14)
C10—C11—H11120.1C5—N2—C6130.54 (14)
C11—C12—C13120.37 (19)C1—N2—C6108.05 (12)
C11—C12—H12119.8C14—N3—C6120.33 (14)
C13—C12—H12119.8C18—O1—H1109.5
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···Cg1i0.932.743.6705 (18)175
O1—H1···N1ii0.821.862.6699 (17)170
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1/2, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···Cg1i0.932.7433.6705 (18)175.0
O1—H1···N1ii0.821.862.6699 (17)170.3
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822–1831.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElaatiaoui, A., Koudad, M., Saddik, R., Benchat, N. & El Ammari, L. (2014). Acta Cryst. E70, o1189–o1190.  CrossRef IUCr Journals Google Scholar
First citationErtl, P., Rohde, B. & Selzer, P. (2000). J. Med. Chem. 43, 3714–3717.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRadi, S., Tighadouini, S., Feron, O., Riant, O., Nasser, Y., Salim, M., Al-Showiman, S., Ben Hadda, T., El-Youbi, M., Benabbes, R. & Saalaoui, E. (2015). Int. J. Pharm. 5, 39–45.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSolomons, K. R. H., Lieberman, H. E., Groundwater, P. W., Hibbs, D. E. & Hursthouse, M. B. (1997). Anti-Cancer Drug Des. 12, 635–647.  CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o803-o804
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds