research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA
A correction has been published for this article. To view the correction, click here.

Crystal structure of racemic [(1R,2S,3R,4S,6S)-2,6-bis­­(furan-2-yl)-4-hy­dr­oxy-4-(thio­phen-2-yl)cyclo­hexane-1,3-di­yl]bis­­(thio­phen-2-yl­methanone)

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Faculty of Sciences, Cumhuriyet University, 58140 Sivas, Turkey, bDepartment of Physics, Faculty of Arts and Sciences, Sinop University, 57010 Sinop, Turkey, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dDepartment of Chemistry, Faculty of Sciences, Cumhuriyet University, 58140 Sivas, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

Edited by J. Simpson, University of Otago, New Zealand (Received 8 June 2016; accepted 11 June 2016; online 17 June 2016)

In the title compound, C28H22O5S3, the central cyclo­hexane ring adopts a chair conformation. The atoms of the furan ring attached to the 6-position of the central cyclo­hexane ring are disordered over two sets of sites with occupancies of 0.832 (5) and 0.168 (5). The hy­droxy group is disordered over two positions (at the 4- and 6-positions of the cyclo­hexane ring) in the ratio 0.832 (5):0.168 (5). In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming layers parallel to (100).

1. Chemical context

Domino or cascade reactions have many applications in organic chemistry (Tietze et al., 2006[Tietze, L. F., Brasche, G. & Gericke, K. M. (2006). In Domino Reactions in Organic Synthesis. Weinheim: Wiley-VCH.]). They are used for the synthesis of complex mol­ecules that have polysubstituted and multiple stereocenters in a single step (Pellissier, 2012[Pellissier, H. (2012). Adv. Synth. Catal. 354, 237-294.], 2013[Pellissier, H. (2013). Chem. Rev. 113, 442-524.]). Penta­substituted cyclo­hexa­nol derivatives can be synthesized from aromatic aldehydes and ketones via domino reaction (Luo & Shan, 2006[Luo, X. & Shan, Z. (2006). Tetrahedron Lett. 47, 5623-5627.]; Gezegen & Ceylan, 2015[Gezegen, H. & Ceylan, M. (2015). Synth. Commun. 45, 2344-2349.]). In this paper we report the synthesis of [(1R,2S,3R,4S,6S)-2,6-bis­(furan-2-yl)-4-hy­droxy-4-(thio­phen-2-yl)cyclo­hexane-1,3-di­yl]bis­(thio­phen-2-yl­methanone) in a high yield starting from 2-acetyl­thio­phene and furfural. The resulting product is a racemate crystallizing in a centrosymmetric space group.

[Scheme 1]

2. Structural commentary

In the title compound, Fig. 1[link], the central cyclo­hexane ring adopts a chair conformation [the puckering parameters are QT = 0.586 (3) Å, θ = 0.0 (3)° and φ = 169 (17)°]. The mean plane of this ring makes dihedral angles of 80.42 (14), 59.57 (17), 85.65 (17), 66.82 (19), 84.88 (18) and 83.1 (8)°, respectively, with the five associated five-membered rings (S1/C8–C11, S2/C16–C19, S3/C21–C24, O2A/C12A–C15A, O5/C25–C28 and O2B/C12B–C15B).

[Figure 1]
Figure 1
View of the title compound with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. The minor disorder component is not shown, for clarity.

3. Supra­molecular features

The mol­ecular conformation is stabilized by a weak intra­molecular O—H⋯O inter­action (Table 1[link]). C—H⋯O hydrogen bonds together with C—H⋯π contacts, Table 1[link], form layers of mol­ecules when viewed along both the a- and b-axis directions, Figs. and 3. Short S3⋯S3ii contacts [symmetry code: (ii) −x + 1, −y, −z + 1] at 3.5210 (12) Å may also contribute to the crystal packing (Figs. 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the S1/C8–C11 and S2/C16–C19 thio­phene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O3A—H3A⋯O4 0.82 2.08 2.673 (4) 129
C22—H22⋯O3Ai 0.93 2.40 3.321 (4) 170
C24—H24⋯Cg2ii 0.93 2.95 3.650 (4) 133
C27—H27⋯Cg1iii 0.93 2.89 3.612 (4) 135
C14B—H14BCg1iv 0.93 2.87 3.772 (19) 163
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
View of the packing of the title compound down the a axis. For clarity, the minor disorder component is not shown.
[Figure 3]
Figure 3
View of the packing of the title compound down the b-axis. For clarity, the minor disorder component is not shown.

4. Semi-empirical quantum mechanical calculations

According to the results of theoretical calculations carried out using the semi-empirical quantum-mechanical CNDO/2 (Complete Neglect of Differential Overlap) method (Pople & Beveridge, 1970[Pople, J. A. & Beveridge, D. L. (1970). In Approximate Molecular Orbital Theory. New York: McGraw-Hill.]), the spatial view of the single mol­ecule, with atomic labels, calculated as a closed-shell in a vacuum is shown in Fig. 4[link]. The net charges on atoms O1, O2, O3, O4, O5, S1, S2 and S3 are −0.330, −0.113, −0.279, −0.341, −0.158, −0.014, −0.055 and −0.021 e, respectively. This is useful as prediction of the electron-rich and electron-poor sites of a molecule provides a rough estimate of chemical and physical properties of the molecule. The dipole moment of the title mol­ecule is 3.626 Debye. The HOMO and LUMO energy levels are −10.31 and 1.72 eV, respectively. The values of the HOMO and LUMO energy levels determine the way in which the molecule interacts with other species and help to characterize the chemical reactivity and kinetics of the molecule.

[Figure 4]
Figure 4
Spatial view of the mol­ecule of the title compound calculated using the CNDO method.

The geometrical parameter values obtained by the X-ray structure determination of the title compound are consistent with those calculated by the CNDO/2 method within the error limits (Table 2[link]). Small differences between the theoretical and experimental results may result from the calculations assuming the mol­ecule is in a vacuum.

Table 2
Comparison of geometrical parameters from the X-ray study and semi-empirical quantum-mechanical CNDO/2 calculations (Å, °)

Bond X-ray CNDO/2
S1—C8 1.720 (3) 1.771
S1—C11 1.698 (4) 1.767
S2—C16 1.713 (3) 1.778
S2—C19 1.673 (5) 1.763
S3—C21 1.726 (3) 1.769
S3—C24 1.691 (4) 1.765
O1—C7 1.223 (4) 1.213
O2A—C12A 1.420 (5) 1.360
O2A—C15A 1.420 (5) 1.358
O3A—C3 1.445 (3) 1.420
O4—C20 1.231 (4) 1.214
O5—C28 1.358 (5) 1.356
O5—C25 1.383 (4) 1.360
     
C2—C1—C12A 112.8 (8) 112.2
C2—C1—C6 110.2 (2) 113.3
C6—C1—C12A 112.0 (3) 111.2
C2—C3—C16 109.8 (2) 113.6
C2—C3—C4 109.4 (2) 110.6
C4—C3—C16 111.4 (2) 110.7
O3A—C3—C16 109.6 (2) 106.6
C3—C4—C20 111.8 (2) 111.3
C5—C4—C20 107.2 (2) 109.4
C3—C4—C5 110.5 (2) 112.8
C6—C5—C25 112.4 (2) 111.3
C4—C5—C25 110.5 (2) 111.9
C4—C5—C6 111.2 (2) 112.5
C5—C6—C7 108.6 (2) 113.1
C1—C6—C7 109.9 (2) 109.9
C1—C6—C5 110.6 (2) 107.9
O1—C7—C8 120.4 (3) 121.8
C6—C7—C8 120.2 (3) 118.2
O1—C7—C6 119.4 (3) 119.9
O4—C20—C4 119.4 (3) 119.1
C4—C20—C21 119.7 (3) 119.6
O4—C20—C21 120.8 (3) 121.2

5. Synthesis and crystallization

[(1R,2S,3R,4S,6S)-2,6-bis­(furan-2-yl)-4-hy­droxy-4-(thio­phen-2-yl)cyclo­hexane-1,3-di­yl]bis­(thio­phen-2-yl­methanone) was synthesized according to a literature method (Gezegen & Ceylan, 2015[Gezegen, H. & Ceylan, M. (2015). Synth. Commun. 45, 2344-2349.]) in 87% yield. Colourless prisms were recrystallized from ethanol solution, m.p = 524–526 K.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Atoms O2,C12-C15 atoms of the furan ring bound to the C1 atom of the central cyclo­hexane ring are disordered over two sets of sites with an occupancy ratio 0.832 (5):0.168 (5). The O3 hy­droxy group is disordered over two positions (on the C1 and C3 atoms of the cyclo­hexane ring) in the same ratio. The positionally disordered H atoms (H1A on C1 and H1B on C3) were found from a difference Fourier map and their positions were constrained to the expected geometries [C—H = 0.95±0.02 Å] with a fixed U value of 0.05 Å2. All other H atoms were placed in calculated positions (C—H = 0.93–0.98, O—H = 0.82 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(carrier).

Table 3
Experimental details

Crystal data
Chemical formula C28H22O5S3
Mr 534.64
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 14.0915 (11), 15.8984 (12), 11.2964 (7)
β (°) 95.421 (2)
V3) 2519.4 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.33
Crystal size (mm) 0.19 × 0.17 × 0.13
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.597, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 52585, 6252, 3960
Rint 0.070
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.204, 1.04
No. of reflections 6252
No. of parameters 338
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.75, −0.74
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2003).

[(1R,2S,3R,4S,6S)-2,6-Bis(furan-2-yl)-4-hydroxy-4-(thiophen-2-yl)cyclohexane-1,3-diyl]bis(thiophen-2-ylmethanone) top
Crystal data top
C28H22O5S3F(000) = 1112
Mr = 534.64Dx = 1.410 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9982 reflections
a = 14.0915 (11) Åθ = 3.1–28.2°
b = 15.8984 (12) ŵ = 0.33 mm1
c = 11.2964 (7) ÅT = 296 K
β = 95.421 (2)°Prism, colourless
V = 2519.4 (3) Å30.19 × 0.17 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3960 reflections with I > 2σ(I)
φ and ω scansRint = 0.070
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
θmax = 28.4°, θmin = 3.1°
Tmin = 0.597, Tmax = 0.746h = 1818
52585 measured reflectionsk = 2121
6252 independent reflectionsl = 1513
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.066H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.204 w = 1/[σ2(Fo2) + (0.101P)2 + 2.3401P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
6252 reflectionsΔρmax = 0.75 e Å3
338 parametersΔρmin = 0.74 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.10680 (6)0.34243 (6)0.32727 (9)0.0528 (3)
S20.57614 (7)0.33394 (7)0.55457 (10)0.0661 (4)
S30.38176 (6)0.03610 (5)0.49813 (8)0.0497 (3)
O10.06307 (16)0.33764 (15)0.50045 (19)0.0468 (7)
O2A0.1462 (2)0.51774 (19)0.4184 (3)0.0541 (10)0.832 (5)
O2B0.2243 (12)0.4730 (9)0.2304 (15)0.0541 (10)0.168 (5)
O3A0.3783 (2)0.30198 (19)0.6008 (2)0.0419 (8)0.832 (5)
O3B0.2474 (13)0.4000 (12)0.5522 (11)0.050 (5)0.168 (5)
O40.37016 (18)0.13400 (15)0.59929 (19)0.0516 (8)
O50.16291 (18)0.14210 (14)0.2732 (2)0.0522 (8)
C10.2479 (2)0.38831 (18)0.4265 (3)0.0354 (9)
C20.3529 (2)0.37285 (18)0.4141 (3)0.0360 (9)
C30.3902 (2)0.29228 (18)0.4759 (2)0.0339 (8)
C40.33066 (19)0.21646 (17)0.4248 (2)0.0302 (8)
C50.22355 (19)0.23054 (17)0.4381 (2)0.0317 (8)
C60.18765 (19)0.31239 (16)0.3769 (2)0.0304 (8)
C70.0835 (2)0.32507 (17)0.3991 (3)0.0335 (8)
C80.0088 (2)0.32100 (18)0.3002 (3)0.0354 (9)
C90.0139 (2)0.3006 (2)0.1833 (3)0.0433 (10)
C100.0750 (3)0.3032 (2)0.1164 (3)0.0578 (12)
C110.1458 (3)0.3250 (2)0.1826 (4)0.0592 (14)
C12A0.2159 (3)0.46624 (16)0.3713 (3)0.0372 (10)0.832 (5)
C12B0.2063 (16)0.4706 (10)0.3519 (15)0.0372 (10)0.168 (5)
C13A0.2394 (3)0.5031 (3)0.2634 (3)0.0602 (17)0.832 (5)
C13B0.1550 (17)0.5444 (12)0.3766 (17)0.0602 (17)0.168 (5)
C14A0.1842 (3)0.5774 (2)0.2437 (4)0.089 (3)0.832 (5)
C14B0.1413 (19)0.5924 (11)0.270 (2)0.089 (3)0.168 (5)
C15A0.1266 (3)0.58644 (17)0.3395 (4)0.095 (3)0.832 (5)
C15B0.1841 (17)0.5483 (12)0.1800 (16)0.095 (3)0.168 (5)
C160.4946 (2)0.28136 (19)0.4597 (3)0.0368 (9)
C170.5386 (2)0.2391 (2)0.3737 (3)0.0446 (10)
C180.6395 (3)0.2524 (3)0.3902 (4)0.0607 (14)
C190.6665 (3)0.3005 (3)0.4807 (4)0.0648 (15)
C200.3597 (2)0.13466 (19)0.4899 (3)0.0349 (9)
C210.3687 (2)0.05818 (18)0.4227 (3)0.0364 (9)
C220.3728 (3)0.0465 (2)0.3024 (3)0.0470 (11)
C230.3884 (3)0.0380 (2)0.2741 (4)0.0588 (14)
C240.3939 (3)0.0894 (2)0.3709 (4)0.0564 (13)
C250.1672 (2)0.15642 (18)0.3943 (3)0.0364 (9)
C260.1219 (3)0.0946 (2)0.4462 (4)0.0583 (14)
C270.0863 (3)0.0390 (2)0.3511 (4)0.0651 (14)
C280.1138 (3)0.0694 (3)0.2513 (4)0.0681 (16)
H1A0.237 (5)0.395 (4)0.511 (2)0.0500*0.832 (5)
H1B0.38 (2)0.310 (18)0.557 (10)0.0500*0.168 (5)
H2A0.389500.420300.447500.0430*
H2B0.362400.369500.330300.0430*
H3A0.398700.260000.637000.0630*0.832 (5)
H3B0.267700.357400.586900.0750*0.168 (5)
H40.339700.210100.340300.0360*
H50.216400.236300.523100.0380*
H60.192400.307700.291200.0370*
H90.070300.286400.151600.0520*
H100.084100.291400.035500.0690*
H110.209200.329900.152200.0710*
H13A0.283300.482300.214200.0720*0.832 (5)
H13B0.134000.558800.449600.0720*0.168 (5)
H14A0.185600.613800.179400.1060*0.832 (5)
H14B0.109700.643800.261500.1060*0.168 (5)
H15A0.083600.629800.348900.1140*0.832 (5)
H15B0.185600.565600.101500.1140*0.168 (5)
H170.507300.206700.313600.0540*
H180.681800.229000.341000.0730*
H190.729800.314900.502100.0780*
H220.366000.089600.246500.0560*
H230.394400.057000.197300.0710*
H240.403300.147200.367400.0670*
H260.114800.088600.526800.0700*
H270.050500.009500.358900.0780*
H280.101300.044700.176900.0820*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0311 (4)0.0639 (6)0.0647 (6)0.0092 (4)0.0107 (4)0.0048 (4)
S20.0504 (6)0.0790 (7)0.0673 (7)0.0109 (5)0.0031 (5)0.0003 (5)
S30.0463 (5)0.0395 (4)0.0629 (6)0.0047 (3)0.0033 (4)0.0151 (4)
O10.0406 (12)0.0624 (14)0.0392 (12)0.0037 (11)0.0140 (10)0.0035 (10)
O2A0.0456 (16)0.0549 (18)0.064 (2)0.0046 (14)0.0166 (14)0.0075 (15)
O2B0.0456 (16)0.0549 (18)0.064 (2)0.0046 (14)0.0166 (14)0.0075 (15)
O3A0.0450 (15)0.0512 (16)0.0295 (13)0.0019 (12)0.0033 (13)0.0089 (13)
O3B0.055 (9)0.060 (9)0.035 (7)0.003 (7)0.007 (7)0.011 (8)
O40.0655 (16)0.0536 (14)0.0353 (12)0.0054 (12)0.0029 (11)0.0087 (10)
O50.0627 (16)0.0415 (12)0.0497 (13)0.0028 (11)0.0083 (11)0.0046 (10)
C10.0337 (15)0.0335 (14)0.0395 (16)0.0014 (12)0.0065 (13)0.0067 (12)
C20.0298 (14)0.0328 (14)0.0454 (17)0.0019 (11)0.0034 (12)0.0019 (12)
C30.0315 (14)0.0365 (15)0.0335 (15)0.0007 (11)0.0028 (12)0.0015 (12)
C40.0284 (14)0.0320 (14)0.0303 (14)0.0006 (11)0.0032 (11)0.0003 (11)
C50.0306 (14)0.0325 (14)0.0322 (14)0.0012 (11)0.0044 (11)0.0010 (11)
C60.0282 (14)0.0313 (13)0.0325 (14)0.0007 (11)0.0067 (11)0.0026 (11)
C70.0309 (14)0.0301 (14)0.0403 (16)0.0012 (11)0.0084 (12)0.0005 (11)
C80.0278 (14)0.0330 (14)0.0458 (17)0.0023 (11)0.0061 (12)0.0022 (12)
C90.0369 (16)0.0456 (18)0.0470 (18)0.0050 (14)0.0026 (14)0.0055 (14)
C100.056 (2)0.059 (2)0.055 (2)0.0027 (18)0.0126 (18)0.0101 (17)
C110.0371 (19)0.059 (2)0.078 (3)0.0043 (16)0.0125 (18)0.0010 (19)
C12A0.0323 (18)0.0281 (14)0.051 (2)0.0009 (12)0.0032 (16)0.0054 (14)
C12B0.0323 (18)0.0281 (14)0.051 (2)0.0009 (12)0.0032 (16)0.0054 (14)
C13A0.060 (3)0.052 (3)0.070 (3)0.014 (2)0.014 (2)0.022 (2)
C13B0.060 (3)0.052 (3)0.070 (3)0.014 (2)0.014 (2)0.022 (2)
C14A0.069 (4)0.054 (3)0.137 (6)0.006 (3)0.020 (4)0.041 (3)
C14B0.069 (4)0.054 (3)0.137 (6)0.006 (3)0.020 (4)0.041 (3)
C15A0.063 (4)0.047 (3)0.167 (7)0.011 (3)0.032 (4)0.013 (4)
C15B0.063 (4)0.047 (3)0.167 (7)0.011 (3)0.032 (4)0.013 (4)
C160.0291 (14)0.0404 (16)0.0402 (16)0.0010 (12)0.0001 (12)0.0064 (12)
C170.0301 (16)0.0478 (18)0.057 (2)0.0030 (13)0.0097 (14)0.0030 (15)
C180.0379 (19)0.067 (2)0.080 (3)0.0084 (17)0.0205 (18)0.017 (2)
C190.0372 (19)0.078 (3)0.077 (3)0.0060 (18)0.0054 (18)0.025 (2)
C200.0290 (14)0.0395 (15)0.0360 (16)0.0002 (12)0.0028 (12)0.0034 (12)
C210.0291 (14)0.0351 (15)0.0446 (17)0.0043 (12)0.0015 (12)0.0058 (12)
C220.057 (2)0.0389 (17)0.0451 (18)0.0042 (15)0.0043 (15)0.0027 (14)
C230.069 (3)0.046 (2)0.062 (2)0.0062 (18)0.0095 (19)0.0109 (17)
C240.049 (2)0.0344 (17)0.085 (3)0.0054 (15)0.0028 (18)0.0012 (17)
C250.0279 (14)0.0341 (14)0.0469 (17)0.0036 (12)0.0027 (12)0.0012 (12)
C260.053 (2)0.0427 (19)0.083 (3)0.0021 (16)0.0257 (19)0.0041 (18)
C270.057 (2)0.0389 (19)0.099 (3)0.0146 (17)0.005 (2)0.007 (2)
C280.070 (3)0.049 (2)0.081 (3)0.0066 (19)0.016 (2)0.010 (2)
Geometric parameters (Å, º) top
S1—C81.720 (3)C14A—C15A1.420 (6)
S1—C111.697 (5)C14B—C15B1.42 (3)
S2—C161.713 (3)C16—C171.376 (4)
S2—C191.674 (4)C17—C181.432 (5)
S3—C211.725 (3)C18—C191.304 (6)
S3—C241.691 (4)C20—C211.445 (4)
O1—C71.223 (4)C21—C221.378 (5)
O2A—C12A1.420 (5)C22—C231.403 (5)
O2A—C15A1.420 (5)C23—C241.361 (6)
O2B—C12B1.42 (2)C25—C261.337 (5)
O2B—C15B1.42 (2)C26—C271.444 (6)
O3A—C31.445 (3)C27—C281.318 (6)
O3B—C11.433 (13)C1—H1A0.99 (3)
O4—C201.231 (4)C2—H2A0.9700
O5—C251.383 (4)C2—H2B0.9700
O5—C281.358 (5)C3—H1B0.98 (16)
O3A—H3A0.8200C4—H40.9800
O3B—H3B0.8200C5—H50.9800
C1—C21.519 (4)C6—H60.9800
C1—C12B1.635 (17)C9—H90.9300
C1—C12A1.440 (4)C10—H100.9300
C1—C61.550 (4)C11—H110.9300
C2—C31.528 (4)C13A—H13A0.9300
C3—C161.510 (4)C13B—H13B0.9300
C3—C41.549 (4)C14A—H14A0.9300
C4—C51.547 (4)C14B—H14B0.9300
C4—C201.531 (4)C15A—H15A0.9300
C5—C61.537 (4)C15B—H15B0.9300
C5—C251.480 (4)C17—H170.9300
C6—C71.526 (4)C18—H180.9300
C7—C81.462 (4)C19—H190.9300
C8—C91.368 (5)C22—H220.9300
C9—C101.401 (5)C23—H230.9300
C10—C111.348 (6)C24—H240.9300
C12A—C13A1.420 (5)C26—H260.9300
C12B—C13B1.42 (3)C27—H270.9300
C13A—C14A1.420 (6)C28—H280.9300
C13B—C14B1.42 (3)
C8—S1—C1191.29 (19)C21—C22—C23112.1 (3)
C16—S2—C1991.72 (19)C22—C23—C24113.0 (4)
C21—S3—C2491.73 (17)S3—C24—C23112.3 (3)
C12A—O2A—C15A108.0 (3)O5—C25—C26109.6 (3)
C12B—O2B—C15B108.0 (15)C5—C25—C26134.6 (3)
C25—O5—C28107.1 (3)O5—C25—C5115.7 (2)
C3—O3A—H3A109.00C25—C26—C27105.7 (4)
C1—O3B—H3B109.00C26—C27—C28107.6 (3)
O3B—C1—C12B111.8 (10)O5—C28—C27110.0 (4)
O3B—C1—C2102.0 (8)C2—C1—H1A110 (4)
O3B—C1—C6113.9 (8)C6—C1—H1A108 (4)
C2—C1—C12B112.8 (8)C12A—C1—H1A105 (4)
C6—C1—C12A112.0 (3)C1—C2—H2A109.00
C6—C1—C12B106.2 (7)C1—C2—H2B109.00
C2—C1—C12A111.5 (3)C3—C2—H2A109.00
C2—C1—C6110.2 (2)C3—C2—H2B109.00
C1—C2—C3112.9 (2)H2A—C2—H2B108.00
O3A—C3—C2106.9 (2)C2—C3—H1B96 (14)
C2—C3—C4109.4 (2)C4—C3—H1B117 (15)
O3A—C3—C4109.8 (2)C16—C3—H1B112 (17)
O3A—C3—C16109.6 (2)C3—C4—H4109.00
C4—C3—C16111.4 (2)C5—C4—H4109.00
C2—C3—C16109.8 (2)C20—C4—H4109.00
C3—C4—C20111.8 (2)C4—C5—H5107.00
C3—C4—C5110.5 (2)C6—C5—H5108.00
C5—C4—C20107.2 (2)C25—C5—H5107.00
C4—C5—C25110.5 (2)C1—C6—H6109.00
C4—C5—C6111.2 (2)C5—C6—H6109.00
C6—C5—C25112.4 (2)C7—C6—H6109.00
C5—C6—C7108.6 (2)C8—C9—H9124.00
C1—C6—C7109.9 (2)C10—C9—H9124.00
C1—C6—C5110.6 (2)C9—C10—H10124.00
O1—C7—C6119.4 (3)C11—C10—H10124.00
O1—C7—C8120.4 (3)S1—C11—H11124.00
C6—C7—C8120.2 (3)C10—C11—H11124.00
S1—C8—C7118.8 (2)C12A—C13A—H13A126.00
C7—C8—C9130.4 (3)C14A—C13A—H13A126.00
S1—C8—C9110.8 (2)C12B—C13B—H13B126.00
C8—C9—C10112.8 (3)C14B—C13B—H13B126.00
C9—C10—C11112.3 (3)C15A—C14A—H14A126.00
S1—C11—C10112.8 (3)C13A—C14A—H14A126.00
O2A—C12A—C13A108.0 (3)C15B—C14B—H14B126.00
O2A—C12A—C1122.2 (3)C13B—C14B—H14B126.00
C1—C12A—C13A129.7 (3)O2A—C15A—H15A126.00
O2B—C12B—C1115.6 (13)C14A—C15A—H15A126.00
O2B—C12B—C13B108.0 (15)C14B—C15B—H15B126.00
C1—C12B—C13B136.4 (15)O2B—C15B—H15B126.00
C12A—C13A—C14A108.0 (3)C18—C17—H17125.00
C12B—C13B—C14B107.9 (17)C16—C17—H17125.00
C13A—C14A—C15A108.0 (3)C17—C18—H18123.00
C13B—C14B—C15B108.0 (17)C19—C18—H18123.00
O2A—C15A—C14A108.0 (3)S2—C19—H19123.00
O2B—C15B—C14B108.1 (16)C18—C19—H19123.00
S2—C16—C17111.1 (2)C23—C22—H22124.00
C3—C16—C17130.6 (3)C21—C22—H22124.00
S2—C16—C3118.2 (2)C22—C23—H23124.00
C16—C17—C18110.1 (3)C24—C23—H23123.00
C17—C18—C19113.7 (4)S3—C24—H24124.00
S2—C19—C18113.4 (3)C23—C24—H24124.00
O4—C20—C4119.4 (3)C27—C26—H26127.00
O4—C20—C21120.8 (3)C25—C26—H26127.00
C4—C20—C21119.7 (3)C26—C27—H27126.00
S3—C21—C20118.8 (3)C28—C27—H27126.00
S3—C21—C22110.9 (2)C27—C28—H28125.00
C20—C21—C22130.2 (3)O5—C28—H28125.00
C11—S1—C8—C7179.5 (2)C3—C4—C20—O446.3 (3)
C11—S1—C8—C90.6 (3)C3—C4—C5—C657.1 (2)
C8—S1—C11—C100.5 (3)C5—C4—C20—O475.0 (3)
C19—S2—C16—C3175.7 (3)C20—C4—C5—C2555.4 (3)
C19—S2—C16—C170.2 (3)C4—C5—C6—C7176.9 (2)
C16—S2—C19—C180.3 (4)C6—C5—C25—O557.1 (3)
C24—S3—C21—C220.7 (3)C6—C5—C25—C26127.6 (4)
C24—S3—C21—C20176.8 (3)C25—C5—C6—C758.7 (3)
C21—S3—C24—C230.0 (3)C25—C5—C6—C1179.3 (2)
C15A—O2A—C12A—C1176.4 (3)C4—C5—C25—O567.7 (3)
C12A—O2A—C15A—C14A0.0 (4)C4—C5—C6—C156.2 (3)
C15A—O2A—C12A—C13A0.0 (4)C4—C5—C25—C26107.5 (4)
C28—O5—C25—C5176.3 (3)C1—C6—C7—O155.6 (3)
C28—O5—C25—C260.2 (4)C5—C6—C7—O165.5 (3)
C25—O5—C28—C271.1 (4)C5—C6—C7—C8113.6 (3)
C6—C1—C12A—O2A90.7 (4)C1—C6—C7—C8125.3 (3)
C2—C1—C12A—C13A39.2 (5)C6—C7—C8—C95.6 (5)
C2—C1—C6—C555.4 (3)O1—C7—C8—C9173.5 (3)
C6—C1—C12A—C13A84.9 (5)O1—C7—C8—S15.1 (4)
C12A—C1—C6—C759.9 (3)C6—C7—C8—S1175.8 (2)
C12A—C1—C6—C5179.8 (3)S1—C8—C9—C100.6 (4)
C12A—C1—C2—C3177.8 (3)C7—C8—C9—C10179.3 (3)
C2—C1—C6—C7175.3 (2)C8—C9—C10—C110.2 (4)
C2—C1—C12A—O2A145.2 (3)C9—C10—C11—S10.3 (4)
C6—C1—C2—C357.1 (3)C1—C12A—C13A—C14A176.0 (4)
C1—C2—C3—C16180.0 (3)O2A—C12A—C13A—C14A0.0 (4)
C1—C2—C3—O3A61.2 (3)C12A—C13A—C14A—C15A0.0 (5)
C1—C2—C3—C457.5 (3)C13A—C14A—C15A—O2A0.0 (4)
C2—C3—C4—C556.4 (3)S2—C16—C17—C180.1 (4)
C2—C3—C16—C1792.0 (4)C3—C16—C17—C18175.2 (3)
O3A—C3—C4—C2058.7 (3)C16—C17—C18—C190.1 (5)
C2—C3—C16—S283.0 (3)C17—C18—C19—S20.2 (5)
O3A—C3—C4—C560.6 (3)O4—C20—C21—C22170.1 (4)
C16—C3—C4—C2062.9 (3)O4—C20—C21—S36.8 (4)
C2—C3—C4—C20175.6 (2)C4—C20—C21—C2213.8 (5)
O3A—C3—C16—C17150.9 (3)C4—C20—C21—S3169.3 (2)
O3A—C3—C16—S234.1 (3)S3—C21—C22—C231.3 (4)
C4—C3—C16—C1729.3 (4)C20—C21—C22—C23175.8 (3)
C4—C3—C16—S2155.75 (19)C21—C22—C23—C241.3 (5)
C16—C3—C4—C5177.9 (2)C22—C23—C24—S30.8 (5)
C3—C4—C5—C25177.4 (2)O5—C25—C26—C270.7 (4)
C20—C4—C5—C6179.2 (2)C5—C25—C26—C27176.2 (3)
C5—C4—C20—C21101.2 (3)C25—C26—C27—C281.4 (5)
C3—C4—C20—C21137.6 (3)C26—C27—C28—O51.5 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the S1/C8–C11 and S2/C16–C19 thiophene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O3A—H3A···O40.822.082.673 (4)129
C5—H5···O3A0.982.592.944 (4)102
C22—H22···O3Ai0.932.403.321 (4)170
C24—H24···Cg2ii0.932.953.650 (4)133
C27—H27···Cg1iii0.932.893.612 (4)135
C14B—H14B···Cg1iv0.932.873.772 (19)163
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x, y1/2, z+1/2; (iv) x, y+1/2, z+1/2.
Comparison of geometrical parameters from the X-ray study and semi-empirical quantum-mechanical CNDO/2 calculations (Å, °) top
BondX-rayCNDO/2
S1—C81.720 (3)1.7707
S1—C111.698 (4)1.7665
S2—C161.713 (3)1.7781
S2—C191.673 (5)1.7628
S3—C211.726 (3)1.7689
S3—C241.691 (4)1.7653
O1—C71.223 (4)1.2131
O2A—C12A1.420 (5)1.3602
O2A—C15A1.420 (5)1.3577
O3A—C31.445 (3)1.4203
O4—C201.231 (4)1.2136
O5—C281.358 (5)1.3559
O5—C251.383 (4)1.3600
C2—C1—C12A112.8 (8)112.15
C2—C1—C6110.2 (2)113.29
C6—C1—C12A112.0 (3)111.15
C2—C3—C16109.8 (2)113.64
C2—C3—C4109.4 (2)110.56
C4—C3—C16111.4 (2)110.66
O3A—C3—C16109.6 (2)106.60
C3—C4—C20111.8 (2)111.33
C5—C4—C20107.2 (2)109.38
C3—C4—C5110.5 (2)112.83
C6—C5—C25112.4 (2)111.32
C4—C5—C25110.5 (2)111.87
C4—C5—C6111.2 (2)112.50
C5—C6—C7108.6 (2)113.14
C1—C6—C7109.9 (2)109.87
C1—C6—C5110.6 (2)107.85
O1—C7—C8120.4 (3)121.83
C6—C7—C8120.2 (3)118.24
O1—C7—C6119.4 (3)119.93
O4—C20—C4119.4 (3)119.14
C4—C20—C21119.7 (3)119.62
O4—C20—C21120.8 (3)121.24
 

Acknowledgements

The authors are indebted to the X-ray laboratory of Sinop University Scientific and Technological Applied and Research Center, Sinop, Turkey, for use of the X-ray diffractometer.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGezegen, H. & Ceylan, M. (2015). Synth. Commun. 45, 2344–2349.  CrossRef CAS Google Scholar
First citationLuo, X. & Shan, Z. (2006). Tetrahedron Lett. 47, 5623–5627.  CrossRef CAS Google Scholar
First citationPellissier, H. (2012). Adv. Synth. Catal. 354, 237–294.  CrossRef CAS Google Scholar
First citationPellissier, H. (2013). Chem. Rev. 113, 442–524.  CrossRef CAS PubMed Google Scholar
First citationPople, J. A. & Beveridge, D. L. (1970). In Approximate Molecular Orbital Theory. New York: McGraw–Hill.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTietze, L. F., Brasche, G. & Gericke, K. M. (2006). In Domino Reactions in Organic Synthesis. Weinheim: Wiley-VCH.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds