research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 3| March 2016| Pages 347-349

Crystal structure of ethyl 2-[2-(4-methyl­benzo­yl)-5-p-tolyl-1H-imidazol-1-yl]acetate

aDepartment of Physics, University College of Engineering Nagercoil, Anna University, Nagercoil 629 004, India, and bMedicinal Chemistry Division, Indian Institute of Integrative Medicine (IIIM) and Academy of Scientific and Innovative Research (AcSIR-IIIM), Jammu 180 001, India
*Correspondence e-mail: athi81s@yahoo.co.in

Edited by J. Simpson, University of Otago, New Zealand (Received 8 January 2016; accepted 10 February 2016; online 17 February 2016)

In the title compound, C22H22N2O3, the plane of the five-membered ring is oriented at dihedral angles of 45.4 (1) and 52.5 (1)° to the phenyl rings. Furthermore, this ring makes an angle of 85.2 (2)° with the plane of the ethyl acetate substituent. The mol­ecular structure is affected by an intra­molecular C—H⋯O hydrogen bond between an H atom from the p-tolyl group and the carbonyl O atom of the acetate. The methyl group of the ethyl acetate residue is disordered over two sites with equal occupancies. The crystal structure features inter­molecular C—H⋯O and C—H⋯N inter­actions. One of the C—H⋯O hydrogen bonds forms a C(5) chain motif extending along the a axis. In addition, C—H⋯N contacts form inversion dimers with R22(12) ring motifs, linking the imidazole ring system to the benzene ring of the p-tolyl substituent.

1. Chemical context

Imidazole and its derivatives have numerous pharmaceutical applications including uses as anti­fungal (Shingalapur et al. 2009[Shingalapur, R. V., Hosamani, K. M. & Keri, R. S. (2009). Eur. J. Med. Chem. 44, 4244-4248.]), anti­microbial (Sharma et al. 2009[Sharma, D., Narasimhan, B., Kumar, P., Judge, V., Narang, R., De Clercq, E. & Balzarini, J. (2009). Eur. J. Med. Chem. 44, 2347-2353.]), anti-inflammatory (Puratchikody et al. 2007[Puratchikody, A. & Doble, M. (2007). Bioorg. Med. Chem. 15, 1083-1090.]), analgesic (Achar et al. 2010[Achar, K. C. S., Hosamani, K. M. & Seetharamareddy, H. R. (2010). Eur. J. Med. Chem. 45, 2048-2054.]), anti­tubercular (Pandey et al. 2009[Pandey, J., Tiwari, V. K., Verma, S. S., Chaturvedi, V., Bhatnagar, S., Sinha, S., Gaikwad, A. N. & Tripathi, R. P. (2009). Eur. J. Med. Chem. 44, 3350-3355.]), anti­depressant (Hadizadeh et al. 2008[Hadizadeh, F., Hosseinzadeh, H., Sadat Motamed-Shariaty, V., Seifi, M. & Kazemi, S. (2008). Iranian J. Pharm. Res. 7, 29-33.]), anti­leishmanial (Bhandari et al. 2009[Bhandari, K., Srinivas, N., Keshava, G. B. S. & Shukla, P. K. (2009). Eur. J. Med. Chem. 44, 437-447.]) and anti­cancer agents (Ozkay et al. 2010[Ozkay, Y., Iskar, I., Incesu, Z. & Akalin, G. E. (2010). Eur. J. Med. Chem. 45, 1-9.]). We are inter­ested in the synthesis of active pharmaceutical ingredients (APIs) based on imidazoles and we report here the synthesis and crystal structure of the title imidazole derivative.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The C—N bond lengths within the imidazole ring are 1.373 (3) Å (C10—N2), 1.372 (3) Å (C8—N2), 1.349 (3) Å (C9—N1) and 1.329 (3) Å (C10—N1). These bond distances are shorter than the single-bond length (1.443 Å) and longer than the accepted double-bond length (1.269 Å) due to electron delocalization in the central imidazole ring. The phenyl rings and the plane of the imidazole ring are inclined at angles of 45.4 (1)° (with the C12–C17 ring) and 52.5 (1)° (with the C2–C7 ring). The phenyl rings are oriented to each other with a dihedral angle of 88.1 (1)°. Further, the imidazole ring is inclined at an angle of 85.2 (2)° to the best-fit plane through atoms C19, C20, O3, C21 and C22 of the ethyl acetate substituent. The mol­ecular structure is also influenced by the formation of an intra­molecular C6—H6⋯O2 hydrogen bond, Table 1[link], which generates an S(8) ring motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2 0.93 2.91 3.723 (4) 147
C1—H1A⋯O2i 0.96 2.71 3.605 (4) 155
C4—H4⋯N1ii 0.93 2.83 3.724 (3) 161
C19—H19A⋯O2iii 0.97 2.51 3.309 (3) 140
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y, -z+1; (iii) x-1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme and 50% probability displacement ellipsoids. The methyl group (C22) of the side chain is disordered over two positions each with 0.5 occupancy.

3. Supra­molecular features

The N-bound methyl­ene group of the side chain is connected with the carbonyl oxygen of an adjacent mol­ecule through a C19—H19A⋯O2 hydrogen bond, forming a linear C(5) chain motif along the a axis, Table 1[link] and Fig. 2[link]. The phenyl and imidazole rings are linked through inversion-dimer formation involving C4—H4⋯N1 hydrogen bonds that generate R22(12) ring motifs. A second inversion dimer to an adjacent mol­ecule results from C1—H1⋯O2 contacts, forming ring R22(22) [OK?] rings, Fig. 3[link].

[Figure 2]
Figure 2
Linear C(5) chains formed by a C—H⋯O inter­molecular inter­action extending along the a axis of the unit cell.
[Figure 3]
Figure 3
Inversion dimers with R22(12) and R22(22) ring motifs resulting from C—H⋯N and C—H⋯O hydrogen bonds.

4. Database survey

The Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) reveals only five structures of imidazole derivatives with a CH2COOCH2CH3 substituent on nitro­gen (Cai et al., 2014[Cai, Z.-Q., Ma, W.-Y., Liu, J., Hu, Z.-Q., Hou, L. & Jian-Ya Wang, J.-Y. (2014). Jiegou Huaxue (Chin. J. Struct. Chem.), 33, 1383-1387.]; Bahnous et al., 2013[Bahnous, M., Bouraiou, A., Chelghoum, M., Bouacida, S., Roisnel, T., Smati, F., Bentchouala, C., Gros, P. C. & Belfaitah, A. (2013). Bioorg. Med. Chem. Lett. 23, 1274-1278.]; Zaprutko et al., 2012[Zaprutko, L., Żwawiak, J., Olender, D. & Gzella, A. (2012). Heterocycles, 85, 2197-2211.]). Imidazoles with benzoyl substituents are slightly more common with eight occurrences (Xue et al., 2014[Xue, W.-J., Li, H.-Z., Gao, F.-F. & Wu, A. (2014). Tetrahedron, 70, 239-244.]; Nagaraj et al., 2012[Nagaraj, M., Boominathan, M., Muthusubramanian, S. & Bhuvanesh, N. (2012). Synlett, 23, 1353-1357.]; Samanta et al., 2013[Samanta, R. C., De Sarkar, S., Fröhlich, R., Grimme, S. & Studer, A. (2013). Chem. Sci. 4, 2177-2184.]), while the structures of only six p-tolyl-substituted imidazoles are found (Bu et al., 1996[Bu, X. R., Li, H., Van Derveer, D. & Mintz, E. A. (1996). Tetrahedron Lett. 37, 7331-7334.]; Fridman et al., 2006[Fridman, N., Speiser, S. & Kaftory, M. (2006). Cryst. Growth Des. 6, 2281-2288.], 2009[Fridman, N., Kaftory, M., Eichen, Y. & Speiser, S. (2009). J. Mol. Struct. 917, 101-109.]). These searches also reveal the unique nature of the mol­ecule reported here.

5. Synthesis and crystallization

The title compound was synthesized from a mixture of 2-(4-meth­oxy­phen­yl)-2-oxoacetaldehyde (1 mmol), glycine methyl ester hydro­chloride (1 mmol) and selenium dioxide (1 mmol) in a basic environment in aceto­nitrile at 373 K. Crystals suitable for X-ray investigation were obtained by solvent evaporation from the resulting solution in 33% yield.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 −0.97 Å and Uiso(H) = 1.2–1.5Ueq(parent C atom). The methyl group C22 of the side chain is disordered over two positions, each with a site-occupancy factor of 0.5. The atomic displacement parameters of these two C atoms are restrained to be equivalent and the C21—C22 and C21—C22′ bond distances were restrained during the refinement using DFIX commands.

Table 2
Experimental details

Crystal data
Chemical formula C22H22N2O3
Mr 362.41
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 5.0968 (5), 13.8189 (15), 14.6993 (17)
α, β, γ (°) 71.484 (5), 84.018 (5), 82.531 (5)
V3) 971.20 (18)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.21 × 0.19 × 0.16
 
Data collection
Diffractometer Bruker SMART APEX CCD area-detector
No. of measured, independent and observed [I > 2σ(I)] reflections 18453, 3405, 2354
Rint 0.055
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.168, 1.07
No. of reflections 3405
No. of parameters 251
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.52, −0.31
Computer programs: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Imidazoles are fundamental components of many biological molecules. Imidazole and its derivatives have numerous pharmaceutical applications including uses as anti­fungal (Shingalapur et al. 2009), anti­microbial (Sharma et al. 2009), anti-inflammatory (Puratchikody et al. 2007), analgesic (Achar et al. 2010), anti­tubercular (Pandey et al. 2009), anti­depressant (Hadizadeh et al. 2008), anti­leishmanial (Bhandari et al. 2009) and anti­cancer agents (Ozkay et al. 2010). We are inter­ested in the synthesis of active pharmaceutical ingredients (APIs) based on imidazoles and we report here the synthesis and crystal structure of the title imidazole derivative.

Structural commentary top

The molecular structure of the title compound is shown in Fig. 1. The C—N bond lengths within the imidazole ring are 1.373 (3) Å (C10—N2), 1.372 (3) Å (C8—N2), 1.349 (3) Å (C9—N1) and 1.329 (3) Å (C10—N1). These bond distances are shorter than the single-bond length (1.443 Å) and longer than the accepted double-bond length (1.269 Å) due to electron delocalization in the central imidazole ring. The phenyl rings and the plane of the imidazole ring are inclined at angles of 45.4 (1)° (with the C12/C17 ring) and 52.5 (1)° (with the C2/C7 ring). The phenyl rings are oriented to each other with a dihedral angle of 88.1 (1)°. Further, the imidazole ring is inclined at an angle of 85.2 (2)° to the best-fit plane through atoms C19, C20, O3, C21 and C22 of the ethyl acetate substituent. The molecular structure is also influenced by the formation of an intra­molecular C6—H6···O2 hydrogen bond, which generates an S(8) ring motif (Bernstein et al., 1995).

Supra­molecular features top

The N-bound methyl­ene group of the side chain is connected with the carbonyl oxygen of an adjacent molecule through a C19—H19A···O2 hydrogen bond, forming a linear C(5) chain motif along the a axis, Fig. 2. The phenyl and imidazole rings are linked through inversion-dimer formation involving C4—H4···N1 hydrogen bonds that generate R22(12) ring motifs. A second inversion dimer to an adjacent molecule results from C1—H1···O2 contacts, forming ring R22(22) rings, Fig. 3.

Database survey top

The Cambridge Structural Database (Groom & Allen, 2014) reveals only five structures of imidazole derivatives with a CH2COOCh2CH3 substituent on nitro­gen (Cai et al., 2014; Bahnous et al., 2013; Zaprutko et al., 2012). Imidazoles with benzoyl substituents are slightly more common with eight occurrences (Xue et al., 2014; Nagaraj et al., 2012; Samanta et al., 2013), while the structures of only six p-tolyl-substituted imidazoles are found (Bu et al., 1996; Fridman et al., 2006, 2009). These searches also reveal the unique nature of the molecule reported here.

Synthesis and crystallization top

The title compound was synthesized from a mixture of 2-(4-meth­oxy­phenyl)-2-oxoacetaldehyde (1 mmol), glycine methyl ester hydro­chloride (1 mmol) and selenium dioxide (1 mmol) in a basic environment in aceto­nitrile at 373 K. Crystals suitable for X-ray investigation were obtained from the resulting solution in 33% yield.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. A l l H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 − 0.97 Å and Uiso(H) = 1.2–1.5Ueq(parent C atom). The methyl group C22 of the side chain is disordered over two positions, each with a site-occupancy factor of 0.5. The atomic displacement parameters of these two C atoms are restrained to be equivalent and the C21—C22 and C21—C22' bond distances were restrained during the refinement using DFIX commands.

Structure description top

Imidazoles are fundamental components of many biological molecules. Imidazole and its derivatives have numerous pharmaceutical applications including uses as anti­fungal (Shingalapur et al. 2009), anti­microbial (Sharma et al. 2009), anti-inflammatory (Puratchikody et al. 2007), analgesic (Achar et al. 2010), anti­tubercular (Pandey et al. 2009), anti­depressant (Hadizadeh et al. 2008), anti­leishmanial (Bhandari et al. 2009) and anti­cancer agents (Ozkay et al. 2010). We are inter­ested in the synthesis of active pharmaceutical ingredients (APIs) based on imidazoles and we report here the synthesis and crystal structure of the title imidazole derivative.

The molecular structure of the title compound is shown in Fig. 1. The C—N bond lengths within the imidazole ring are 1.373 (3) Å (C10—N2), 1.372 (3) Å (C8—N2), 1.349 (3) Å (C9—N1) and 1.329 (3) Å (C10—N1). These bond distances are shorter than the single-bond length (1.443 Å) and longer than the accepted double-bond length (1.269 Å) due to electron delocalization in the central imidazole ring. The phenyl rings and the plane of the imidazole ring are inclined at angles of 45.4 (1)° (with the C12/C17 ring) and 52.5 (1)° (with the C2/C7 ring). The phenyl rings are oriented to each other with a dihedral angle of 88.1 (1)°. Further, the imidazole ring is inclined at an angle of 85.2 (2)° to the best-fit plane through atoms C19, C20, O3, C21 and C22 of the ethyl acetate substituent. The molecular structure is also influenced by the formation of an intra­molecular C6—H6···O2 hydrogen bond, which generates an S(8) ring motif (Bernstein et al., 1995).

The N-bound methyl­ene group of the side chain is connected with the carbonyl oxygen of an adjacent molecule through a C19—H19A···O2 hydrogen bond, forming a linear C(5) chain motif along the a axis, Fig. 2. The phenyl and imidazole rings are linked through inversion-dimer formation involving C4—H4···N1 hydrogen bonds that generate R22(12) ring motifs. A second inversion dimer to an adjacent molecule results from C1—H1···O2 contacts, forming ring R22(22) rings, Fig. 3.

The Cambridge Structural Database (Groom & Allen, 2014) reveals only five structures of imidazole derivatives with a CH2COOCh2CH3 substituent on nitro­gen (Cai et al., 2014; Bahnous et al., 2013; Zaprutko et al., 2012). Imidazoles with benzoyl substituents are slightly more common with eight occurrences (Xue et al., 2014; Nagaraj et al., 2012; Samanta et al., 2013), while the structures of only six p-tolyl-substituted imidazoles are found (Bu et al., 1996; Fridman et al., 2006, 2009). These searches also reveal the unique nature of the molecule reported here.

Synthesis and crystallization top

The title compound was synthesized from a mixture of 2-(4-meth­oxy­phenyl)-2-oxoacetaldehyde (1 mmol), glycine methyl ester hydro­chloride (1 mmol) and selenium dioxide (1 mmol) in a basic environment in aceto­nitrile at 373 K. Crystals suitable for X-ray investigation were obtained from the resulting solution in 33% yield.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. A l l H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 − 0.97 Å and Uiso(H) = 1.2–1.5Ueq(parent C atom). The methyl group C22 of the side chain is disordered over two positions, each with a site-occupancy factor of 0.5. The atomic displacement parameters of these two C atoms are restrained to be equivalent and the C21—C22 and C21—C22' bond distances were restrained during the refinement using DFIX commands.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008); program(s) used to refine structure: SHELXTL/PC (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and 50% probability displacement ellipsoids. The methyl group (C22) of the side chain is disordered over two positions each with 0.5 occupancy.
[Figure 2] Fig. 2. Linear C(5) chains formed by a C—H···O intermolecular interaction extending along the a axis of the unit cell
[Figure 3] Fig. 3. Inversion dimers with R22(12) and R22(22) ring motifs resulting from C—H···N and C—H···O hydrogen bonds.
Ethyl 2-[2-(4-methylbenzoyl)-5-p-tolyl-1H-imidazol-1-yl]acetate top
Crystal data top
C22H22N2O3Z = 2
Mr = 362.41F(000) = 384
Triclinic, P1Dx = 1.239 Mg m3
a = 5.0968 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.8189 (15) ÅCell parameters from 2986 reflections
c = 14.6993 (17) Åθ = 2.1–24.4°
α = 71.484 (5)°µ = 0.08 mm1
β = 84.018 (5)°T = 293 K
γ = 82.531 (5)°Block, colourless
V = 971.20 (18) Å30.21 × 0.19 × 0.16 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
Rint = 0.055
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.5°
ω scansh = 66
18453 measured reflectionsk = 1616
3405 independent reflectionsl = 1717
2354 reflections with I > 2σ(I)
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.168 w = 1/[σ2(Fo2) + (0.0636P)2 + 0.5608P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
3405 reflectionsΔρmax = 0.52 e Å3
251 parametersΔρmin = 0.30 e Å3
Crystal data top
C22H22N2O3γ = 82.531 (5)°
Mr = 362.41V = 971.20 (18) Å3
Triclinic, P1Z = 2
a = 5.0968 (5) ÅMo Kα radiation
b = 13.8189 (15) ŵ = 0.08 mm1
c = 14.6993 (17) ÅT = 293 K
α = 71.484 (5)°0.21 × 0.19 × 0.16 mm
β = 84.018 (5)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2354 reflections with I > 2σ(I)
18453 measured reflectionsRint = 0.055
3405 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0542 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.07Δρmax = 0.52 e Å3
3405 reflectionsΔρmin = 0.30 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6633 (7)0.3819 (3)0.6826 (2)0.0754 (9)
H1A0.61050.44760.67790.113*
H1B0.64980.33720.74740.113*
H1C0.84330.39010.66550.113*
C20.4852 (5)0.3362 (2)0.61545 (19)0.0530 (7)
C30.5093 (5)0.2386 (2)0.6123 (2)0.0568 (7)
H30.64030.20150.65170.068*
C40.3441 (5)0.19537 (19)0.55220 (19)0.0501 (6)
H40.36360.12930.55240.060*
C50.1486 (5)0.24912 (17)0.49132 (17)0.0426 (6)
C60.1244 (5)0.34725 (19)0.4938 (2)0.0536 (7)
H60.00480.38510.45390.064*
C70.2906 (5)0.3891 (2)0.5551 (2)0.0573 (7)
H70.27050.45480.55570.069*
C80.0360 (5)0.19884 (17)0.43313 (17)0.0419 (6)
C90.1875 (5)0.10614 (18)0.46091 (18)0.0466 (6)
H90.18350.06130.52330.056*
C100.2885 (5)0.16918 (17)0.31157 (17)0.0428 (6)
C110.4033 (5)0.1806 (2)0.21394 (19)0.0539 (7)
C120.6016 (5)0.0980 (2)0.19780 (17)0.0480 (6)
C170.8022 (5)0.0507 (2)0.25858 (19)0.0514 (7)
H170.81860.07170.31170.062*
C160.9772 (6)0.0268 (2)0.2414 (2)0.0614 (8)
H161.11360.05600.28210.074*
C150.9556 (6)0.0622 (2)0.1653 (2)0.0629 (8)
C140.7592 (7)0.0130 (3)0.1034 (2)0.0777 (10)
H140.74260.03450.05050.093*
C130.5874 (6)0.0671 (3)0.1182 (2)0.0709 (9)
H130.46120.10040.07420.085*
C181.1384 (8)0.1519 (3)0.1513 (3)0.0990 (13)
H18A1.08440.17030.09880.149*
H18B1.13060.20920.20890.149*
H18C1.31670.13340.13720.149*
C190.0310 (5)0.33098 (18)0.27136 (18)0.0488 (6)
H19A0.19020.35380.30440.059*
H19B0.08360.31500.21670.059*
C200.1464 (5)0.41606 (19)0.23635 (19)0.0510 (7)
C210.2175 (8)0.5710 (2)0.1156 (2)0.0923 (12)
H21A0.40380.54560.11980.111*
H21B0.17940.61960.15170.111*
C220.161 (3)0.6255 (15)0.0101 (4)0.119 (4)0.5
H22A0.24730.58500.02890.179*0.5
H22B0.22730.69150.01050.179*0.5
H22C0.02670.63400.00360.179*0.5
C22'0.047 (3)0.6433 (15)0.0364 (5)0.119 (4)0.5
H22D0.00750.60680.00550.179*0.5
H22E0.14180.70050.00010.179*0.5
H22F0.11560.66770.06510.179*0.5
N10.3431 (4)0.08765 (14)0.38698 (14)0.0464 (5)
N20.1006 (4)0.23871 (14)0.33651 (14)0.0434 (5)
O10.3314 (5)0.25504 (18)0.14648 (15)0.0913 (8)
O20.3358 (4)0.42182 (16)0.27496 (17)0.0774 (7)
O30.0563 (4)0.48554 (13)0.15783 (13)0.0663 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.077 (2)0.081 (2)0.077 (2)0.0039 (17)0.0022 (17)0.0423 (18)
C20.0517 (15)0.0546 (16)0.0558 (16)0.0006 (13)0.0118 (13)0.0211 (13)
C30.0558 (16)0.0555 (17)0.0601 (17)0.0134 (13)0.0026 (13)0.0185 (14)
C40.0553 (15)0.0386 (13)0.0585 (16)0.0095 (12)0.0050 (13)0.0155 (12)
C50.0453 (13)0.0361 (12)0.0458 (14)0.0031 (10)0.0120 (11)0.0094 (11)
C60.0531 (15)0.0392 (14)0.0681 (18)0.0111 (12)0.0003 (13)0.0149 (13)
C70.0617 (17)0.0408 (14)0.0759 (19)0.0036 (13)0.0105 (15)0.0259 (14)
C80.0475 (14)0.0331 (12)0.0450 (14)0.0075 (10)0.0073 (11)0.0092 (11)
C90.0595 (16)0.0362 (13)0.0405 (14)0.0052 (11)0.0059 (12)0.0060 (11)
C100.0459 (14)0.0346 (12)0.0447 (14)0.0027 (10)0.0072 (11)0.0071 (11)
C110.0557 (16)0.0496 (15)0.0467 (15)0.0009 (12)0.0049 (12)0.0025 (12)
C120.0499 (15)0.0515 (15)0.0401 (14)0.0078 (12)0.0016 (11)0.0099 (11)
C170.0535 (15)0.0524 (15)0.0478 (15)0.0058 (13)0.0060 (12)0.0136 (12)
C160.0600 (17)0.0582 (17)0.0561 (17)0.0031 (14)0.0026 (13)0.0077 (14)
C150.0662 (19)0.0526 (17)0.0669 (19)0.0124 (14)0.0146 (15)0.0175 (15)
C140.074 (2)0.109 (3)0.070 (2)0.016 (2)0.0051 (17)0.055 (2)
C130.0578 (18)0.106 (3)0.0529 (17)0.0029 (17)0.0105 (14)0.0325 (17)
C180.116 (3)0.063 (2)0.112 (3)0.003 (2)0.032 (2)0.032 (2)
C190.0471 (14)0.0397 (13)0.0500 (15)0.0019 (11)0.0091 (11)0.0010 (11)
C200.0540 (16)0.0381 (14)0.0522 (15)0.0030 (12)0.0057 (13)0.0041 (12)
C210.133 (3)0.0462 (18)0.085 (2)0.0256 (19)0.012 (2)0.0059 (17)
C220.199 (13)0.099 (7)0.050 (4)0.063 (7)0.004 (6)0.004 (6)
C22'0.199 (13)0.099 (7)0.050 (4)0.063 (7)0.004 (6)0.004 (6)
N10.0566 (13)0.0345 (11)0.0443 (12)0.0018 (9)0.0086 (10)0.0061 (9)
N20.0462 (11)0.0331 (10)0.0448 (12)0.0018 (9)0.0081 (9)0.0029 (9)
O10.1031 (18)0.0828 (16)0.0517 (12)0.0282 (14)0.0041 (12)0.0128 (11)
O20.0675 (13)0.0612 (13)0.0934 (16)0.0175 (11)0.0261 (12)0.0010 (11)
O30.0886 (14)0.0412 (10)0.0577 (12)0.0074 (10)0.0135 (10)0.0037 (9)
Geometric parameters (Å, º) top
C1—C21.503 (4)C16—C151.375 (4)
C1—H1A0.9600C16—H160.9300
C1—H1B0.9600C15—C141.383 (4)
C1—H1C0.9600C15—C181.506 (4)
C2—C71.377 (4)C14—C131.379 (4)
C2—C31.386 (4)C14—H140.9300
C3—C41.377 (4)C13—H130.9300
C3—H30.9300C18—H18A0.9600
C4—C51.389 (3)C18—H18B0.9600
C4—H40.9300C18—H18C0.9600
C5—C61.390 (3)C19—N21.459 (3)
C5—C81.463 (3)C19—C201.503 (4)
C6—C71.381 (4)C19—H19A0.9700
C6—H60.9300C19—H19B0.9700
C7—H70.9300C20—O21.193 (3)
C8—C91.371 (3)C20—O31.325 (3)
C8—N21.372 (3)C21—O31.462 (4)
C9—N11.349 (3)C21—C221.534 (2)
C9—H90.9300C21—C22'1.535 (2)
C10—N11.329 (3)C21—H21A0.9700
C10—N21.373 (3)C21—H21B0.9700
C10—C111.460 (4)C22—H22A0.9600
C11—O11.227 (3)C22—H22B0.9600
C11—C121.484 (4)C22—H22C0.9600
C12—C131.379 (4)C22'—H22D0.9600
C12—C171.384 (3)C22'—H22E0.9600
C17—C161.373 (4)C22'—H22F0.9600
C17—H170.9300
C2—C1—H1A109.5C14—C15—C18121.8 (3)
C2—C1—H1B109.5C13—C14—C15121.5 (3)
H1A—C1—H1B109.5C13—C14—H14119.2
C2—C1—H1C109.5C15—C14—H14119.2
H1A—C1—H1C109.5C12—C13—C14120.4 (3)
H1B—C1—H1C109.5C12—C13—H13119.8
C7—C2—C3117.3 (3)C14—C13—H13119.8
C7—C2—C1121.5 (3)C15—C18—H18A109.5
C3—C2—C1121.2 (3)C15—C18—H18B109.5
C4—C3—C2121.6 (3)H18A—C18—H18B109.5
C4—C3—H3119.2C15—C18—H18C109.5
C2—C3—H3119.2H18A—C18—H18C109.5
C3—C4—C5120.8 (2)H18B—C18—H18C109.5
C3—C4—H4119.6N2—C19—C20111.7 (2)
C5—C4—H4119.6N2—C19—H19A109.3
C4—C5—C6117.8 (2)C20—C19—H19A109.3
C4—C5—C8119.7 (2)N2—C19—H19B109.3
C6—C5—C8122.3 (2)C20—C19—H19B109.3
C7—C6—C5120.5 (2)H19A—C19—H19B107.9
C7—C6—H6119.7O2—C20—O3124.9 (2)
C5—C6—H6119.7O2—C20—C19125.1 (2)
C2—C7—C6121.9 (2)O3—C20—C19109.9 (2)
C2—C7—H7119.1O3—C21—C22111.1 (9)
C6—C7—H7119.1O3—C21—C22'102.4 (9)
C9—C8—N2104.8 (2)O3—C21—H21A109.4
C9—C8—C5129.3 (2)C22—C21—H21A109.4
N2—C8—C5125.8 (2)O3—C21—H21B109.4
N1—C9—C8112.0 (2)C22—C21—H21B109.4
N1—C9—H9124.0H21A—C21—H21B108.0
C8—C9—H9124.0C21—C22—H22A109.5
N1—C10—N2111.2 (2)C21—C22—H22B109.5
N1—C10—C11124.2 (2)H22A—C22—H22B109.5
N2—C10—C11124.5 (2)C21—C22—H22C109.5
O1—C11—C10120.8 (2)H22A—C22—H22C109.5
O1—C11—C12120.8 (2)H22B—C22—H22C109.5
C10—C11—C12118.3 (2)C21—C22'—H22D109.5
C13—C12—C17118.2 (3)C21—C22'—H22E109.5
C13—C12—C11118.7 (2)H22D—C22'—H22E109.5
C17—C12—C11123.2 (2)C21—C22'—H22F109.5
C16—C17—C12120.8 (3)H22D—C22'—H22F109.5
C16—C17—H17119.6H22E—C22'—H22F109.5
C12—C17—H17119.6C10—N1—C9105.0 (2)
C17—C16—C15121.5 (3)C8—N2—C10106.94 (18)
C17—C16—H16119.2C8—N2—C19125.8 (2)
C15—C16—H16119.2C10—N2—C19126.8 (2)
C16—C15—C14117.4 (3)C20—O3—C21114.8 (2)
C16—C15—C18120.8 (3)
C7—C2—C3—C40.7 (4)C17—C16—C15—C143.4 (4)
C1—C2—C3—C4178.8 (3)C17—C16—C15—C18176.0 (3)
C2—C3—C4—C50.9 (4)C16—C15—C14—C131.4 (5)
C3—C4—C5—C60.6 (4)C18—C15—C14—C13178.0 (3)
C3—C4—C5—C8175.8 (2)C17—C12—C13—C143.8 (4)
C4—C5—C6—C70.0 (4)C11—C12—C13—C14176.6 (3)
C8—C5—C6—C7175.1 (2)C15—C14—C13—C122.3 (5)
C3—C2—C7—C60.2 (4)N2—C19—C20—O220.6 (4)
C1—C2—C7—C6179.4 (3)N2—C19—C20—O3161.4 (2)
C5—C6—C7—C20.2 (4)N2—C10—N1—C90.2 (3)
C4—C5—C8—C951.0 (4)C11—C10—N1—C9177.1 (2)
C6—C5—C8—C9124.0 (3)C8—C9—N1—C100.3 (3)
C4—C5—C8—N2131.5 (3)C9—C8—N2—C100.7 (3)
C6—C5—C8—N253.5 (4)C5—C8—N2—C10177.3 (2)
N2—C8—C9—N10.7 (3)C9—C8—N2—C19172.2 (2)
C5—C8—C9—N1177.2 (2)C5—C8—N2—C199.8 (4)
N1—C10—C11—O1175.3 (3)N1—C10—N2—C80.6 (3)
N2—C10—C11—O11.2 (4)C11—C10—N2—C8177.5 (2)
N1—C10—C11—C122.5 (4)N1—C10—N2—C19172.3 (2)
N2—C10—C11—C12179.0 (2)C11—C10—N2—C194.7 (4)
O1—C11—C12—C1339.9 (4)C20—C19—N2—C8111.7 (3)
C10—C11—C12—C13137.9 (3)C20—C19—N2—C1076.8 (3)
O1—C11—C12—C17139.7 (3)O2—C20—O3—C213.5 (4)
C10—C11—C12—C1742.6 (4)C19—C20—O3—C21178.5 (2)
C13—C12—C17—C161.8 (4)C22—C21—O3—C20160.0 (6)
C11—C12—C17—C16178.6 (2)C22'—C21—O3—C20172.9 (6)
C12—C17—C16—C151.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O20.932.913.723 (4)147
C1—H1A···O2i0.962.713.605 (4)155
C4—H4···N1ii0.932.833.724 (3)161
C19—H19A···O2iii0.972.513.309 (3)140
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O20.932.913.723 (4)146.7
C1—H1A···O2i0.962.713.605 (4)155.3
C4—H4···N1ii0.932.833.724 (3)160.5
C19—H19A···O2iii0.972.513.309 (3)140.1
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC22H22N2O3
Mr362.41
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.0968 (5), 13.8189 (15), 14.6993 (17)
α, β, γ (°)71.484 (5), 84.018 (5), 82.531 (5)
V3)971.20 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.21 × 0.19 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18453, 3405, 2354
Rint0.055
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.168, 1.07
No. of reflections3405
No. of parameters251
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.30

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL/PC (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

SA and SSK thank the Department of Science and Technology, New Delhi, for financial support of this work through the Fasttrack Young Scientist scheme.

References

First citationAchar, K. C. S., Hosamani, K. M. & Seetharamareddy, H. R. (2010). Eur. J. Med. Chem. 45, 2048–2054.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBahnous, M., Bouraiou, A., Chelghoum, M., Bouacida, S., Roisnel, T., Smati, F., Bentchouala, C., Gros, P. C. & Belfaitah, A. (2013). Bioorg. Med. Chem. Lett. 23, 1274–1278.  CSD CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhandari, K., Srinivas, N., Keshava, G. B. S. & Shukla, P. K. (2009). Eur. J. Med. Chem. 44, 437–447.  CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBu, X. R., Li, H., Van Derveer, D. & Mintz, E. A. (1996). Tetrahedron Lett. 37, 7331–7334.  CSD CrossRef CAS Google Scholar
First citationCai, Z.-Q., Ma, W.-Y., Liu, J., Hu, Z.-Q., Hou, L. & Jian-Ya Wang, J.-Y. (2014). Jiegou Huaxue (Chin. J. Struct. Chem.), 33, 1383–1387.  CAS Google Scholar
First citationFridman, N., Kaftory, M., Eichen, Y. & Speiser, S. (2009). J. Mol. Struct. 917, 101–109.  Web of Science CSD CrossRef CAS Google Scholar
First citationFridman, N., Speiser, S. & Kaftory, M. (2006). Cryst. Growth Des. 6, 2281–2288.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHadizadeh, F., Hosseinzadeh, H., Sadat Motamed-Shariaty, V., Seifi, M. & Kazemi, S. (2008). Iranian J. Pharm. Res. 7, 29–33.  CAS Google Scholar
First citationNagaraj, M., Boominathan, M., Muthusubramanian, S. & Bhuvanesh, N. (2012). Synlett, 23, 1353–1357.  CAS Google Scholar
First citationOzkay, Y., Iskar, I., Incesu, Z. & Akalin, G. E. (2010). Eur. J. Med. Chem. 45, 1–9.  Google Scholar
First citationPandey, J., Tiwari, V. K., Verma, S. S., Chaturvedi, V., Bhatnagar, S., Sinha, S., Gaikwad, A. N. & Tripathi, R. P. (2009). Eur. J. Med. Chem. 44, 3350–3355.  CrossRef PubMed CAS Google Scholar
First citationPuratchikody, A. & Doble, M. (2007). Bioorg. Med. Chem. 15, 1083–1090.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSamanta, R. C., De Sarkar, S., Fröhlich, R., Grimme, S. & Studer, A. (2013). Chem. Sci. 4, 2177–2184.  CSD CrossRef CAS Google Scholar
First citationSharma, D., Narasimhan, B., Kumar, P., Judge, V., Narang, R., De Clercq, E. & Balzarini, J. (2009). Eur. J. Med. Chem. 44, 2347–2353.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShingalapur, R. V., Hosamani, K. M. & Keri, R. S. (2009). Eur. J. Med. Chem. 44, 4244–4248.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXue, W.-J., Li, H.-Z., Gao, F.-F. & Wu, A. (2014). Tetrahedron, 70, 239–244.  CSD CrossRef CAS Google Scholar
First citationZaprutko, L., Żwawiak, J., Olender, D. & Gzella, A. (2012). Heterocycles, 85, 2197–2211.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 3| March 2016| Pages 347-349
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds