metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(μ-2-benzoyl­benzoato-κ2O:O′)bis­­[bis­­(2,2′-bi­pyridine-κ2N,N′)manganese(II)] bis­­(perchlorate)

aAnadolu University, Faculty of Sciences, Department of Chemistry, 26470 Eskişehir, Turkey
*Correspondence e-mail: ibrahimkani@anadolu.edu.tr

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina (Received 7 December 2015; accepted 9 December 2015; online 16 December 2015)

The title compound, [Mn2(C6H5COC6H4COO)2(C10H8N2)4](ClO4)2, comprises a centrosymmetric binuclear cation and two perchlorate anions. In the complex cation, two MnII atoms are bridged by two O atoms of two different 2-benzoyl­benzoate ligands, each MnII atom being further coordinated by two 2,2′-bi­pyridine (bipy) ligands in a distorted octa­hedral environment. Within the binuclear mol­ecule, the Mn⋯Mn separation is 4.513 (7) Å. Inter­molecular C—H⋯O and C—H⋯ π inter­actions link the mol­ecules into a three-dimensional network.

1. Related literature

For applications of inorganic–organic complexes, see: Burd et al. (2012[Burd, S. D., Ma, S., Perman, J. A., Sikora, B. J., Snurr, R. Q., Thallapally, P. K., Tian, J., Wojtas, L. & Zaworotko, M. J. (2012). J. Am. Chem. Soc. 134, 3663-3666.]); FitzGerald et al. (2013[FitzGerald, S. A., Pierce, C. J., Rowsell, J. L. C., Bloch, E. D. & Mason, J. A. (2013). J. Am. Chem. Soc. 135, 9458-9464.]); Huang et al. (2013[Huang, Y.-L., Gong, Y.-N., Jiang, L. & Lu, T.-B. (2013). Chem. Commun. 49, 1753-1755.]); Carrington et al. (2014[Carrington, E. J., Vitórica-Yrezábal, I. J. & Brammer, L. (2014). Acta Cryst. B70, 404-422.]); Wu et al. (2005[Wu, C.-D., Hu, A., Zhang, L. & Lin, W. (2005). J. Am. Chem. Soc. 127, 8940-8941.]); Lee et al. (2009[Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T. & Hupp, J. T. (2009). Chem. Soc. Rev. 38, 1450-1459.]); Li et al. (2014[Li, L., Matsuda, R., Tanaka, I., Sato, H., Kanoo, P., Jeon, H. J., Foo, M. L., Wakamiya, A., Murata, Y. & Kitagawa, S. (2014). J. Am. Chem. Soc. 136, 7543-7546.]); Zhou et al. (2013[Zhou, J.-M., Shi, W., Xu, N. & Cheng, P. (2013). Inorg. Chem. 52, 8082-8090.]); Wang et al. (2014[Wang, C., Liu, D., Xie, Z. & Lin, W. (2014). Inorg. Chem. 53, 1331-1338.]); Hagrman et al. (1999[Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638-2684.]); Ghosh & Bharadwaj (2004[Ghosh, S. K. & Bharadwaj, P. K. (2004). Inorg. Chem. 43, 2293-2298.]); Evans et al. (1999[Evans, O. R., Xiong, R., Wang, Z., Wong, G. K. & Lin, W. (1999). Angew. Chem. 111, 557-559.]); Maspoch et al. (2007[Maspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770-818.]); Kitagawa & Matsuda (2007[Kitagawa, S. & Matsuda, R. (2007). Coord. Chem. Rev. 251, 2490-2509.]). For manganese complexes with bipyridine, see: Lopes et al. (2011[Lopes, L. B., Corrêa, C. C. & Diniz, R. (2011). Acta Cryst. E67, m906-m907.]); Knight et al. (2010[Knight, J. C., Amoroso, A. J., Edwards, P. G., Prabaharan, R. & Singh, N. (2010). Dalton Trans. 39, 8925-8936.]); McCann et al. (1998[McCann, S., McCann, M., Casey, M. T., Jackman, M., Devereux, M. & McKee, V. (1998). Inorg. Chim. Acta, 279, 24-29.]); Lumme & Lindell (1988[Lumme, P. O. & Lindell, E. (1988). Acta Cryst. C44, 463-465.]); Li et al. (2002[Li, Z. Y., Xu, D. J., Nie, J. J., Wu, Z. Y., Wu, J. Y. & Chiang, M. (2002). J. Coord. Chem. 55, 1155-1160.], 2011[Li, K., Zhang, C. & Xu, W. (2011). Acta Cryst. E67, m1443-m1444.]); Wang et al. (2012[Wang, H., Wang, S. & Lang, Y. (2012). Acta Cryst. E68, m569.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Mn2(C14H9O3)2(C10H8N2)4](ClO4)2

  • Mr = 1383.94

  • Monoclinic, P 21 /n

  • a = 13.348 (4) Å

  • b = 17.136 (5) Å

  • c = 14.499 (4) Å

  • β = 111.321 (10)°

  • V = 3089.3 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 296 K

  • 0.27 × 0.23 × 0.12 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.857, Tmax = 0.935

  • 39502 measured reflections

  • 7799 independent reflections

  • 5603 reflections with I > 2σ(I)

  • Rint = 0.035

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.130

  • S = 1.06

  • 6892 reflections

  • 424 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O2 2.0949 (16)
Mn1—O1i 2.1260 (14)
Mn1—N3 2.2158 (17)
Mn1—N2 2.2281 (18)
Mn1—N1 2.2555 (18)
Mn1—N4 2.3037 (19)
Symmetry code: (i) -x+1, -y, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

Cg7 is the centroid of the C22–C27 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O5ii 0.93 2.65 3.420 (4) 141
C26—H26⋯O6iii 0.93 2.58 3.494 (4) 168
C17—H17⋯O4iv 0.93 2.46 3.304 (4) 152
C18—H18⋯O7iv 0.93 2.72 3.382 (5) 129
C33—H33⋯Cg7iv 0.93 2.93 3.793 (3) 146
Symmetry codes: (ii) -x+1, -y, -z+1; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL ( Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Chemical context top

The design of inorganic-organic supra­molecular complexes is of current inter­est in the fields of supra­molecular chemistry and crystal engineering. This inter­est stems from their potential applications as functional materials, such as in gas storage, separation (Burd et al., 2012; FitzGerald et al., 2013; Huang et al., 2013; Carrington et al., 2014), catalysis (Wu et al., 2005; Lee et al., 2009; Li et al., 2014), luminesans, optic, magnetism (Maspoch et al., 2007, Kitagawa &Matsuda 2007, Zhou et al., 2013; Wang et al., 2014), and their further potential medical value derived from their anti­viral and the inhibition of angiogenesis (Hagrman et al., 1999; Ghosh et al., 2004; Evans et al., 1999).

Structural commentary top

In this paper, we will report the synthesis and structure of a new bimetallic manganese complex, [Mn2(C6H5COC6H4COO)2(C10H8N2)4](ClO4)2]. The molecular structure of the complex is illustrated in Fig.1. In the centrosymmetric binuclear molecule the Mn(II) ion is coordinated by two O atoms from two different benzoyl benzoate ligands, four N atoms from two chelating bipy ligands, generating a distorted o­cta­hedral MnN4O2 coordination geometry. The cisoid bond angles fall in the region 72.8 (7)–101.5 (7)°, and transoid ones are 161.5 (7)°, and 172.9 (7)° exhibiting substantial deviations from an ideal o­cta­hedral geometry.

The Mn–O bond lentghs are 2.095 (2) Å and 2.126 (1) Å (Supplementary Table) The mean Mn—N(bipy) distance of 2.251 (2) Å and the bite angles N1—Mn1—N2 of 73.1 (7)° and N3—Mn1—N3 of 72.8 (4)° are close to the corresponding values observed in related manganese-bipy complexes (Lopes et al., 2011; Knight et al., 2010; McCann et al., 1998; Lumme & Lindell, 1988; Li et al., 2002, 2011; Wang et al., 2012). The dihedral angles between the rings of bipy ligands are -3.8 (3) ° (ligand containing N3 and N4) and -5.6 (3)° (ligand containing N1 and N2).

Supra­molecular features top

In the crystal structure binuclear species are assembled into a three-dimensional supra­molecular architecture by O—H···O, C—H···C hydrogen bonds and C—H··· π, and ππ inter­actions (Fig. 2, Table 2). The closest centroid-centroid distance of the N1,C1—C5 rings is 4.031 Å. The complex molecules are weakly linked by hydrogen bonds through the perchlorate ions to generate the three-dimensional supra­molecular structure.

Synthesis and crystallization top

Mn(ClO4)2.6H2O in methanol (0.076 mmol) was added slowly to a mixed solution of 2,2?-bi­pyridine (0.155 mmol) and benzoyl benzoic acid (0.080 mmol) in methanol (7 ml). After refluxing for 3 h, the mixture was filtered off while hot. The green color single crystals suitable for X-ray analysis were obtained by slow evaporation of the above filtrate at room temperature after a week.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Related literature top

For applications of inorganic–organic complexes, see: Burd et al. (2012); FitzGerald et al. (2013); Huang et al. (2013); Carrington et al. (2014); Wu et al. (2005); Lee et al. (2009); Li et al. (2014); Zhou et al. (2013); Wang et al. (2014); Hagrman et al. (1999); Ghosh & Bharadwaj (2004); Evans et al. (1999); Maspoch et al. (2007); Kitagawa & Matsuda (2007). For manganese–bipy complexes, see: Lopes et al. (2011); Knight et al. (2010); McCann et al. (1998); Lumme & Lindell (1988); Li et al. (2002, 2011); Wang et al. (2012).

Structure description top

The design of inorganic-organic supra­molecular complexes is of current inter­est in the fields of supra­molecular chemistry and crystal engineering. This inter­est stems from their potential applications as functional materials, such as in gas storage, separation (Burd et al., 2012; FitzGerald et al., 2013; Huang et al., 2013; Carrington et al., 2014), catalysis (Wu et al., 2005; Lee et al., 2009; Li et al., 2014), luminesans, optic, magnetism (Maspoch et al., 2007, Kitagawa &Matsuda 2007, Zhou et al., 2013; Wang et al., 2014), and their further potential medical value derived from their anti­viral and the inhibition of angiogenesis (Hagrman et al., 1999; Ghosh et al., 2004; Evans et al., 1999).

In this paper, we will report the synthesis and structure of a new bimetallic manganese complex, [Mn2(C6H5COC6H4COO)2(C10H8N2)4](ClO4)2]. The molecular structure of the complex is illustrated in Fig.1. In the centrosymmetric binuclear molecule the Mn(II) ion is coordinated by two O atoms from two different benzoyl benzoate ligands, four N atoms from two chelating bipy ligands, generating a distorted o­cta­hedral MnN4O2 coordination geometry. The cisoid bond angles fall in the region 72.8 (7)–101.5 (7)°, and transoid ones are 161.5 (7)°, and 172.9 (7)° exhibiting substantial deviations from an ideal o­cta­hedral geometry.

The Mn–O bond lentghs are 2.095 (2) Å and 2.126 (1) Å (Supplementary Table) The mean Mn—N(bipy) distance of 2.251 (2) Å and the bite angles N1—Mn1—N2 of 73.1 (7)° and N3—Mn1—N3 of 72.8 (4)° are close to the corresponding values observed in related manganese-bipy complexes (Lopes et al., 2011; Knight et al., 2010; McCann et al., 1998; Lumme & Lindell, 1988; Li et al., 2002, 2011; Wang et al., 2012). The dihedral angles between the rings of bipy ligands are -3.8 (3) ° (ligand containing N3 and N4) and -5.6 (3)° (ligand containing N1 and N2).

In the crystal structure binuclear species are assembled into a three-dimensional supra­molecular architecture by O—H···O, C—H···C hydrogen bonds and C—H··· π, and ππ inter­actions (Fig. 2, Table 2). The closest centroid-centroid distance of the N1,C1—C5 rings is 4.031 Å. The complex molecules are weakly linked by hydrogen bonds through the perchlorate ions to generate the three-dimensional supra­molecular structure.

For applications of inorganic–organic complexes, see: Burd et al. (2012); FitzGerald et al. (2013); Huang et al. (2013); Carrington et al. (2014); Wu et al. (2005); Lee et al. (2009); Li et al. (2014); Zhou et al. (2013); Wang et al. (2014); Hagrman et al. (1999); Ghosh & Bharadwaj (2004); Evans et al. (1999); Maspoch et al. (2007); Kitagawa & Matsuda (2007). For manganese–bipy complexes, see: Lopes et al. (2011); Knight et al. (2010); McCann et al. (1998); Lumme & Lindell (1988); Li et al. (2002, 2011); Wang et al. (2012).

Synthesis and crystallization top

Mn(ClO4)2.6H2O in methanol (0.076 mmol) was added slowly to a mixed solution of 2,2?-bi­pyridine (0.155 mmol) and benzoyl benzoic acid (0.080 mmol) in methanol (7 ml). After refluxing for 3 h, the mixture was filtered off while hot. The green color single crystals suitable for X-ray analysis were obtained by slow evaporation of the above filtrate at room temperature after a week.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL( Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, (displacement ellipsoids are shown at 50% probability levels). Symmetry code: (i) -x + 1, -y, -z + 2.
[Figure 2] Fig. 2. Packing view drawn along the c axis, showing O—H···O, C—H···C hydrogen bonds and C—H··· π, and ππ stacking interactions drawn as dotted lines.
Bis(µ-2-benzoylbenzoato-κ2O:O')bis[bis(2,2'-bipyridine-κ2N,N')manganese(II)] bis(perchlorate) top
Crystal data top
[Mn2(C14H9O3)2(C10H8N2)4](ClO4)2F(000) = 1420
Mr = 1383.94Dx = 1.488 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.348 (4) ÅCell parameters from 8617 reflections
b = 17.136 (5) Åθ = 2.5–28.2°
c = 14.499 (4) ŵ = 0.57 mm1
β = 111.321 (10)°T = 296 K
V = 3089.3 (16) Å3Square, yellow
Z = 20.27 × 0.23 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
7799 independent reflections
Radiation source: fine-focus sealed tube5603 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
phi and ω scansθmax = 28.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1617
Tmin = 0.857, Tmax = 0.935k = 2219
39502 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.073P)2 + 1.2301P]
where P = (Fo2 + 2Fc2)/3
6892 reflections(Δ/σ)max = 0.002
424 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Mn2(C14H9O3)2(C10H8N2)4](ClO4)2V = 3089.3 (16) Å3
Mr = 1383.94Z = 2
Monoclinic, P21/nMo Kα radiation
a = 13.348 (4) ŵ = 0.57 mm1
b = 17.136 (5) ÅT = 296 K
c = 14.499 (4) Å0.27 × 0.23 × 0.12 mm
β = 111.321 (10)°
Data collection top
Bruker APEXII CCD
diffractometer
7799 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
5603 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 0.935Rint = 0.035
39502 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.06Δρmax = 0.52 e Å3
6892 reflectionsΔρmin = 0.53 e Å3
424 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.33958 (2)0.022476 (15)1.01401 (2)0.03203 (11)
C290.54535 (17)0.19533 (12)0.76826 (15)0.0413 (5)
Cl20.81581 (7)0.02743 (3)0.63743 (5)0.0627 (2)
O10.58328 (12)0.08588 (7)0.93327 (10)0.0384 (3)
O30.72438 (13)0.22041 (12)0.87465 (14)0.0610 (5)
O20.47457 (14)0.08637 (9)1.01711 (15)0.0590 (5)
O60.8226 (2)0.04173 (14)0.6922 (2)0.0967 (8)
O50.8838 (3)0.02323 (14)0.5845 (3)0.1155 (11)
O40.8379 (3)0.09348 (15)0.69834 (19)0.1176 (11)
N10.18370 (14)0.03974 (10)0.99225 (14)0.0414 (4)
N20.27238 (15)0.01610 (10)0.85656 (13)0.0398 (4)
N30.35547 (14)0.07990 (10)1.15558 (13)0.0400 (4)
N40.24957 (16)0.13976 (10)0.97526 (14)0.0472 (4)
O70.7095 (3)0.0362 (2)0.5656 (3)0.1379 (13)
C50.13050 (17)0.06874 (12)0.90196 (17)0.0437 (5)
C40.0383 (2)0.11325 (18)0.8835 (3)0.0711 (8)
H40.00080.13280.82050.085*
C30.0035 (2)0.1279 (2)0.9606 (3)0.0837 (10)
H30.05760.15810.94990.100*
C20.0580 (2)0.09852 (18)1.0515 (3)0.0691 (8)
H20.03540.10811.10390.083*
C10.1471 (2)0.05439 (15)1.0643 (2)0.0532 (6)
H10.18410.03351.12670.064*
C60.17701 (17)0.05233 (12)0.82610 (16)0.0421 (5)
C100.3191 (2)0.00160 (14)0.79121 (17)0.0498 (5)
H100.38550.02350.81310.060*
C90.2740 (3)0.02187 (15)0.69354 (18)0.0609 (7)
H90.30910.01160.64990.073*
C80.1752 (3)0.05798 (18)0.6619 (2)0.0698 (8)
H80.14170.07190.59570.084*
C70.1266 (2)0.07322 (16)0.72797 (19)0.0632 (7)
H70.05980.09760.70710.076*
C210.53450 (15)0.11944 (10)0.98092 (14)0.0343 (4)
C220.55033 (15)0.20527 (10)0.99784 (14)0.0332 (4)
C270.59429 (15)0.25089 (10)0.94292 (14)0.0345 (4)
C280.62929 (17)0.21976 (11)0.86348 (16)0.0405 (5)
C300.5765 (2)0.15888 (15)0.69870 (18)0.0555 (6)
H300.64900.14920.71180.067*
C310.5003 (3)0.1367 (2)0.6095 (2)0.0731 (8)
H310.52150.11170.56270.088*
C320.3929 (3)0.1511 (2)0.5893 (2)0.0808 (9)
H320.34190.13540.52910.097*
C330.3611 (2)0.1883 (2)0.6571 (2)0.0726 (8)
H330.28870.19930.64260.087*
C340.4369 (2)0.20974 (15)0.74772 (17)0.0528 (6)
H340.41520.23380.79490.063*
C260.60483 (18)0.33052 (12)0.96073 (18)0.0482 (5)
H260.63450.36160.92460.058*
C250.5722 (2)0.36409 (12)1.0307 (2)0.0574 (7)
H250.57790.41781.04030.069*
C240.5313 (2)0.31917 (14)1.0867 (2)0.0575 (6)
H240.51070.34181.13530.069*
C230.52106 (18)0.23995 (13)1.07001 (17)0.0458 (5)
H230.49380.20921.10830.055*
C150.32092 (17)0.15410 (12)1.15152 (16)0.0414 (5)
C160.26552 (17)0.18769 (12)1.05165 (17)0.0429 (5)
C200.2014 (3)0.16810 (16)0.8851 (2)0.0727 (8)
H200.18940.13460.83170.087*
C190.1679 (3)0.24425 (19)0.8656 (2)0.0846 (10)
H190.13450.26190.80090.102*
C180.1850 (3)0.29259 (16)0.9434 (2)0.0740 (8)
H180.16390.34460.93290.089*
C170.2335 (2)0.26480 (14)1.0375 (2)0.0582 (6)
H170.24470.29751.09160.070*
C140.3385 (2)0.19644 (15)1.23753 (19)0.0583 (6)
H140.31420.24761.23440.070*
C130.3920 (3)0.16196 (18)1.3268 (2)0.0692 (8)
H130.40370.18951.38500.083*
C120.4285 (3)0.08675 (17)1.33073 (19)0.0643 (7)
H120.46600.06271.39100.077*
C110.4078 (2)0.04829 (14)1.24293 (17)0.0519 (5)
H110.43190.00281.24500.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0380 (2)0.02841 (15)0.03140 (17)0.00411 (10)0.01470 (14)0.00338 (10)
C290.0429 (12)0.0437 (10)0.0358 (10)0.0035 (9)0.0128 (9)0.0106 (8)
Cl20.0910 (5)0.0447 (3)0.0708 (4)0.0073 (3)0.0514 (4)0.0037 (3)
O10.0505 (8)0.0298 (6)0.0389 (7)0.0006 (5)0.0210 (7)0.0029 (5)
O30.0359 (9)0.0848 (12)0.0638 (11)0.0114 (8)0.0201 (8)0.0015 (9)
O20.0678 (11)0.0397 (8)0.0887 (13)0.0165 (7)0.0512 (10)0.0046 (8)
O60.128 (2)0.0668 (13)0.115 (2)0.0097 (13)0.0686 (18)0.0332 (13)
O50.175 (3)0.0781 (16)0.152 (3)0.0089 (16)0.129 (2)0.0082 (15)
O40.210 (3)0.0697 (14)0.0783 (16)0.0250 (18)0.0579 (19)0.0091 (12)
N10.0359 (9)0.0427 (9)0.0473 (10)0.0031 (7)0.0169 (8)0.0002 (7)
N20.0420 (10)0.0413 (9)0.0346 (9)0.0044 (7)0.0120 (8)0.0055 (7)
N30.0481 (10)0.0393 (8)0.0378 (9)0.0056 (7)0.0218 (8)0.0049 (7)
N40.0536 (11)0.0409 (9)0.0429 (10)0.0056 (8)0.0126 (9)0.0018 (7)
O70.120 (3)0.123 (3)0.142 (3)0.0136 (19)0.013 (2)0.034 (2)
C50.0329 (11)0.0396 (10)0.0555 (13)0.0022 (8)0.0125 (10)0.0052 (9)
C40.0506 (16)0.0759 (18)0.086 (2)0.0242 (13)0.0244 (15)0.0266 (16)
C30.0553 (17)0.087 (2)0.122 (3)0.0286 (16)0.0489 (19)0.017 (2)
C20.0595 (17)0.0725 (17)0.090 (2)0.0093 (14)0.0452 (16)0.0057 (16)
C10.0487 (14)0.0593 (13)0.0579 (14)0.0031 (11)0.0270 (12)0.0045 (11)
C60.0390 (12)0.0381 (9)0.0424 (11)0.0001 (8)0.0070 (9)0.0054 (8)
C100.0581 (15)0.0540 (12)0.0395 (12)0.0075 (11)0.0201 (11)0.0048 (10)
C90.085 (2)0.0630 (15)0.0367 (12)0.0011 (13)0.0250 (13)0.0026 (10)
C80.085 (2)0.0727 (17)0.0381 (13)0.0082 (15)0.0055 (14)0.0109 (12)
C70.0603 (17)0.0682 (16)0.0460 (14)0.0132 (13)0.0015 (12)0.0122 (12)
C210.0346 (10)0.0295 (8)0.0374 (10)0.0036 (7)0.0114 (8)0.0032 (7)
C220.0283 (10)0.0300 (8)0.0379 (10)0.0024 (7)0.0079 (8)0.0013 (7)
C270.0266 (10)0.0309 (8)0.0380 (10)0.0040 (7)0.0021 (8)0.0051 (7)
C280.0374 (12)0.0392 (10)0.0447 (11)0.0051 (8)0.0148 (9)0.0096 (8)
C300.0577 (15)0.0670 (15)0.0441 (13)0.0021 (12)0.0212 (12)0.0096 (11)
C310.087 (2)0.092 (2)0.0400 (14)0.0023 (17)0.0229 (14)0.0025 (13)
C320.076 (2)0.115 (3)0.0374 (14)0.0142 (19)0.0036 (14)0.0023 (15)
C330.0487 (16)0.108 (2)0.0479 (15)0.0024 (15)0.0013 (13)0.0014 (15)
C340.0447 (14)0.0673 (14)0.0421 (12)0.0022 (11)0.0107 (11)0.0028 (10)
C260.0432 (13)0.0321 (9)0.0561 (13)0.0058 (8)0.0024 (11)0.0081 (9)
C250.0527 (14)0.0301 (9)0.0729 (17)0.0001 (9)0.0031 (13)0.0062 (10)
C240.0546 (15)0.0498 (12)0.0620 (15)0.0069 (11)0.0140 (13)0.0188 (11)
C230.0443 (12)0.0448 (11)0.0495 (12)0.0028 (9)0.0185 (10)0.0051 (9)
C150.0415 (12)0.0402 (10)0.0489 (12)0.0055 (8)0.0240 (10)0.0084 (8)
C160.0404 (12)0.0387 (10)0.0523 (12)0.0016 (8)0.0202 (10)0.0053 (9)
C200.094 (2)0.0569 (15)0.0504 (15)0.0180 (14)0.0065 (15)0.0008 (12)
C190.103 (3)0.0684 (18)0.0653 (19)0.0278 (17)0.0095 (18)0.0171 (15)
C180.084 (2)0.0457 (13)0.084 (2)0.0187 (13)0.0202 (17)0.0108 (13)
C170.0617 (16)0.0423 (11)0.0729 (17)0.0050 (10)0.0272 (14)0.0063 (11)
C140.0686 (17)0.0554 (13)0.0563 (15)0.0002 (12)0.0292 (13)0.0174 (11)
C130.089 (2)0.0789 (18)0.0464 (14)0.0084 (15)0.0320 (14)0.0218 (13)
C120.083 (2)0.0711 (17)0.0387 (13)0.0101 (14)0.0221 (13)0.0029 (11)
C110.0677 (16)0.0490 (11)0.0409 (12)0.0048 (11)0.0221 (11)0.0031 (9)
Geometric parameters (Å, º) top
Mn1—O22.0949 (16)C8—H80.9300
Mn1—O1i2.1260 (14)C7—H70.9300
Mn1—N32.2158 (17)C21—C221.493 (2)
Mn1—N22.2281 (18)C22—C231.378 (3)
Mn1—N12.2555 (18)C22—C271.389 (3)
Mn1—N42.3037 (19)C27—C261.386 (3)
C29—C301.373 (3)C27—C281.490 (3)
C29—C341.390 (3)C30—C311.377 (4)
C29—C281.487 (3)C30—H300.9300
Cl2—O51.386 (3)C31—C321.377 (5)
Cl2—O41.400 (3)C31—H310.9300
Cl2—O61.411 (2)C32—C331.364 (5)
Cl2—O71.430 (3)C32—H320.9300
O1—C211.249 (2)C33—C341.385 (4)
O1—Mn1i2.1260 (14)C33—H330.9300
O3—C281.220 (3)C34—H340.9300
O2—C211.242 (2)C26—C251.368 (4)
N1—C11.329 (3)C26—H260.9300
N1—C51.338 (3)C25—C241.368 (4)
N2—C101.334 (3)C25—H250.9300
N2—C61.339 (3)C24—C231.377 (3)
N3—C111.320 (3)C24—H240.9300
N3—C151.346 (3)C23—H230.9300
N4—C201.322 (3)C15—C141.387 (3)
N4—C161.332 (3)C15—C161.482 (3)
C5—C41.388 (3)C16—C171.381 (3)
C5—C61.473 (3)C20—C191.375 (4)
C4—C31.381 (5)C20—H200.9300
C4—H40.9300C19—C181.351 (5)
C3—C21.349 (5)C19—H190.9300
C3—H30.9300C18—C171.366 (4)
C2—C11.363 (4)C18—H180.9300
C2—H20.9300C17—H170.9300
C1—H10.9300C14—C131.364 (4)
C6—C71.382 (3)C14—H140.9300
C10—C91.367 (3)C13—C121.371 (4)
C10—H100.9300C13—H130.9300
C9—C81.376 (4)C12—C111.370 (3)
C9—H90.9300C12—H120.9300
C8—C71.364 (4)C11—H110.9300
O2—Mn1—O1i98.53 (7)O2—C21—C22117.04 (18)
O2—Mn1—N387.49 (7)O1—C21—C22118.25 (16)
O1i—Mn1—N3100.61 (6)C23—C22—C27119.23 (18)
O2—Mn1—N2101.52 (7)C23—C22—C21119.16 (18)
O1i—Mn1—N294.08 (6)C27—C22—C21121.61 (18)
N3—Mn1—N2161.48 (7)C26—C27—C22118.8 (2)
O2—Mn1—N1172.97 (7)C26—C27—C28117.20 (19)
O1i—Mn1—N186.51 (6)C22—C27—C28123.93 (16)
N3—Mn1—N196.45 (7)O3—C28—C29121.5 (2)
N2—Mn1—N173.10 (7)O3—C28—C27119.8 (2)
O2—Mn1—N485.27 (7)C29—C28—C27118.44 (18)
O1i—Mn1—N4172.33 (6)C29—C30—C31119.9 (3)
N3—Mn1—N472.80 (7)C29—C30—H30120.1
N2—Mn1—N491.66 (7)C31—C30—H30120.1
N1—Mn1—N490.31 (7)C30—C31—C32120.5 (3)
C30—C29—C34119.6 (2)C30—C31—H31119.8
C30—C29—C28118.9 (2)C32—C31—H31119.8
C34—C29—C28121.6 (2)C33—C32—C31120.2 (3)
O5—Cl2—O4111.14 (19)C33—C32—H32119.9
O5—Cl2—O6110.27 (16)C31—C32—H32119.9
O4—Cl2—O6111.62 (18)C32—C33—C34119.8 (3)
O5—Cl2—O7106.2 (2)C32—C33—H33120.1
O4—Cl2—O7107.5 (2)C34—C33—H33120.1
O6—Cl2—O7110.0 (2)C33—C34—C29120.1 (2)
C21—O1—Mn1i119.02 (12)C33—C34—H34120.0
C21—O2—Mn1155.61 (17)C29—C34—H34120.0
C1—N1—C5118.9 (2)C25—C26—C27120.9 (2)
C1—N1—Mn1124.31 (16)C25—C26—H26119.5
C5—N1—Mn1116.55 (14)C27—C26—H26119.5
C10—N2—C6119.11 (19)C24—C25—C26120.4 (2)
C10—N2—Mn1123.68 (15)C24—C25—H25119.8
C6—N2—Mn1117.12 (14)C26—C25—H25119.8
C11—N3—C15118.87 (19)C25—C24—C23119.1 (2)
C11—N3—Mn1123.07 (15)C25—C24—H24120.4
C15—N3—Mn1117.58 (14)C23—C24—H24120.4
C20—N4—C16118.0 (2)C24—C23—C22121.4 (2)
C20—N4—Mn1125.78 (17)C24—C23—H23119.3
C16—N4—Mn1115.06 (14)C22—C23—H23119.3
N1—C5—C4120.7 (2)N3—C15—C14120.8 (2)
N1—C5—C6116.23 (18)N3—C15—C16116.79 (18)
C4—C5—C6123.0 (2)C14—C15—C16122.4 (2)
C3—C4—C5118.6 (3)N4—C16—C17121.3 (2)
C3—C4—H4120.7N4—C16—C15116.42 (18)
C5—C4—H4120.7C17—C16—C15122.3 (2)
C2—C3—C4120.1 (3)N4—C20—C19123.8 (3)
C2—C3—H3119.9N4—C20—H20118.1
C4—C3—H3119.9C19—C20—H20118.1
C3—C2—C1118.3 (3)C18—C19—C20117.8 (3)
C3—C2—H2120.8C18—C19—H19121.1
C1—C2—H2120.8C20—C19—H19121.1
N1—C1—C2123.3 (3)C19—C18—C17119.7 (2)
N1—C1—H1118.4C19—C18—H18120.1
C2—C1—H1118.4C17—C18—H18120.1
N2—C6—C7120.6 (2)C18—C17—C16119.3 (2)
N2—C6—C5116.77 (19)C18—C17—H17120.3
C7—C6—C5122.7 (2)C16—C17—H17120.3
N2—C10—C9123.0 (2)C13—C14—C15119.0 (2)
N2—C10—H10118.5C13—C14—H14120.5
C9—C10—H10118.5C15—C14—H14120.5
C10—C9—C8117.9 (3)C14—C13—C12120.1 (2)
C10—C9—H9121.1C14—C13—H13119.9
C8—C9—H9121.1C12—C13—H13119.9
C7—C8—C9119.7 (2)C11—C12—C13117.7 (3)
C7—C8—H8120.2C11—C12—H12121.2
C9—C8—H8120.2C13—C12—H12121.2
C8—C7—C6119.7 (3)N3—C11—C12123.5 (2)
C8—C7—H7120.1N3—C11—H11118.2
C6—C7—H7120.1C12—C11—H11118.2
O2—C21—O1124.70 (17)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
Cg7 is the centroid of the C22–C27 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···O5ii0.932.653.420 (4)141
C26—H26···O6iii0.932.583.494 (4)168
C17—H17···O4iv0.932.463.304 (4)152
C18—H18···O7iv0.932.723.382 (5)129
C33—H33···Cg7iv0.932.933.793 (3)146
Symmetry codes: (ii) x+1, y, z+1; (iii) x+3/2, y+1/2, z+3/2; (iv) x1/2, y+1/2, z+1/2.
Selected bond lengths (Å) top
Mn1—O22.0949 (16)Mn1—N22.2281 (18)
Mn1—O1i2.1260 (14)Mn1—N12.2555 (18)
Mn1—N32.2158 (17)Mn1—N42.3037 (19)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
Cg7 is the centroid of the C22–C27 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···O5ii0.932.653.420 (4)141.2
C26—H26···O6iii0.932.583.494 (4)168.3
C17—H17···O4iv0.932.463.304 (4)151.5
C18—H18···O7iv0.932.723.382 (5)128.9
C33—H33···Cg7iv0.932.933.793 (3)146
Symmetry codes: (ii) x+1, y, z+1; (iii) x+3/2, y+1/2, z+3/2; (iv) x1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the X-ray diffractometer. This work was supported financially by Anadolu University Research Fund (grant No. 1505 F249).

References

First citationBruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurd, S. D., Ma, S., Perman, J. A., Sikora, B. J., Snurr, R. Q., Thallapally, P. K., Tian, J., Wojtas, L. & Zaworotko, M. J. (2012). J. Am. Chem. Soc. 134, 3663–3666.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCarrington, E. J., Vitórica-Yrezábal, I. J. & Brammer, L. (2014). Acta Cryst. B70, 404–422.  Web of Science CrossRef IUCr Journals Google Scholar
First citationEvans, O. R., Xiong, R., Wang, Z., Wong, G. K. & Lin, W. (1999). Angew. Chem. 111, 557–559.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFitzGerald, S. A., Pierce, C. J., Rowsell, J. L. C., Bloch, E. D. & Mason, J. A. (2013). J. Am. Chem. Soc. 135, 9458–9464.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGhosh, S. K. & Bharadwaj, P. K. (2004). Inorg. Chem. 43, 2293–2298.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638–2684.  CrossRef Google Scholar
First citationHuang, Y.-L., Gong, Y.-N., Jiang, L. & Lu, T.-B. (2013). Chem. Commun. 49, 1753–1755.  Web of Science CSD CrossRef CAS Google Scholar
First citationKitagawa, S. & Matsuda, R. (2007). Coord. Chem. Rev. 251, 2490–2509.  Web of Science CrossRef CAS Google Scholar
First citationKnight, J. C., Amoroso, A. J., Edwards, P. G., Prabaharan, R. & Singh, N. (2010). Dalton Trans. 39, 8925–8936.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T. & Hupp, J. T. (2009). Chem. Soc. Rev. 38, 1450–1459.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, L., Matsuda, R., Tanaka, I., Sato, H., Kanoo, P., Jeon, H. J., Foo, M. L., Wakamiya, A., Murata, Y. & Kitagawa, S. (2014). J. Am. Chem. Soc. 136, 7543–7546.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLi, Z. Y., Xu, D. J., Nie, J. J., Wu, Z. Y., Wu, J. Y. & Chiang, M. (2002). J. Coord. Chem. 55, 1155–1160.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, K., Zhang, C. & Xu, W. (2011). Acta Cryst. E67, m1443–m1444.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLopes, L. B., Corrêa, C. C. & Diniz, R. (2011). Acta Cryst. E67, m906–m907.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLumme, P. O. & Lindell, E. (1988). Acta Cryst. C44, 463–465.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMaspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770–818.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMcCann, S., McCann, M., Casey, M. T., Jackman, M., Devereux, M. & McKee, V. (1998). Inorg. Chim. Acta, 279, 24–29.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C., Liu, D., Xie, Z. & Lin, W. (2014). Inorg. Chem. 53, 1331–1338.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWang, H., Wang, S. & Lang, Y. (2012). Acta Cryst. E68, m569.  CSD CrossRef IUCr Journals Google Scholar
First citationWu, C.-D., Hu, A., Zhang, L. & Lin, W. (2005). J. Am. Chem. Soc. 127, 8940–8941.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhou, J.-M., Shi, W., Xu, N. & Cheng, P. (2013). Inorg. Chem. 52, 8082–8090.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds