metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages m183-m184

Crystal structure of an unknown solvate of dodeca­kis­­(μ2-alaninato-1:2κ2O:N,O)cerium(III)hexa­nickel(II) aqua­tris­­(hydroxido-κO)tris­­(nitrato-κ2O,O′)cerate(III)

CROSSMARK_Color_square_no_text.svg

aInstitute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prosp. 31, Moscow 119991, Russian Federation, and bDepartment of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russian Federation
*Correspondence e-mail: stas.bezzubov@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 5 September 2015; accepted 12 September 2015; online 17 September 2015)

The chiral title compound, [CeNi6(C3H6NO2)12][Ce(NO3)3(OH)3(H2O)], comprises a complex heterometallic Ni/Ce cation and a homonuclear Ce anion. Both the cation and anion exhibit point group symmetry 3. with the CeIII atom situated on the threefold rotation axis. The cation metal core consists of six NiII atoms coordinated in a slightly distorted octa­hedral N2O4 configuration by N and O atoms of 12 deprotonated L-alaninate ligands exhibiting both bridging and chelating modes. This metal–organic coordination motif encapsulates one CeIII atom that shows an icosa­hedral coordination by the O-donor atoms of the L-alaninate ligands, with Ce—O distances varying in the range 2.455 (5)–2.675 (3) Å. In the anion, the central CeIII ion is bound to three bidentate nitrate ligands, to three hydroxide ligands and to one water mol­ecule, with Ce—O distances in the range 2.6808 (19)–2.741 (2) Å. The H atoms of the coordinating water mol­ecule are disordered over three positions due to its location on a threefold rotation axis. Disorder is also observed in fragments of two L-alaninate ligands, with occupancy ratios of 0.608 (14):0.392 (14) and 0.669 (8):0.331 (8), respectively, for the two sets of sites. In the crystal, the complex cations and anions assemble through O—H⋯O and N—H⋯O hydrogen bonds into a three-dimensional network with large voids of approximately 1020 Å3. The contributions of highly disordered ethanol and water solvent mol­ecules to the diffraction data were removed with the SQUEEZE procedure [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18]. The given chemical formula and other crystal data do not take into account the unknown amount of these solvent mol­ecules.

1. Related literature

Mol­ecular magnets based on 3d–4f heterometallic constituents can be prepared easily by self-assembling of simple building blocks such as d-metal amino acid salts and lanthanide nitrates (Peristeraki et al., 2011[Peristeraki, T., Samios, M., Siczek, M., Lis, T. & Milios, C. J. (2011). Inorg. Chem. 50, 5175-5185.]; Yukawa et al., 2005[Yukawa, Y., Aromi, G., Igarashi, S., Ribas, J., Zvyagin, S. A. & Krzystek, J. (2005). Angew. Chem. 117, 2033-2037.]; Igarashi et al., 2000[Igarashi, S., Hoshino, Y., Masuda, Y. & Yukawa, Y. (2000). Inorg. Chem. 39, 2509-2515.]). For an icosa­hedral coordination environment observed in similar compounds, see: Peristeraki et al. (2011[Peristeraki, T., Samios, M., Siczek, M., Lis, T. & Milios, C. J. (2011). Inorg. Chem. 50, 5175-5185.]); Zhang et al. (2004[Zhang, J.-J., Xiang, S.-C., Hu, S.-M., Xia, S.-Q., Fu, R.-B., Wu, X.-T., Li, Y.-M. & Zhang, H.-S. (2004). Polyhedron, 23, 2265-2272.]). For background to and application of the SQUEEZE procedure, see: Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [CeNi6(C3H6NO2)12][Ce(NO3)3(OH)3(H2O)]

  • Mr = 1944.63

  • Trigonal, R 3

  • a = 14.6418 (4) Å

  • c = 31.7767 (19) Å

  • V = 5899.7 (6) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 2.62 mm−1

  • T = 150 K

  • 0.40 × 0.40 × 0.40 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.420, Tmax = 0.420

  • 21829 measured reflections

  • 6978 independent reflections

  • 6734 reflections with I > 2σ(I)

  • Rint = 0.021

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.066

  • S = 1.02

  • 6978 reflections

  • 327 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.69 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3493 Friedel pairs

  • Absolute structure parameter: −0.012 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O17i 0.85 1.93 2.758 (3) 165
N11—H11B⋯O6ii 0.92 2.38 3.158 (5) 143
N12—H12D⋯O5iii 0.92 2.17 3.086 (4) 174
N13—H13B⋯O2iv 0.92 2.66 3.284 (4) 126
Symmetry codes: (i) x-1, y, z; (ii) -y+4, x-y+4, z; (iii) -x+y, -x+3, z; (iv) [-x+y-{\script{1\over 3}}, -x+10/3, z+{\script{1\over 3}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

Molecular magnets based on 3d–4f heterometallic constituents can be prepared easily by self-assembling of simple building blocks such as d-metal amino acid salts and lanthanide nitrates (Peristeraki et al., 2011; Yukawa et al., 2005; Igarashi et al., 2000). For an icosahedral coordination environment observed in similar compounds, see: Peristeraki et al. (2011); Zhang et al. (2004). For background to and application of the SQUEEZE procedure, see: Spek (2015).

Experimental top

Crystals of the title complex were obtained in the course of several days after addition of a Ce(NO3)3 solution in a water-ethanol-methanol mixture to an aquous solution of NiII L-alaninate.

Refinement top

The title complex crystallizes in a chiral space group due to the presence of optically pure L-alanine in the cation.

A region of electron density was treated with the SQUEEZE procedure in PLATON (Spek, 2015). The total potential solvent-accessible void volume is 1020.6 Å3, with an estimated electron count of 437. This accounts to approximately 12–15 disordered solvent ethanol and 6–9 water molecules. Their contributions to the total intensity data were removed. The given chemical formula and other crystal data do not take into account the amount of the unknown solvent molecules.

A part of the L-alaninato ligands were found to be disordered over two sets of sites with refined component ratios of 0.608 (14):0.392 (14) for the (C4—C6)/(C41—C61) fragment and 0.669 (8):0.331 (8) for the (C11—C12)/(C21—C22) fragment. Disorder was also observed for the coordinating water molecule (O3) situated on a threefold rotation axis. Owing to symmetry restraints the attached hydrogen atoms are disordered over three sites with an occupancy of one-thirds each.

Hydrogen atoms involved in hydrogen bonds (H1, H11B, H12D, and H13B) were located from difference maps and refined using a riding model, with O—H = 0.85 Å and Uiso(H) = 1.5Ueq(O), N—H = 0.92 Å and Uiso(H) = 1.2Ueq(N). All other hydrogen atoms were placed in calculated positions and refined using a riding model with C—H = 0.98 –1.00 Å and Uiso(H) = 1.5Ueq(CH3), 1.2Ueq(CH).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the {Ni(ala)2}6 unit of the cation (ala = deprotonated L-alanine). Displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. The coordination polyhedron of Ce2 in the complex cation of the title compound. Displacement ellipsoids are shown at the 50% probability level. A and B indicate symmetry operators -y + 3, x - y + 4, z and -x + y, -x + 3, z, respectively.
[Figure 3] Fig. 3. The structure of the complex anion [Ce(NO3)3(OH)3(H2O)]3- in the title compound. Displacement ellipsoids are shown at the 50% probability level. Only one of the orientations of the water molecule is shown.
[Figure 4] Fig. 4. Hydrogen-bonding interactions (dotted lines) between the anion and cations.
Dodecakis(µ2-alaninato-1:2κ2O:N,O)cerium(III)hexanickel(II) aquatris(hydroxido-κO)tris(nitrato-κ2O,O')cerate(III) top
Crystal data top
[CeNi6(C3H6NO2)12][Ce(NO3)3(OH)3(H2O)]Dx = 1.642 Mg m3
Mr = 1944.63Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 9898 reflections
Hall symbol: R 3θ = 2.3–30.5°
a = 14.6418 (4) ŵ = 2.62 mm1
c = 31.7767 (19) ÅT = 150 K
V = 5899.7 (6) Å3Prism, violet
Z = 30.40 × 0.40 × 0.40 mm
F(000) = 2934
Data collection top
Bruker APEXII CCD
diffractometer
6978 independent reflections
Radiation source: fine-focus sealed tube6734 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 29.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1919
Tmin = 0.420, Tmax = 0.420k = 1919
21829 measured reflectionsl = 4343
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0434P)2 + 4.4547P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.003
6978 reflectionsΔρmax = 0.57 e Å3
327 parametersΔρmin = 0.69 e Å3
1 restraintAbsolute structure: Flack (1983), 3493 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.012 (11)
Crystal data top
[CeNi6(C3H6NO2)12][Ce(NO3)3(OH)3(H2O)]Z = 3
Mr = 1944.63Mo Kα radiation
Trigonal, R3µ = 2.62 mm1
a = 14.6418 (4) ÅT = 150 K
c = 31.7767 (19) Å0.40 × 0.40 × 0.40 mm
V = 5899.7 (6) Å3
Data collection top
Bruker APEXII CCD
diffractometer
6978 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
6734 reflections with I > 2σ(I)
Tmin = 0.420, Tmax = 0.420Rint = 0.021
21829 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.066Δρmax = 0.57 e Å3
S = 1.02Δρmin = 0.69 e Å3
6978 reflectionsAbsolute structure: Flack (1983), 3493 Friedel pairs
327 parametersAbsolute structure parameter: 0.012 (11)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ce10.66672.33331.143417 (9)0.03086 (6)
Ce21.00002.00001.058354 (6)0.02110 (5)
Ni11.22355 (3)2.18294 (3)1.125638 (10)0.02623 (8)
Ni21.04234 (3)2.22458 (3)0.991516 (11)0.03043 (9)
O10.53783 (17)2.31437 (18)1.08711 (7)0.0354 (5)
H10.47682.25971.08810.053*
O20.9922 (2)2.4685 (3)1.17180 (10)0.0583 (8)
O30.66672.33331.22069 (16)0.0798 (17)
H30.72132.37771.23410.096*0.3333
H20.61212.28891.23410.096*0.3333
O50.83829 (19)2.33357 (19)1.15778 (8)0.0441 (5)
O60.8541 (2)2.4859 (2)1.17100 (9)0.0484 (6)
O110.95267 (16)2.15480 (15)1.04388 (6)0.0252 (4)
O121.12234 (16)2.02412 (17)1.12577 (6)0.0268 (4)
O131.15557 (16)2.20363 (16)1.07328 (6)0.0274 (4)
O141.09798 (16)2.12172 (17)0.99153 (6)0.0299 (4)
O151.1670 (2)2.3264 (2)1.02855 (8)0.0402 (6)
O160.9167 (2)2.1220 (2)0.95514 (7)0.0446 (6)
O171.32725 (16)2.16186 (16)1.08770 (6)0.0286 (4)
O181.12072 (18)2.20121 (19)1.16376 (7)0.0362 (5)
N10.8977 (2)2.4307 (2)1.16730 (9)0.0407 (6)
N111.3169 (3)2.3429 (2)1.12060 (12)0.0541 (9)
H11B1.38682.36171.12290.065*
H11C1.30122.37571.14180.065*
N121.2828 (2)2.1486 (2)1.17775 (8)0.0328 (5)
H12E1.29952.19951.19800.039*
H12D1.34322.14731.17080.039*
N131.1359 (3)2.2836 (3)0.93873 (9)0.0460 (7)
H13A1.16612.35580.93780.055*
H13B1.09622.25560.91480.055*
N140.9681 (2)2.3129 (2)0.99455 (9)0.0375 (6)
H14A0.91692.29090.97410.045*
H14B1.01632.38290.98990.045*
C11.1303 (2)1.9766 (2)1.15825 (9)0.0290 (5)
C21.2482 (4)1.9884 (4)1.21822 (13)0.0582 (12)
H2A1.29342.03421.24090.087*
H2B1.19081.92341.23030.087*
H2C1.29001.97101.19920.087*
C31.2025 (3)2.0449 (3)1.19394 (9)0.0370 (7)
H3A1.15752.05781.21400.044*
C41.3104 (6)2.4840 (5)1.0800 (4)0.069 (3)0.608 (14)
H4A1.37732.53411.09340.104*0.608 (14)
H4B1.31042.50571.05080.104*0.608 (14)
H4C1.25192.48301.09530.104*0.608 (14)
C61.2977 (9)2.3741 (8)1.0806 (4)0.0300 (17)0.608 (14)
H6A1.35462.37871.06170.036*0.608 (14)
C411.2506 (9)2.4577 (8)1.1104 (4)0.053 (3)0.392 (14)
H41A1.30972.51601.12520.080*0.392 (14)
H41B1.21832.48581.09120.080*0.392 (14)
H41C1.19802.41091.13090.080*0.392 (14)
C611.2894 (14)2.3979 (13)1.0862 (6)0.034 (3)0.392 (14)
H61A1.35142.44451.06820.041*0.392 (14)
C50.9200 (3)2.3002 (2)1.03646 (10)0.0339 (6)
H5A0.85062.29701.03320.041*
C70.9018 (2)2.1977 (2)1.05742 (9)0.0256 (5)
C81.1977 (2)2.2971 (2)1.06015 (10)0.0327 (6)
C90.9906 (3)2.3928 (3)1.06485 (13)0.0509 (9)
H9A1.00242.45861.05180.076*
H9B0.95642.38391.09220.076*
H9C1.05832.39561.06870.076*
C100.8608 (4)2.0257 (3)0.96288 (11)0.0478 (9)
C111.2173 (4)2.2543 (4)0.94147 (14)0.0377 (12)0.669 (8)
H11A1.27652.30640.95950.045*0.669 (8)
C121.2588 (6)2.2508 (6)0.89832 (19)0.0550 (18)0.669 (8)
H12A1.31322.23080.90100.082*0.669 (8)
H12B1.20092.19890.88090.082*0.669 (8)
H12C1.28922.32050.88520.082*0.669 (8)
C211.1527 (10)2.1841 (9)0.9212 (3)0.041 (3)0.331 (8)
H21A1.22532.22040.90890.049*0.331 (8)
C221.0844 (12)2.1161 (9)0.8863 (3)0.056 (3)0.331 (8)
H22A1.10392.06280.87940.084*0.331 (8)
H22B1.01032.08100.89510.084*0.331 (8)
H22C1.09402.15970.86150.084*0.331 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.03464 (9)0.03464 (9)0.02330 (11)0.01732 (4)0.0000.000
Ce20.02472 (7)0.02472 (7)0.01385 (9)0.01236 (3)0.0000.000
Ni10.02819 (18)0.03022 (17)0.02059 (16)0.01484 (14)0.00288 (13)0.00459 (13)
Ni20.0361 (2)0.0351 (2)0.02166 (16)0.01905 (16)0.00561 (13)0.01041 (14)
O10.0299 (10)0.0360 (11)0.0344 (11)0.0120 (9)0.0075 (8)0.0004 (9)
O20.0441 (15)0.0612 (17)0.0574 (17)0.0173 (13)0.0195 (13)0.0173 (14)
O30.106 (3)0.106 (3)0.027 (2)0.0530 (14)0.0000.000
O50.0432 (12)0.0381 (11)0.0496 (13)0.0192 (10)0.0168 (10)0.0074 (10)
O60.0564 (15)0.0383 (12)0.0498 (14)0.0231 (12)0.0179 (12)0.0144 (11)
O110.0291 (9)0.0269 (9)0.0205 (9)0.0147 (8)0.0004 (7)0.0026 (7)
O120.0302 (10)0.0337 (10)0.0165 (8)0.0160 (9)0.0014 (7)0.0002 (7)
O130.0325 (10)0.0319 (10)0.0203 (9)0.0179 (8)0.0003 (7)0.0001 (7)
O140.0341 (10)0.0383 (11)0.0199 (9)0.0201 (9)0.0066 (8)0.0077 (8)
O150.0399 (13)0.0391 (13)0.0344 (12)0.0144 (10)0.0044 (10)0.0138 (10)
O160.0693 (17)0.0407 (13)0.0265 (10)0.0297 (13)0.0145 (11)0.0006 (9)
O170.0254 (9)0.0325 (10)0.0255 (9)0.0127 (8)0.0000 (8)0.0033 (8)
O180.0357 (11)0.0485 (13)0.0271 (10)0.0231 (10)0.0071 (9)0.0162 (9)
N10.0426 (14)0.0381 (14)0.0331 (13)0.0139 (12)0.0149 (11)0.0092 (10)
N110.067 (2)0.0319 (15)0.059 (2)0.0219 (15)0.0316 (17)0.0141 (14)
N120.0294 (12)0.0392 (13)0.0273 (12)0.0154 (11)0.0064 (9)0.0074 (10)
N130.0585 (18)0.0634 (19)0.0288 (13)0.0398 (16)0.0168 (12)0.0241 (13)
N140.0449 (15)0.0342 (13)0.0348 (13)0.0209 (12)0.0044 (11)0.0103 (11)
C10.0288 (13)0.0352 (14)0.0177 (11)0.0121 (11)0.0011 (9)0.0003 (10)
C20.055 (2)0.060 (2)0.037 (2)0.0111 (19)0.0209 (17)0.0129 (17)
C30.0332 (14)0.0494 (18)0.0184 (12)0.0131 (13)0.0031 (10)0.0014 (12)
C40.044 (4)0.029 (3)0.126 (8)0.010 (3)0.020 (4)0.002 (4)
C60.034 (3)0.015 (4)0.040 (4)0.011 (3)0.003 (3)0.006 (3)
C410.051 (6)0.040 (5)0.071 (8)0.024 (5)0.016 (5)0.018 (5)
C610.032 (5)0.017 (7)0.047 (6)0.007 (4)0.001 (4)0.005 (5)
C50.0357 (15)0.0308 (14)0.0352 (15)0.0167 (12)0.0037 (12)0.0101 (12)
C70.0240 (12)0.0240 (12)0.0252 (12)0.0094 (10)0.0020 (9)0.0014 (10)
C80.0288 (14)0.0334 (14)0.0324 (14)0.0129 (12)0.0075 (11)0.0071 (12)
C90.060 (2)0.0285 (15)0.053 (2)0.0138 (15)0.0117 (17)0.0019 (14)
C100.077 (3)0.0445 (18)0.0289 (15)0.0355 (19)0.0287 (16)0.0066 (13)
C110.034 (2)0.051 (3)0.028 (2)0.021 (2)0.0061 (17)0.019 (2)
C120.069 (4)0.080 (4)0.040 (3)0.055 (4)0.032 (3)0.032 (3)
C210.061 (7)0.045 (6)0.034 (5)0.040 (6)0.016 (5)0.013 (4)
C220.088 (9)0.046 (6)0.025 (5)0.027 (6)0.013 (5)0.004 (4)
Geometric parameters (Å, º) top
Ce1—O32.455 (5)N12—C31.472 (4)
Ce1—O1i2.513 (2)N12—H12E0.9200
Ce1—O1ii2.513 (2)N12—H12D0.9200
Ce1—O12.513 (2)N13—C111.457 (6)
Ce1—O5ii2.552 (2)N13—C211.689 (11)
Ce1—O52.552 (2)N13—H13A0.9200
Ce1—O5i2.552 (2)N13—H13B0.9200
Ce1—O6ii2.675 (3)N14—C51.474 (4)
Ce1—O6i2.675 (3)N14—H14A0.9200
Ce1—O62.675 (3)N14—H14B0.9200
Ce2—O14iii2.6808 (19)C1—O18iii1.246 (4)
Ce2—O14iv2.6808 (19)C1—C31.532 (4)
Ce2—O142.6809 (19)C2—C31.510 (5)
Ce2—O122.700 (2)C2—H2A0.9800
Ce2—O12iii2.700 (2)C2—H2B0.9800
Ce2—O12iv2.700 (2)C2—H2C0.9800
Ce2—O11iii2.7202 (19)C3—H3A1.0000
Ce2—O112.720 (2)C4—C61.525 (11)
Ce2—O11iv2.720 (2)C4—H4A0.9800
Ce2—O13iii2.741 (2)C4—H4B0.9800
Ce2—O132.741 (2)C4—H4C0.9800
Ce2—O13iv2.741 (2)C6—C81.478 (12)
Ni1—O132.038 (2)C6—H6A1.0000
Ni1—O122.039 (2)C41—C611.476 (17)
Ni1—N112.044 (3)C41—H41A0.9800
Ni1—N122.045 (3)C41—H41B0.9800
Ni1—O182.051 (2)C41—H41C0.9800
Ni1—O172.079 (2)C61—C81.638 (17)
Ni2—O142.039 (2)C61—H61A1.0000
Ni2—O112.048 (2)C5—C91.523 (5)
Ni2—O162.053 (3)C5—C71.537 (4)
Ni2—O152.054 (3)C5—H5A1.0000
Ni2—N132.062 (3)C7—O17iv1.256 (4)
Ni2—N142.066 (3)C9—H9A0.9800
O1—H10.8512C9—H9B0.9800
O2—N11.214 (4)C9—H9C0.9800
O3—H30.8501C10—O14iv1.267 (4)
O3—H20.8501C10—C21iv1.528 (11)
O5—N11.278 (4)C10—C11iv1.612 (6)
O6—N11.262 (4)C11—C121.511 (7)
O11—C71.267 (3)C11—C10iii1.612 (6)
O12—C11.282 (3)C11—H11A1.0000
O13—C81.259 (4)C12—H12A0.9800
O14—C10iii1.266 (4)C12—H12B0.9800
O15—C81.259 (4)C12—H12C0.9800
O16—C101.251 (5)C21—C221.493 (18)
O17—C7iii1.256 (4)C21—C10iii1.528 (10)
O18—C1iv1.247 (4)C21—H21A1.0000
N11—C61.427 (12)C22—H22A0.9800
N11—C611.53 (2)C22—H22B0.9800
N11—H11B0.9200C22—H22C0.9800
N11—H11C0.9200
O3—Ce1—O1i135.41 (5)H3—O3—H2120.0
O3—Ce1—O1ii135.41 (6)N1—O5—Ce199.56 (19)
O1i—Ce1—O1ii74.89 (8)N1—O6—Ce194.10 (17)
O3—Ce1—O1135.41 (5)C7—O11—Ni2114.71 (17)
O1i—Ce1—O174.89 (8)C7—O11—Ce2144.52 (17)
O1ii—Ce1—O174.89 (8)Ni2—O11—Ce2100.73 (8)
O3—Ce1—O5ii79.70 (6)C1—O12—Ni1114.16 (18)
O1i—Ce1—O5ii82.30 (8)C1—O12—Ce2143.31 (18)
O1ii—Ce1—O5ii144.27 (8)Ni1—O12—Ce2101.76 (8)
O1—Ce1—O5ii72.80 (8)C8—O13—Ni1114.99 (19)
O3—Ce1—O579.70 (6)C8—O13—Ce2144.54 (19)
O1i—Ce1—O572.80 (8)Ni1—O13—Ce2100.46 (8)
O1ii—Ce1—O582.30 (8)C10iii—O14—Ni2113.9 (2)
O1—Ce1—O5144.27 (8)C10iii—O14—Ce2143.8 (2)
O5ii—Ce1—O5116.87 (4)Ni2—O14—Ce2102.27 (8)
O3—Ce1—O5i79.70 (6)C8—O15—Ni2123.2 (2)
O1i—Ce1—O5i144.27 (8)C10—O16—Ni2123.8 (2)
O1ii—Ce1—O5i72.80 (8)C7iii—O17—Ni1122.13 (18)
O1—Ce1—O5i82.30 (8)C1iv—O18—Ni1123.56 (18)
O5ii—Ce1—O5i116.87 (4)O2—N1—O6121.5 (3)
O5—Ce1—O5i116.88 (4)O2—N1—O5121.5 (3)
O3—Ce1—O6ii70.88 (6)O6—N1—O5117.0 (3)
O1i—Ce1—O6ii66.55 (8)C6—N11—C6117.5 (5)
O1ii—Ce1—O6ii136.51 (8)C6—N11—Ni1108.1 (5)
O1—Ce1—O6ii111.86 (8)C61—N11—Ni1117.3 (7)
O5ii—Ce1—O6ii48.87 (8)C6—N11—H11B110.1
O5—Ce1—O6ii68.01 (8)C61—N11—H11B116.5
O5i—Ce1—O6ii148.93 (9)Ni1—N11—H11B110.1
O3—Ce1—O6i70.88 (6)C6—N11—H11C110.1
O1i—Ce1—O6i136.51 (8)C61—N11—H11C92.7
O1ii—Ce1—O6i111.86 (8)Ni1—N11—H11C110.1
O1—Ce1—O6i66.55 (8)H11B—N11—H11C108.4
O5ii—Ce1—O6i68.01 (8)C3—N12—Ni1108.54 (18)
O5—Ce1—O6i148.93 (9)C3—N12—H12E110.0
O5i—Ce1—O6i48.87 (8)Ni1—N12—H12E110.0
O6ii—Ce1—O6i109.82 (6)C3—N12—H12D110.0
O3—Ce1—O670.88 (6)Ni1—N12—H12D110.0
O1i—Ce1—O6111.86 (8)H12E—N12—H12D108.4
O1ii—Ce1—O666.55 (8)C11—N13—C2143.3 (5)
O1—Ce1—O6136.51 (8)C11—N13—Ni2107.3 (2)
O5ii—Ce1—O6148.93 (9)C21—N13—Ni2105.0 (4)
O5—Ce1—O648.87 (8)C11—N13—H13A110.3
O5i—Ce1—O668.01 (8)C21—N13—H13A141.9
O6ii—Ce1—O6109.82 (6)Ni2—N13—H13A110.3
O6i—Ce1—O6109.82 (6)C11—N13—H13B110.3
O14iii—Ce2—O14iv63.82 (8)C21—N13—H13B71.1
O14iii—Ce2—O1463.82 (8)Ni2—N13—H13B110.3
O14iv—Ce2—O1463.82 (8)H13A—N13—H13B108.5
O14iii—Ce2—O12116.32 (6)C5—N14—Ni2109.29 (19)
O14iv—Ce2—O12179.85 (7)C5—N14—H14A109.8
O14—Ce2—O12116.23 (6)Ni2—N14—H14A109.8
O14iii—Ce2—O12iii116.23 (6)C5—N14—H14B109.8
O14iv—Ce2—O12iii116.32 (6)Ni2—N14—H14B109.8
O14—Ce2—O12iii179.85 (9)H14A—N14—H14B108.3
O12—Ce2—O12iii63.62 (7)O18iii—C1—O12125.0 (3)
O14iii—Ce2—O12iv179.85 (7)O18iii—C1—C3117.4 (3)
O14iv—Ce2—O12iv116.23 (6)O12—C1—C3117.5 (3)
O14—Ce2—O12iv116.33 (6)C3—C2—H2A109.5
O12—Ce2—O12iv63.62 (7)C3—C2—H2B109.5
O12iii—Ce2—O12iv63.62 (7)H2A—C2—H2B109.5
O14iii—Ce2—O11iii65.59 (6)C3—C2—H2C109.5
O14iv—Ce2—O11iii117.85 (6)H2A—C2—H2C109.5
O14—Ce2—O11iii62.89 (6)H2B—C2—H2C109.5
O12—Ce2—O11iii62.27 (6)N12—C3—C2113.6 (3)
O12iii—Ce2—O11iii116.99 (6)N12—C3—C1110.5 (2)
O12iv—Ce2—O11iii114.45 (6)C2—C3—C1111.8 (3)
O14iii—Ce2—O11117.85 (6)N12—C3—H3A106.9
O14iv—Ce2—O1162.89 (6)C2—C3—H3A106.9
O14—Ce2—O1165.59 (6)C1—C3—H3A106.9
O12—Ce2—O11116.99 (6)C6—C4—H4A109.5
O12iii—Ce2—O11114.44 (6)C6—C4—H4B109.5
O12iv—Ce2—O1162.27 (6)H4A—C4—H4B109.5
O11iii—Ce2—O11117.20 (2)C6—C4—H4C109.5
O14iii—Ce2—O11iv62.89 (6)H4A—C4—H4C109.5
O14iv—Ce2—O11iv65.59 (6)H4B—C4—H4C109.5
O14—Ce2—O11iv117.85 (6)N11—C6—C8115.2 (7)
O12—Ce2—O11iv114.45 (6)N11—C6—C4114.2 (8)
O12iii—Ce2—O11iv62.27 (6)C8—C6—C4110.6 (7)
O12iv—Ce2—O11iv116.99 (6)N11—C6—H6A105.3
O11iii—Ce2—O11iv117.20 (2)C8—C6—H6A105.3
O11—Ce2—O11iv117.20 (2)C4—C6—H6A105.3
O14iii—Ce2—O13iii62.38 (6)C61—C41—H41A109.5
O14iv—Ce2—O13iii117.36 (6)C61—C41—H41B109.5
O14—Ce2—O13iii114.53 (6)H41A—C41—H41B109.5
O12—Ce2—O13iii62.76 (6)C61—C41—H41C109.5
O12iii—Ce2—O13iii65.43 (6)H41A—C41—H41C109.5
O12iv—Ce2—O13iii117.50 (6)H41B—C41—H41C109.5
O11iii—Ce2—O13iii62.76 (6)C41—C61—N11102.8 (12)
O11—Ce2—O13iii179.74 (7)C41—C61—C8114.4 (12)
O11iv—Ce2—O13iii62.97 (6)N11—C61—C8101.6 (9)
O14iii—Ce2—O13117.36 (6)C41—C61—H61A112.4
O14iv—Ce2—O13114.53 (6)N11—C61—H61A112.4
O14—Ce2—O1362.38 (6)C8—C61—H61A112.4
O12—Ce2—O1365.43 (6)N14—C5—C9110.7 (3)
O12iii—Ce2—O13117.50 (6)N14—C5—C7110.7 (3)
O12iv—Ce2—O1362.76 (6)C9—C5—C7108.8 (3)
O11iii—Ce2—O1362.97 (6)N14—C5—H5A108.9
O11—Ce2—O1362.76 (6)C9—C5—H5A108.9
O11iv—Ce2—O13179.74 (7)C7—C5—H5A108.9
O13iii—Ce2—O13117.07 (2)O17iv—C7—O11125.7 (3)
O14iii—Ce2—O13iv114.53 (6)O17iv—C7—C5115.7 (2)
O14iv—Ce2—O13iv62.38 (6)O11—C7—C5118.6 (2)
O14—Ce2—O13iv117.36 (6)O13—C8—O15124.8 (3)
O12—Ce2—O13iv117.50 (6)O13—C8—C6116.3 (5)
O12iii—Ce2—O13iv62.76 (6)O15—C8—C6118.4 (5)
O12iv—Ce2—O13iv65.43 (6)O13—C8—C61123.2 (7)
O11iii—Ce2—O13iv179.74 (7)O15—C8—C61111.6 (7)
O11—Ce2—O13iv62.97 (6)C6—C8—C6115.9 (6)
O11iv—Ce2—O13iv62.76 (6)C5—C9—H9A109.5
O13iii—Ce2—O13iv117.07 (2)C5—C9—H9B109.5
O13—Ce2—O13iv117.07 (2)H9A—C9—H9B109.5
O13—Ni1—O1292.34 (8)C5—C9—H9C109.5
O13—Ni1—N1182.07 (11)H9A—C9—H9C109.5
O12—Ni1—N11174.40 (11)H9B—C9—H9C109.5
O13—Ni1—N12175.09 (10)O16—C10—O14iv125.5 (3)
O12—Ni1—N1282.76 (10)O16—C10—C21iv107.9 (4)
N11—Ni1—N12102.83 (12)O14iv—C10—C21iv117.7 (5)
O13—Ni1—O1891.03 (9)O16—C10—C11iv117.9 (3)
O12—Ni1—O1889.15 (9)O14iv—C10—C11iv115.5 (4)
N11—Ni1—O1890.61 (15)C21iv—C10—C11iv44.1 (5)
N12—Ni1—O1889.03 (10)N13—C11—C12111.0 (4)
O13—Ni1—O1789.77 (8)N13—C11—C10iii107.6 (3)
O12—Ni1—O1790.01 (8)C12—C11—C10iii109.7 (5)
N11—Ni1—O1790.31 (14)N13—C11—H11A109.5
N12—Ni1—O1790.11 (10)C12—C11—H11A109.5
O18—Ni1—O17178.87 (10)C10iii—C11—H11A109.5
O14—Ni2—O1191.41 (8)C11—C12—H12A109.5
O14—Ni2—O1690.15 (10)C11—C12—H12B109.5
O11—Ni2—O1688.63 (10)H12A—C12—H12B109.5
O14—Ni2—O1589.88 (10)C11—C12—H12C109.5
O11—Ni2—O1590.69 (9)H12A—C12—H12C109.5
O16—Ni2—O15179.32 (11)H12B—C12—H12C109.5
O14—Ni2—N1383.28 (10)C22—C21—C10iii122.7 (9)
O11—Ni2—N13174.65 (11)C22—C21—N13118.9 (9)
O16—Ni2—N1390.76 (13)C10iii—C21—N13100.7 (6)
O15—Ni2—N1389.92 (12)C22—C21—H21A104.2
O14—Ni2—N14172.61 (10)C10iii—C21—H21A104.2
O11—Ni2—N1482.40 (10)N13—C21—H21A104.2
O16—Ni2—N1485.68 (12)C21—C22—H22A109.5
O15—Ni2—N1494.21 (12)C21—C22—H22B109.5
N13—Ni2—N14102.85 (12)H22A—C22—H22B109.5
Ce1—O1—H1117.0C21—C22—H22C109.5
Ce1—O3—H3120.0H22A—C22—H22C109.5
Ce1—O3—H2120.0H22B—C22—H22C109.5
Symmetry codes: (i) y+3, xy+4, z; (ii) x+y1, x+3, z; (iii) x+y, x+3, z; (iv) y+3, xy+3, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O17v0.851.932.758 (3)165
N11—H11B···O6vi0.922.383.158 (5)143
N12—H12D···O5iii0.922.173.086 (4)174
N13—H13B···O2vii0.922.663.284 (4)126
Symmetry codes: (iii) x+y, x+3, z; (v) x1, y, z; (vi) y+4, xy+4, z; (vii) x+y1/3, x+10/3, z+1/3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O17i0.851.932.758 (3)165.3
N11—H11B···O6ii0.922.383.158 (5)142.8
N12—H12D···O5iii0.922.173.086 (4)173.5
N13—H13B···O2iv0.922.663.284 (4)126.0
Symmetry codes: (i) x1, y, z; (ii) y+4, xy+4, z; (iii) x+y, x+3, z; (iv) x+y1/3, x+10/3, z+1/3.
 

Acknowledgements

This work was partially supported by the RFBR (project 13-03-00972 A).

References

First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIgarashi, S., Hoshino, Y., Masuda, Y. & Yukawa, Y. (2000). Inorg. Chem. 39, 2509–2515.  CSD CrossRef PubMed CAS Google Scholar
First citationPeristeraki, T., Samios, M., Siczek, M., Lis, T. & Milios, C. J. (2011). Inorg. Chem. 50, 5175–5185.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYukawa, Y., Aromi, G., Igarashi, S., Ribas, J., Zvyagin, S. A. & Krzystek, J. (2005). Angew. Chem. 117, 2033–2037.  CrossRef Google Scholar
First citationZhang, J.-J., Xiang, S.-C., Hu, S.-M., Xia, S.-Q., Fu, R.-B., Wu, X.-T., Li, Y.-M. & Zhang, H.-S. (2004). Polyhedron, 23, 2265–2272.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages m183-m184
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds