organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ethyl 5-[3-(di­methyl­amino)­acrylo­yl]-2-{[(di­methyl­amino)­methyl­­idene]­amino}-4-methylthio­phene-3-carb­­oxy­late

aDepartment of Studies in Chemistry, Central College Campus, Bangalore University, Bangalore 560 001, Karnataka, India
*Correspondence e-mail: noorsb@rediffmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 20 August 2015; accepted 7 October 2015; online 4 November 2015)

In the title compound, C16H23N3O3S, the dihedral angles between the thio­phene ring and the almost planar di­methyl­amino-methyl­ene­amino (r.m.s. deviation = 0.005 Å) and di­methyl­amino-acryloyl (r.m.s. deviation = 0.033 Å) substituents are 6.99 (8) and 6.69 (7)°, respectively. The ester CO2 group subtends a dihedral angle of 44.92 (18)° with the thio­phene ring. An intra­molecular C—H⋯O hydrogen bond generates an S(6) ring. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R22(14) loops. In addition, a weak C—H⋯π inter­action is observed.

1. Related literature

For the biological activitivity of thio­phene derivatives, see: Rizwan et al. (2014[Rizwan, K., Zubair, M., Rasool, N., Ali, S., Zahoor, A. F., Rana, U. A., Khan, S. U., Shahid, M., Zia-Ul-Haq, M. & Jaafar, H. Z. (2014). Chem. Cent. J. 8, 74.]); Mishra et al. (2011[Mishra, R., Jha, K. K., Kumar, S. & Tomer, S. (2011). Pharma Chem. 3, 38-54.]); Sabnis et al. (1999[Sabnis, R. W., Rangnekar, D. W. & Sonawane, N. D. (1999). J. Heterocycl. Chem. 36, 333-345.]). Mabkhot et al. (2013[Mabkhot, Y. N., Barakat, A., Al-Majid, A. & Choudhary, M. I. (2013). Int. J. Mol. Sci. 14, 5712-5722.]). For synthetic background, see: Gewald et al. (1966[Gewald, K., Schinke, E. & Böttcher, H. (1966). Chem. Ber. 99, 94-100.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H23N3O3S

  • Mr = 337.43

  • Triclinic, [P \overline 1]

  • a = 7.6954 (5) Å

  • b = 8.1799 (5) Å

  • c = 13.9626 (9) Å

  • α = 95.928 (2)°

  • β = 103.685 (2)°

  • γ = 90.137 (2)°

  • V = 849.07 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.17 × 0.16 × 0.15 mm

2.2. Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.967

  • 5876 measured reflections

  • 2991 independent reflections

  • 2646 reflections with I > 2σ(I)

  • Rint = 0.016

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.089

  • S = 1.02

  • 2991 reflections

  • 214 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2/C3/C4/C5/S1 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯O1 0.98 2.31 3.054 (1) 132
C16—H16C⋯O3i 0.98 2.35 3.310 (2) 168
C16—H16BCgii 0.98 2.74 3.566 (2) 142
Symmetry codes: (i) -x-1, -y+1, -z+1; (ii) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Sulfur containing heterocycles are seen as the center of activity due to their widespread use in several important medicinal compounds. However, it is seen that the success of thiophene as an important moiety of medicinal agents led to the introduction of new therapeutic drugs. Substituted thiophene derivatives are well known for their chemotherapeutic applications (Mabkhot et al., 2013; Mishra et al., 2011). Many thiophene based heterocyclic compounds have shown versatile pharmacological activities such as antimicrobial, antiamoebic, antiparasitic, anticancer, diabetes mellitus, analgesic, antidepressant and antiallergic. In addition, the cholesterol inhibition activity and as antagonist against many hormones releasing receptors has also been reported (Rizwan et al., 2014). 2-Aminothiophenes attract special attention because of their applications in pharmaceuticals, agriculture, pesticides and dyes (Sabnis et al., 1999). The most convergent and well established classical approach for the preparation of 2-aminothiophenes is Gewald's method (Gewald et al., 1966). Herein, we report the structure of the title compound (I).

Related literature top

For the biological activitivity of thiophene derivatives, see: Rizwan et al. (2014); Mishra et al. (2011); Sabnis et al. (1999). Mabkhot et al. (2013). For synthetic background, see: Gewald et al. (1966).

Experimental top

A mixture of ethyl 5-acetyl-2-amino-4-methyl-thiophene-3-carboxylate (10 mmol) and DMF—DMA (5 ml) was heated under reflux for 2 h. To this add ethanol and kept in room temperature to give a solid product (title compound) that was collected by filtration. The compound was recrystallized by slow evaporation from ethanol, yielding colourless blocks.

Refinement top

The H atoms were placed at calculated positions in the riding-model approximation with C—H = 0.96° A, 0.97 ° A and 0.93 ° A for methyl, methylene and methyne H-atoms respectively, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for other hydrogen atoms.

Structure description top

Sulfur containing heterocycles are seen as the center of activity due to their widespread use in several important medicinal compounds. However, it is seen that the success of thiophene as an important moiety of medicinal agents led to the introduction of new therapeutic drugs. Substituted thiophene derivatives are well known for their chemotherapeutic applications (Mabkhot et al., 2013; Mishra et al., 2011). Many thiophene based heterocyclic compounds have shown versatile pharmacological activities such as antimicrobial, antiamoebic, antiparasitic, anticancer, diabetes mellitus, analgesic, antidepressant and antiallergic. In addition, the cholesterol inhibition activity and as antagonist against many hormones releasing receptors has also been reported (Rizwan et al., 2014). 2-Aminothiophenes attract special attention because of their applications in pharmaceuticals, agriculture, pesticides and dyes (Sabnis et al., 1999). The most convergent and well established classical approach for the preparation of 2-aminothiophenes is Gewald's method (Gewald et al., 1966). Herein, we report the structure of the title compound (I).

For the biological activitivity of thiophene derivatives, see: Rizwan et al. (2014); Mishra et al. (2011); Sabnis et al. (1999). Mabkhot et al. (2013). For synthetic background, see: Gewald et al. (1966).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Unit cell packing of the title compound showing intermolecular C—H···O interactions with dotted lines. H-atoms not involved in hydrogen bonding have been excluded.
[Figure 3] Fig. 3. Unit-cell packing depicting the intermolecular C—H···π interactions with dotted lines.
Ethyl 5-[3-(dimethylamino)acryloyl]-2-{[(dimethylamino)methylidene]amino}-4-methyl-thiophene-3-carboxylate top
Crystal data top
C16H23N3O3SZ = 2
Mr = 337.43F(000) = 360
Triclinic, P1Dx = 1.320 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6954 (5) ÅCell parameters from 2991 reflections
b = 8.1799 (5) Åθ = 2.5–25.0°
c = 13.9626 (9) ŵ = 0.21 mm1
α = 95.928 (2)°T = 100 K
β = 103.685 (2)°Block, colorless
γ = 90.137 (2)°0.17 × 0.16 × 0.15 mm
V = 849.07 (9) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
2991 independent reflections
Radiation source: fine-focus sealed tube2646 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 98
Tmin = 0.963, Tmax = 0.967k = 99
5876 measured reflectionsl = 1116
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.3093P]
where P = (Fo2 + 2Fc2)/3
2991 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C16H23N3O3Sγ = 90.137 (2)°
Mr = 337.43V = 849.07 (9) Å3
Triclinic, P1Z = 2
a = 7.6954 (5) ÅMo Kα radiation
b = 8.1799 (5) ŵ = 0.21 mm1
c = 13.9626 (9) ÅT = 100 K
α = 95.928 (2)°0.17 × 0.16 × 0.15 mm
β = 103.685 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2991 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2646 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.967Rint = 0.016
5876 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.02Δρmax = 0.27 e Å3
2991 reflectionsΔρmin = 0.19 e Å3
214 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.02778 (5)0.86621 (4)0.39020 (3)0.01529 (13)
O10.26349 (16)0.82247 (14)0.03518 (8)0.0269 (3)
O20.15686 (14)1.07646 (13)0.09662 (7)0.0181 (3)
O30.41534 (15)0.62783 (15)0.39383 (8)0.0255 (3)
N10.15977 (16)1.01180 (15)0.25146 (9)0.0150 (3)
N20.44236 (16)1.13376 (16)0.31336 (9)0.0172 (3)
N30.10460 (16)0.56379 (15)0.67393 (9)0.0162 (3)
C10.2971 (2)1.05575 (18)0.32371 (11)0.0157 (3)
H10.29381.03060.38820.019*
C20.0200 (2)0.93094 (17)0.27440 (11)0.0140 (3)
C30.14156 (19)0.88099 (18)0.20962 (11)0.0142 (3)
C40.2563 (2)0.78787 (18)0.25248 (11)0.0147 (3)
C50.18389 (19)0.77234 (18)0.35108 (11)0.0147 (3)
C60.4627 (2)1.1762 (2)0.21829 (12)0.0213 (4)
H6A0.55721.11070.19830.032*
H6B0.49501.29340.22380.032*
H6C0.34971.15330.16850.032*
C70.5897 (2)1.1801 (2)0.39906 (12)0.0242 (4)
H7A0.55671.15320.45930.036*
H7B0.61531.29860.40420.036*
H7C0.69631.11980.39130.036*
C80.19266 (19)0.91884 (19)0.10487 (11)0.0164 (3)
C90.2086 (2)1.1249 (2)0.00331 (11)0.0221 (4)
H9A0.33961.11060.02950.027*
H9B0.14851.05630.04780.027*
C100.1529 (3)1.3026 (2)0.00224 (13)0.0306 (4)
H10A0.21591.36960.04490.046*
H10B0.18301.33840.06440.046*
H10C0.02361.31550.02990.046*
C110.4355 (2)0.7165 (2)0.19573 (12)0.0197 (3)
H11A0.45070.60550.21350.030*
H11B0.44280.71150.12450.030*
H11C0.53020.78600.21220.030*
C120.2594 (2)0.68572 (18)0.42080 (11)0.0158 (3)
C130.1447 (2)0.67102 (18)0.51655 (11)0.0160 (3)
H130.02800.72030.53340.019*
C140.2011 (2)0.58678 (18)0.58402 (11)0.0154 (3)
H140.31920.54080.56500.018*
C150.0778 (2)0.62890 (19)0.70973 (11)0.0186 (3)
H15A0.14600.59800.65990.028*
H15B0.13390.58360.77160.028*
H15C0.07650.74900.72180.028*
C160.1802 (2)0.48165 (19)0.74298 (11)0.0195 (3)
H16A0.18830.56070.79940.029*
H16B0.10320.39180.76670.029*
H16C0.30000.43720.70940.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0142 (2)0.0190 (2)0.0122 (2)0.00330 (14)0.00129 (14)0.00392 (14)
O10.0338 (7)0.0294 (7)0.0144 (6)0.0129 (5)0.0000 (5)0.0008 (5)
O20.0211 (6)0.0210 (6)0.0116 (5)0.0003 (4)0.0010 (4)0.0065 (4)
O30.0176 (6)0.0392 (7)0.0192 (6)0.0092 (5)0.0004 (5)0.0112 (5)
N10.0134 (6)0.0177 (7)0.0143 (6)0.0007 (5)0.0030 (5)0.0040 (5)
N20.0133 (6)0.0213 (7)0.0166 (7)0.0028 (5)0.0021 (5)0.0031 (5)
N30.0149 (7)0.0177 (7)0.0160 (7)0.0015 (5)0.0027 (5)0.0044 (5)
C10.0156 (8)0.0169 (8)0.0156 (8)0.0006 (6)0.0046 (6)0.0037 (6)
C20.0157 (7)0.0131 (7)0.0136 (7)0.0021 (6)0.0038 (6)0.0024 (6)
C30.0143 (7)0.0140 (7)0.0141 (8)0.0007 (6)0.0027 (6)0.0025 (6)
C40.0149 (7)0.0133 (7)0.0161 (8)0.0012 (6)0.0033 (6)0.0031 (6)
C50.0129 (7)0.0144 (7)0.0160 (8)0.0000 (6)0.0015 (6)0.0018 (6)
C60.0198 (8)0.0243 (8)0.0216 (8)0.0025 (7)0.0073 (7)0.0051 (7)
C70.0169 (8)0.0336 (9)0.0199 (9)0.0066 (7)0.0000 (7)0.0031 (7)
C80.0121 (7)0.0214 (8)0.0163 (8)0.0001 (6)0.0038 (6)0.0042 (6)
C90.0219 (8)0.0314 (9)0.0119 (8)0.0030 (7)0.0011 (6)0.0094 (7)
C100.0370 (10)0.0328 (10)0.0211 (9)0.0046 (8)0.0008 (8)0.0128 (7)
C110.0158 (8)0.0253 (8)0.0177 (8)0.0034 (6)0.0009 (6)0.0076 (6)
C120.0161 (8)0.0147 (8)0.0172 (8)0.0002 (6)0.0050 (6)0.0022 (6)
C130.0145 (8)0.0169 (8)0.0163 (8)0.0027 (6)0.0024 (6)0.0033 (6)
C140.0151 (7)0.0145 (7)0.0158 (8)0.0001 (6)0.0024 (6)0.0013 (6)
C150.0164 (8)0.0215 (8)0.0164 (8)0.0016 (6)0.0001 (6)0.0043 (6)
C160.0206 (8)0.0229 (8)0.0163 (8)0.0007 (6)0.0049 (6)0.0070 (6)
Geometric parameters (Å, º) top
S1—C51.7401 (15)C6—H6C0.9800
S1—C21.7405 (15)C7—H7A0.9800
O1—C81.2058 (19)C7—H7B0.9800
O2—C81.3399 (19)C7—H7C0.9800
O2—C91.4541 (18)C9—C101.503 (2)
O3—C121.2458 (19)C9—H9A0.9900
N1—C11.2973 (19)C9—H9B0.9900
N1—C21.3785 (19)C10—H10A0.9800
N2—C11.330 (2)C10—H10B0.9800
N2—C61.449 (2)C10—H10C0.9800
N2—C71.4574 (19)C11—H11A0.9800
N3—C141.3308 (19)C11—H11B0.9800
N3—C151.4538 (19)C11—H11C0.9800
N3—C161.4547 (19)C12—C131.434 (2)
C1—H10.9500C13—C141.370 (2)
C2—C31.386 (2)C13—H130.9500
C3—C41.435 (2)C14—H140.9500
C3—C81.487 (2)C15—H15A0.9800
C4—C51.377 (2)C15—H15B0.9800
C4—C111.502 (2)C15—H15C0.9800
C5—C121.482 (2)C16—H16A0.9800
C6—H6A0.9800C16—H16B0.9800
C6—H6B0.9800C16—H16C0.9800
C5—S1—C292.90 (7)O2—C9—C10107.39 (13)
C8—O2—C9115.32 (12)O2—C9—H9A110.2
C1—N1—C2117.13 (13)C10—C9—H9A110.2
C1—N2—C6122.52 (13)O2—C9—H9B110.2
C1—N2—C7120.47 (13)C10—C9—H9B110.2
C6—N2—C7117.01 (13)H9A—C9—H9B108.5
C14—N3—C15121.29 (12)C9—C10—H10A109.5
C14—N3—C16121.63 (13)C9—C10—H10B109.5
C15—N3—C16116.97 (12)H10A—C10—H10B109.5
N1—C1—N2124.23 (14)C9—C10—H10C109.5
N1—C1—H1117.9H10A—C10—H10C109.5
N2—C1—H1117.9H10B—C10—H10C109.5
N1—C2—C3126.29 (13)C4—C11—H11A109.5
N1—C2—S1123.88 (11)C4—C11—H11B109.5
C3—C2—S1109.75 (11)H11A—C11—H11B109.5
C2—C3—C4113.91 (13)C4—C11—H11C109.5
C2—C3—C8123.54 (13)H11A—C11—H11C109.5
C4—C3—C8122.55 (13)H11B—C11—H11C109.5
C5—C4—C3112.46 (13)O3—C12—C13123.52 (14)
C5—C4—C11124.08 (14)O3—C12—C5119.47 (13)
C3—C4—C11123.46 (13)C13—C12—C5117.00 (13)
C4—C5—C12128.92 (14)C14—C13—C12120.85 (14)
C4—C5—S1110.95 (11)C14—C13—H13119.6
C12—C5—S1120.09 (11)C12—C13—H13119.6
N2—C6—H6A109.5N3—C14—C13125.64 (14)
N2—C6—H6B109.5N3—C14—H14117.2
H6A—C6—H6B109.5C13—C14—H14117.2
N2—C6—H6C109.5N3—C15—H15A109.5
H6A—C6—H6C109.5N3—C15—H15B109.5
H6B—C6—H6C109.5H15A—C15—H15B109.5
N2—C7—H7A109.5N3—C15—H15C109.5
N2—C7—H7B109.5H15A—C15—H15C109.5
H7A—C7—H7B109.5H15B—C15—H15C109.5
N2—C7—H7C109.5N3—C16—H16A109.5
H7A—C7—H7C109.5N3—C16—H16B109.5
H7B—C7—H7C109.5H16A—C16—H16B109.5
O1—C8—O2123.15 (14)N3—C16—H16C109.5
O1—C8—C3124.90 (14)H16A—C16—H16C109.5
O2—C8—C3111.90 (13)H16B—C16—H16C109.5
C2—N1—C1—N2179.64 (14)C2—S1—C5—C40.96 (12)
C6—N2—C1—N10.8 (2)C2—S1—C5—C12179.02 (12)
C7—N2—C1—N1179.29 (14)C9—O2—C8—O10.3 (2)
C1—N1—C2—C3176.62 (14)C9—O2—C8—C3178.01 (12)
C1—N1—C2—S17.12 (19)C2—C3—C8—O1136.70 (17)
C5—S1—C2—N1176.53 (13)C4—C3—C8—O142.9 (2)
C5—S1—C2—C30.27 (11)C2—C3—C8—O245.7 (2)
N1—C2—C3—C4175.30 (13)C4—C3—C8—O2134.66 (14)
S1—C2—C3—C41.41 (16)C8—O2—C9—C10178.30 (13)
N1—C2—C3—C84.4 (2)C4—C5—C12—O36.8 (2)
S1—C2—C3—C8178.91 (11)S1—C5—C12—O3175.57 (12)
C2—C3—C4—C52.19 (19)C4—C5—C12—C13172.14 (15)
C8—C3—C4—C5178.13 (13)S1—C5—C12—C135.54 (19)
C2—C3—C4—C11178.12 (14)O3—C12—C13—C141.6 (2)
C8—C3—C4—C111.6 (2)C5—C12—C13—C14177.21 (13)
C3—C4—C5—C12179.75 (14)C15—N3—C14—C130.2 (2)
C11—C4—C5—C120.6 (3)C16—N3—C14—C13175.89 (14)
C3—C4—C5—S11.90 (16)C12—C13—C14—N3178.91 (14)
C11—C4—C5—S1178.41 (12)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2/C3/C4/C5/S1 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11B···O10.982.313.054 (1)132
C16—H16C···O3i0.982.353.310 (2)168
C16—H16B···Cgii0.982.743.566 (2)142
Symmetry codes: (i) x1, y+1, z+1; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2/C3/C4/C5/S1 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11B···O10.982.313.054 (1)132
C16—H16C···O3i0.982.353.310 (2)168
C16—H16B···Cgii0.982.743.566 (2)142
Symmetry codes: (i) x1, y+1, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

MSK thanks the University Grants Commission (UGC), India, for a UGC–BSR Meritorious Fellowship and NLP thanks the UGC for a CSIR–NET fellowship.

References

First citationBruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGewald, K., Schinke, E. & Böttcher, H. (1966). Chem. Ber. 99, 94–100.  CrossRef CAS Web of Science Google Scholar
First citationMabkhot, Y. N., Barakat, A., Al-Majid, A. & Choudhary, M. I. (2013). Int. J. Mol. Sci. 14, 5712–5722.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMishra, R., Jha, K. K., Kumar, S. & Tomer, S. (2011). Pharma Chem. 3, 38–54.  CAS Google Scholar
First citationRizwan, K., Zubair, M., Rasool, N., Ali, S., Zahoor, A. F., Rana, U. A., Khan, S. U., Shahid, M., Zia-Ul-Haq, M. & Jaafar, H. Z. (2014). Chem. Cent. J. 8, 74.  Web of Science CrossRef PubMed Google Scholar
First citationSabnis, R. W., Rangnekar, D. W. & Sonawane, N. D. (1999). J. Heterocycl. Chem. 36, 333–345.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds