research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two new carbazole derivatives: 12-(4-nitro­phen­yl)-7-phenyl­sulfonyl-7H-benzofuro[2,3-b]carbazole and 2-methyl-4-(4-nitro­phen­yl)-9-phenyl­sulfonyl-9H-thieno[2,3-b]carbazole

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 20 October 2016; accepted 24 October 2016; online 4 November 2016)

The title compounds, C30H18N2O5S, (I), and C27H18N2O4S2, (II), are carbazole derivatives with a phenyl­sulfonyl group and a nitro­phenyl group attached to the carbazole moiety in identical positions in both mol­ecules. A benzo­furan ring system in (I) and a methyl­thio­phene ring in (II) are fused with the respective carbazole moieties on the same sides. The mean plane of the carbazole ring system makes a dihedral angle of 3.17 (7)° with the benzo­furan ring system in (I) and a dihedral angle of 3.39 (11)° with the methyl­thio­phene ring in (II), implying that both fused units are essentially planar. The mean planes of the carbazole ring systems in both the compounds are almost orthogonal to the respective nitro-substituted phenyl rings, making dihedral angles of 75.64 (10) and 77.63 (12)° in compounds (I) and (II), respectively. In (I), the phenyl­sulfonyl ring system is positionally disordered with a refined occupancy ratio of 0.63 (2):0.37 (2). In both compounds, the mol­ecular structures are stabilized by intra­molecular C—H⋯O hydrogen bonds, generating S(6) ring motifs with the sulfone group O atoms. In the crystal of compound (I), mol­ecules are linked by pairs of C—H⋯O hydrogen bonds, which generate R22(18) inversion dimers, and inter­connected by C(14) chains running along the c-axis direction, whereas in compound (II), the C—H⋯O hydrogen bonds generate R43(37) ring motifs. In the crystals of both compounds, C—H⋯O hydrogen-bonded sheets are formed lying parallel to (10-1). In addition, C—H⋯π and offset ππ inter­actions [inter­centroid distance = 3.7158 (14) Å in (I) and 3.9040 (15) Å in (II)] are also present in the crystals of both compounds.

1. Chemical context

Carbazole and its derivatives are inter­esting compounds owing to their applications in pharmacy and mol­ecular electronics. Carbazole derivatives exhibit various biological activities such as anti­tumor (Itoigawa et al., 2000[Itoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893-897.]), anti-oxidative (Tachibana et al., 2001[Tachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2001). J. Agric. Food Chem. 49, 5589-5594.]), anti-inflammatory and anti­mutagenic (Ramsewak et al., 1999[Ramsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444-447.]). They also exhibit electroactivity and luminescence and are considered to be potential candidates for electronic applications, such as colour displays, organic semiconductors, laser and solar cells (Friend, et al. 1999[Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Brédas, J. L., Lögdlund, M. & Salaneck, W. R. (1999). Nature, 397, 121-128.]). Tetra­hydro­carbazole systems are present in the framework of a number of indole-type alkaloids of biological inter­est (Saxton, 1983[Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, ch. 8 and 11. New York: Wiley.]). Carbazole-based heterocyclic polymer systems can be chemically or electrochemically polymerized to give products with a number of applications, such as rechargeable batteries (Sacak, 1999[Sacak, M. (1999). J. Appl. Polym. Sci. 74, 1792-1796.]) and electrochromic displays (Santhanam & Sundaresan, 1986[Santhanam, K. S. V. & Sundaresan, N. S. (1986). Indian J. Technol. 24, 417-422.]). This enables their use as suitable building blocks for the design and synthesis of mol­ecular glasses, which are widely studied as components of electroactive and photoactive materials (Zhang et al., 2004[Zhang, Q., Chen, J., Cheng, Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). J. Mater. Chem. 14, 895-900.]). Against this background, the X-ray structure determination of the title compounds, (I)[link] and (II)[link], has been carried out to study their structural aspects and the results are presented here.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of the title compounds, (I)[link] and (II)[link], are illustrated in Figs. 1[link] and 2[link], respectively. In both compounds, the carbazole ring systems (N1/C1–C12) are essentially planar with maximum deviations of 0.089 (3) and 0.089 (3) Å for atom C10 in compounds (I)[link] and (II)[link], respectively. In compound (I)[link], the benzo­furan moiety (O5/C10/C11/CC25–C30) is essentially planar with a maximum deviation of 0.021 (3) Å for atom C10 while the phenyl­sulfonyl ring system is positionally disordered with a refined occupancy factor of 0.63 (2): 0.37 (2).

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Intra­molecular C2—H2⋯O1 and C9—H9⋯O2 hydrogen bonds, which generate two S(6) ring motifs, are shown as dashed lines (see Table 1[link]). For the sake of clarity, the minor component of the disordered phenyl­sulfonyl ring has been omitted.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Intra­molecular C2—H2⋯O1 and C9—H9⋯O2 hydrogen bonds, which generate two S(6) ring motifs, are shown as dashed lines (see Table 2[link]).

The mean planes of the carbazole ring systems make dihedral angles of 3.17 (7) and 3.39 (11)°, respectively, with the benzo­furan ring in (I)[link] and the methyl­thio­phene ring in (II)[link], indicating that the ring systems they are essentially coplanar. The nitro­phenyl rings in compounds (I)[link] and (II)[link] are inclined to the carbazole ring system by 75.64 (10) and 77.63 (12)°, respectively. The NO2 groups are inclined to the benzene ring (C19–C24) to which they are attached by 9.8 (4)° in (I)[link] and 9.3 (3)° in (II)[link]. The phenyl­sulfonyl ring (C13–C18) is almost normal to the nitro-substituted phenyl ring (C19–C24) with a dihedral angle of 84.7 (2)° in (I)[link] and 83.98 (17)° in (II)[link].

In both compounds, as a result of the electron-withdrawing character of the phenyl­sulfonyl group, the N—Csp2 bond lengths are longer than the mean value of 1.355 (14) Å for N—C bond lengths (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Atom S1 has a distorted tetra­hedral geometry. The widening of the O1=S1=O2 angle and narrowing of the N1—S1—C13 angle from the ideal tetra­hedral values are attributed to the Thorpe–Ingold effect (Bassindale, 1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]). The widening of the angles may be due to the repulsive inter­action between the two short S=O bonds.

The sums of the bond angles around atom N1 are 349.58° in (I)[link] and 351.18° in (II)[link], intermediate between sp2 and sp3 hybridization. In both compounds, the mol­ecular structure is stabilized by intra­molecular C—H⋯O hydrogen bonds, which generate S(6) ring motifs with the sulfone oxygen atoms (Tables 1[link] and 2[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 is the centroid of the furan ring O5/C10/C11/C25/C30 and Cg3 is the centroid of the benzene ring C1–C6.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1 0.93 2.41 3.015 (9) 122
C9—H9⋯O2 0.93 2.28 2.849 (9) 119
C14—H14⋯O4i 0.93 2.55 3.296 (7) 138
C20—H20⋯O2ii 0.93 2.53 3.454 (11) 172
C16—H16⋯Cg1iii 0.93 2.76 3.676 (6) 169
C23—H23⋯Cg3iv 0.93 2.99 3.908 (4) 169
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+2, -z; (iii) -x, -y+2, -z; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1 is the centroid of the thio­phene ring S2/C10/C11/C25/C26 and Cg3 is centroid of the benzene ring C1–C6.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1 0.93 2.38 2.970 (4) 121
C9—H9⋯O2 0.93 2.33 2.907 (3) 120
C3—H3⋯O4i 0.93 2.48 3.356 (4) 157
C14—H14⋯O4ii 0.93 2.58 3.335 (4) 139
C20—H20⋯O2iii 0.93 2.53 3.368 (5) 150
C16—H16⋯Cg1iv 0.93 2.89 3.812 (4) 172
C23—H23⋯Cg3v 0.93 2.75 3.646 (4) 163
Symmetry codes: (i) x, y+1, z; (ii) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+2; (iv) -x+2, -y, -z+2; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

3. Supra­molecular features

In the crystal of compound (I)[link], mol­ecules are linked via pairs of C20—H20⋯O2ii hydrogen bonds (Table 1[link]), forming R22(18) inversion dimers. The mol­ecules are also inter­connected by C14—H14⋯O4i hydrogen bonds, which generate C(14) chains. These inter­actions result in the formation of sheets parallel to (10[\overline{1}]). The crystal packing also features C16—H16⋯Cg1iii and C23—H23⋯Cg3iv inter­actions (Table 1[link] and Fig. 3[link]; Cg1 and Cg3 are the centroids of the rings C10/C11/C25/30/O5 and C1–C6, respectively. There are also offset ππ inter­actions present [Cg4⋯Cg4(−x + 1, −y + 2, −z) = 3.7158 (14) Å, inter­planar distance = 3.472 (1) Å, slippage = 1.324 (11) Å; Cg4 is the centroid of the C7–C12 ring]; see Table 1[link] and Fig. 3[link].

[Figure 3]
Figure 3
The crystal packing of compound (I)[link], viewed normal to the (10[\overline{1}]) plane, showing C—H⋯O hydrogen bonds that generate R22(18) inversion dimers and the C—H⋯O hydrogen bonds that generate C(14) chains running along the c-axis direction (see Table 1[link] for details). H atoms not involved in the hydrogen bonding and the benzo­furan ring have been excluded for clarity.

In the crystal of compound (II)[link], mol­ecules are linked by C3—H3⋯O4i and C14—H14⋯Oii4 hydrogen bonds (Table 2[link]), which result in the formation of R43(37) ring motifs (Fig. 4[link]). The crystal packing also features pairs of C20—H20⋯O2iii hydrogen bonds, which generate R22(18) inversion dimers (Fig. 5[link]), which are inter­connected by C16—H16⋯Cg1iv and C23—H23⋯Cg3v inter­actions [Cg1 and Cg3 are the centroids of rings C10/C11/C25/C26/S2 and C1–C6, respectively]. These inter­actions result in the formation of sheets parallel to (10[\overline{1}]). There are also offset ππ inter­actions present [Cg4⋯Cg4(−x + 1, −y, −z + 2) = 3.9040 (15) Å, inter­planar distance = 3.791 (1) Å, slippage 0.932 Å; Cg4 is the centroid of the C7–C12, ring]; see Table 2[link] and Figs. 4[link] and 5[link].

[Figure 4]
Figure 4
The crystal packing of compound (II)[link], viewed along the ac diagonal, showing the inter­molecular C—H⋯O hydrogen bonds (see Table 2[link]), which generate R43(37) ring motifs and form sheets lying parallel to the (10[\overline{1}]) plane. H atoms not involved in hydrogen bonding have been excluded for clarity.
[Figure 5]
Figure 5
The crystal packing of compound (II)[link], viewed along the c axis, showing the C—H⋯O inter­molecular hydrogen bonds which generate R22(18) inversion dimers (see Table 2[link]). H atoms not involved in hydrogen bonding have been excluded for clarity.

4. Database survey

A search of Cambridge Structural Database (CSD version 5.37; last update May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded four hits for 7H-[1] benzo­furan­[2,3-b]carbazole and 47 hits for 9-(phenyl­sulfon­yl)-9H-carbazole. However, the compound 7-phenyl­sulfonyl-7H-benzo­furan­[2,3-b]carbazole (EYOFEE01; Panchatcharam et al., 2011[Panchatcharam, R., Dhayalan, V., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2011). Acta Cryst. E67, o2829.]), which crystallizes in P21/c is the closest analogue of compound (I)[link]. The compound 2-methyl-9- (phenyl­sulfon­yl)-9H-thieno[2,3-b]carbazole (IQOBIA; Sureshbabu et al., 2011[Sureshbabu, R., Saravanan, V., Dhayalan, V. & Mohanakrishnan, A. K. (2011). Eur. J. Org. Chem. 922-935.]), which crystallizes in space group P21/c, is the closest analogue of compound (II)[link]. The crystal packing of the title compounds is stabilized by C—H⋯O, C—H⋯π and ππ inter­actions but the related structures (EYOFEE01; Panchatcharam et al., 2011[Panchatcharam, R., Dhayalan, V., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2011). Acta Cryst. E67, o2829.]) exhibit C—H⋯π and ππ inter­actions only.

5. Synthesis and crystallization

Compound (I): A solution of [3-(4-nitro­benzo­yl)-1-(phenyl­sulfon­yl)-1H-indol-2-yl]methyl pivalate (0.1 g, 1.92 mmol), anhydrous SnCl4 (0.06 g, 2.30 mmol) and benzo­furan (0.027 g, 2.30 mmol) in dry DCE (10 ml) was stirred at room temperature under nitro­gen for 3 h. After completion of the reaction (monitored by TLC), it was poured into ice–water (100 ml). The organic layer was separated and the aqueous layer was extracted with DCM (2 × 20 ml). The combined extract was washed with water (3 × 50ml) and dried (Na2SO4). Removal of the solvent by column chromatographic purification (silica gel; hexa­ne–ethyl acetate, 8:2) yielded compound (I)[link] as a colourless solid (0.073 g, 74%). Colourless block-like crystals were obtained by slow evaporation of a solution of (I)[link] in ethyl acetate at room temperature (m.p. 589–591 K).

Compound (II): A solution of [3-(4-nitro­benzo­yl)-1-(phenyl­sulfon­yl)-H-indol-2-yl]methyl pivalate (0.1 g, 1.92 mmol), anhydrous SnCl4 (0.06 g, 2.30 mmol) and 2-methyl­thio­phene (0.024 g, 2.30 mmol) in dry DCE (10 ml) was stirred at room temperature under nitro­gen atmosphere for 3 h. After the completion of the reaction (monitored by TLC), it was poured into ice–water (100 ml), the organic layer was separated and the aqueous layer was extracted with DCM (2 × 20ml). The combined extract was washed with water (3 × 50 ml) and dried (Na2SO4). Removal of the solvent by column chromatographic purification (silica gel; hexa­ne–ethyl acetate, 8:2) yielded compound (II)[link] as a colourless solid (0.067 g, 72%). Colourless block-like crystals were obtained by slow evaporation of a solution of (II)[link] in ethyl acetate at room temperature (m.p. 531–533 K).

6. Refinement

Crystal data, data collection and structure refinement details for compounds (I)[link] and (II)[link] are summarized in Table 3[link]. The positions of the hydrogen atoms were localized from the difference electron-density maps. The C-bound H atoms were treated as riding atoms: C—H = 0.93-0.96 Å with Uiso(H)= 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms. In compound (I)[link], the phenyl­sulfonyl ring (C13–C18) is positionally disordered with a refined occupancy ratio of 0.63 (2): 0.37 (2). The bond distances of the disordered components were restrained using standard similarity restraint SADI [SHELXL97; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]] with s.u. of 0.01Å. Ellipsoid displacement (SIMU and DELU) restraints were also applied to the disordered ring. The methyl groups were allowed to rotate, but not to tip, to best fit the electron density.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C30H18N2O5S C27H18N2O4S2
Mr 518.52 498.55
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 296 296
a, b, c (Å) 12.1347 (5), 12.0708 (5), 17.6391 (7) 12.5052 (8), 11.2594 (6), 17.0731 (9)
β (°) 108.617 (2) 102.914 (2)
V3) 2448.50 (17) 2343.1 (2)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.18 0.27
Crystal size (mm) 0.25 × 0.20 × 0.10 0.35 × 0.30 × 0.25
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.958, 0.982 0.911, 0.936
No. of measured, independent and observed [I > 2σ(I)] reflections 32749, 4318, 2814 44472, 5100, 3714
Rint 0.040 0.034
(sin θ/λ)max−1) 0.595 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.131, 1.05 0.055, 0.163, 1.08
No. of reflections 4318 5100
No. of parameters 401 317
No. of restraints 140 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.21 0.44, −0.36
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

(I) 12-(4-Nitrophenyl)-7-phenylsulfonyl-7H-benzofuro[2,3-b]carbazole top
Crystal data top
C30H18N2O5SF(000) = 1072
Mr = 518.52Dx = 1.407 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4318 reflections
a = 12.1347 (5) Åθ = 2.4–25.0°
b = 12.0708 (5) ŵ = 0.18 mm1
c = 17.6391 (7) ÅT = 296 K
β = 108.617 (2)°Block, colourless
V = 2448.50 (17) Å30.25 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4318 independent reflections
Radiation source: fine-focus sealed tube2814 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω & φ scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1411
Tmin = 0.958, Tmax = 0.982k = 1414
32749 measured reflectionsl = 1820
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.7253P]
where P = (Fo2 + 2Fc2)/3
4318 reflections(Δ/σ)max = 0.002
401 parametersΔρmax = 0.28 e Å3
140 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C80.36384 (19)0.94124 (18)0.02090 (14)0.0501 (6)
C90.3369 (2)0.96522 (19)0.05953 (15)0.0552 (6)
H90.32490.91080.09870.066*
C100.3295 (2)1.07565 (19)0.07650 (14)0.0512 (6)
C250.2981 (2)1.22953 (19)0.14680 (14)0.0540 (6)
C260.2698 (2)1.3006 (2)0.21190 (16)0.0669 (7)
H260.25311.27500.26410.080*
C270.2680 (2)1.4115 (2)0.19423 (18)0.0729 (8)
H270.24831.46310.23560.088*
C280.2947 (2)1.4475 (2)0.11625 (17)0.0721 (8)
H280.29321.52310.10650.087*
C290.3236 (2)1.3757 (2)0.05248 (16)0.0621 (7)
H290.34181.40180.00030.075*
C300.32498 (19)1.26319 (18)0.06814 (14)0.0497 (6)
C110.34632 (18)1.16109 (17)0.02110 (13)0.0465 (5)
C120.37395 (18)1.13576 (18)0.06066 (13)0.0480 (5)
C70.38385 (18)1.02299 (18)0.08091 (13)0.0488 (6)
C60.4188 (2)0.9654 (2)0.15713 (15)0.0558 (6)
C50.4579 (3)1.0012 (3)0.23615 (17)0.0798 (8)
H50.46211.07650.24800.096*
C40.4905 (3)0.9234 (3)0.29710 (19)0.0967 (10)
H40.51650.94650.35020.116*
C30.4845 (3)0.8114 (3)0.2793 (2)0.0917 (10)
H30.50590.76040.32100.110*
C20.4480 (2)0.7735 (2)0.20217 (19)0.0751 (8)
H20.44490.69810.19080.090*
C10.4157 (2)0.8517 (2)0.14180 (15)0.0575 (6)
C190.38864 (19)1.22457 (18)0.12135 (13)0.0501 (6)
C200.4853 (2)1.2920 (2)0.14172 (16)0.0698 (8)
H200.54191.28100.11730.084*
C210.5000 (2)1.3751 (2)0.19725 (17)0.0749 (8)
H210.56641.41900.21140.090*
C220.4151 (2)1.3916 (2)0.23098 (15)0.0656 (7)
C230.3172 (3)1.3273 (3)0.21208 (18)0.0837 (9)
H230.26011.34000.23580.100*
C240.3051 (2)1.2436 (2)0.15732 (17)0.0726 (8)
H240.23931.19890.14430.087*
N10.38211 (16)0.83465 (15)0.05764 (12)0.0563 (5)
N20.4307 (3)1.4799 (2)0.29103 (16)0.0916 (8)
O50.30118 (15)1.11572 (13)0.15385 (9)0.0620 (5)
O30.3507 (3)1.5024 (3)0.3147 (2)0.1593 (14)
O40.5242 (3)1.5253 (2)0.31592 (15)0.1177 (9)
S10.3009 (3)0.72479 (18)0.01555 (15)0.0506 (10)0.63 (2)
O10.3496 (10)0.6265 (6)0.0582 (5)0.0755 (19)0.63 (2)
O20.2837 (9)0.7347 (7)0.0686 (2)0.072 (2)0.63 (2)
C130.1670 (5)0.7463 (4)0.0295 (4)0.0473 (17)0.63 (2)
C140.0952 (6)0.8257 (4)0.0189 (4)0.0530 (15)0.63 (2)
H140.11800.86130.05830.064*0.63 (2)
C150.0106 (5)0.8520 (5)0.0086 (4)0.0750 (19)0.63 (2)
H150.05860.90520.04100.090*0.63 (2)
C160.0447 (4)0.7989 (7)0.0502 (4)0.086 (2)0.63 (2)
H160.11540.81640.05720.103*0.63 (2)
C170.0271 (5)0.7194 (8)0.0987 (4)0.090 (3)0.63 (2)
H170.00430.68390.13800.108*0.63 (2)
C180.1329 (5)0.6931 (6)0.0883 (4)0.075 (2)0.63 (2)
H180.18090.64000.12070.090*0.63 (2)
S1'0.3118 (8)0.7228 (6)0.0149 (6)0.102 (3)0.37 (2)
O1'0.379 (2)0.6375 (16)0.0646 (13)0.133 (7)0.37 (2)
O2'0.2987 (18)0.7264 (11)0.0681 (7)0.095 (4)0.37 (2)
C13'0.1784 (11)0.7417 (13)0.0298 (10)0.094 (5)0.37 (2)
C14'0.1010 (14)0.8274 (11)0.0020 (12)0.094 (4)0.37 (2)
H14'0.12140.88350.03110.112*0.37 (2)
C15'0.0070 (11)0.8293 (15)0.0097 (12)0.115 (5)0.37 (2)
H15'0.05880.88670.01160.138*0.37 (2)
C16'0.0375 (10)0.746 (2)0.0533 (10)0.145 (6)0.37 (2)
H16'0.10980.74680.06110.174*0.37 (2)
C17'0.0399 (14)0.660 (2)0.0851 (10)0.151 (6)0.37 (2)
H17'0.01950.60370.11420.181*0.37 (2)
C18'0.1478 (12)0.6579 (17)0.0734 (11)0.139 (5)0.37 (2)
H18'0.19960.60050.09470.167*0.37 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C80.0494 (13)0.0414 (12)0.0632 (16)0.0007 (10)0.0232 (11)0.0000 (11)
C90.0664 (16)0.0426 (13)0.0613 (16)0.0044 (11)0.0270 (12)0.0069 (11)
C100.0543 (14)0.0498 (14)0.0523 (15)0.0023 (11)0.0211 (11)0.0048 (11)
C250.0598 (15)0.0401 (13)0.0647 (16)0.0039 (11)0.0237 (12)0.0032 (12)
C260.0830 (19)0.0594 (16)0.0586 (16)0.0087 (14)0.0230 (14)0.0026 (13)
C270.086 (2)0.0544 (16)0.076 (2)0.0041 (14)0.0218 (15)0.0146 (14)
C280.092 (2)0.0445 (14)0.080 (2)0.0022 (14)0.0282 (16)0.0051 (14)
C290.0735 (17)0.0467 (14)0.0677 (17)0.0039 (12)0.0247 (13)0.0053 (13)
C300.0488 (13)0.0450 (13)0.0584 (15)0.0028 (10)0.0215 (11)0.0050 (11)
C110.0460 (13)0.0378 (12)0.0584 (15)0.0020 (10)0.0204 (11)0.0011 (10)
C120.0445 (13)0.0455 (13)0.0551 (14)0.0038 (10)0.0174 (10)0.0044 (11)
C70.0449 (13)0.0458 (13)0.0554 (14)0.0010 (10)0.0155 (11)0.0037 (11)
C60.0494 (14)0.0566 (15)0.0575 (16)0.0049 (12)0.0118 (11)0.0036 (12)
C50.091 (2)0.0721 (19)0.0633 (19)0.0111 (16)0.0071 (15)0.0048 (15)
C40.109 (3)0.102 (3)0.0600 (19)0.015 (2)0.0007 (17)0.0138 (18)
C30.086 (2)0.087 (2)0.088 (2)0.0008 (18)0.0086 (18)0.036 (2)
C20.0679 (18)0.0649 (18)0.086 (2)0.0024 (14)0.0151 (15)0.0206 (16)
C10.0469 (14)0.0537 (15)0.0702 (17)0.0007 (11)0.0162 (12)0.0091 (13)
C190.0531 (14)0.0442 (13)0.0538 (14)0.0046 (11)0.0180 (11)0.0009 (11)
C200.0643 (17)0.0712 (18)0.0826 (19)0.0174 (14)0.0358 (14)0.0242 (15)
C210.0733 (18)0.0747 (19)0.0825 (19)0.0272 (15)0.0332 (15)0.0247 (16)
C220.0803 (19)0.0528 (15)0.0639 (17)0.0056 (14)0.0232 (14)0.0174 (13)
C230.0744 (19)0.097 (2)0.092 (2)0.0128 (17)0.0439 (16)0.0337 (18)
C240.0674 (17)0.0768 (18)0.0816 (19)0.0217 (14)0.0348 (15)0.0278 (15)
N10.0583 (12)0.0431 (11)0.0698 (14)0.0006 (9)0.0238 (10)0.0027 (10)
N20.105 (2)0.0823 (18)0.0870 (19)0.0048 (18)0.0303 (17)0.0308 (15)
O50.0860 (12)0.0478 (10)0.0554 (11)0.0062 (8)0.0271 (9)0.0050 (8)
O30.132 (2)0.172 (3)0.187 (3)0.000 (2)0.068 (2)0.111 (2)
O40.142 (2)0.0987 (18)0.1132 (19)0.0397 (17)0.0411 (16)0.0519 (15)
S10.0718 (16)0.0251 (13)0.0596 (17)0.0034 (10)0.0278 (11)0.0003 (10)
O10.090 (5)0.024 (2)0.106 (4)0.013 (3)0.022 (3)0.011 (2)
O20.106 (4)0.075 (5)0.049 (3)0.002 (3)0.043 (3)0.018 (2)
C130.056 (3)0.041 (3)0.045 (4)0.015 (2)0.016 (3)0.000 (3)
C140.060 (3)0.053 (3)0.043 (3)0.007 (2)0.011 (2)0.001 (2)
C150.059 (4)0.086 (4)0.072 (4)0.001 (3)0.011 (3)0.011 (3)
C160.057 (3)0.117 (6)0.089 (4)0.014 (3)0.031 (3)0.017 (4)
C170.077 (4)0.125 (6)0.077 (4)0.003 (4)0.038 (3)0.032 (4)
C180.073 (4)0.087 (4)0.065 (4)0.005 (3)0.022 (3)0.029 (3)
S1'0.083 (4)0.076 (5)0.160 (7)0.015 (3)0.058 (4)0.027 (4)
O1'0.098 (9)0.053 (7)0.222 (13)0.004 (6)0.014 (7)0.009 (6)
O2'0.142 (10)0.024 (4)0.164 (10)0.026 (5)0.110 (8)0.031 (5)
C13'0.084 (8)0.132 (11)0.067 (10)0.020 (7)0.027 (7)0.000 (8)
C14'0.073 (7)0.139 (10)0.075 (8)0.020 (6)0.032 (6)0.024 (6)
C15'0.062 (7)0.167 (11)0.110 (9)0.015 (7)0.017 (7)0.001 (8)
C16'0.113 (9)0.187 (15)0.153 (11)0.019 (9)0.067 (9)0.015 (11)
C17'0.141 (10)0.178 (14)0.166 (10)0.015 (10)0.095 (9)0.024 (11)
C18'0.119 (8)0.183 (12)0.130 (10)0.027 (8)0.061 (8)0.033 (9)
Geometric parameters (Å, º) top
C8—C91.381 (3)C21—H210.9300
C8—C71.410 (3)C22—C231.368 (4)
C8—N11.426 (3)C22—N21.472 (3)
C9—C101.363 (3)C23—C241.372 (4)
C9—H90.9300C23—H230.9300
C10—O51.383 (3)C24—H240.9300
C10—C111.390 (3)N1—S1'1.645 (6)
C25—O51.381 (3)N1—S11.677 (3)
C25—C301.381 (3)N2—O31.204 (3)
C25—C261.386 (3)N2—O41.209 (3)
C26—C271.377 (4)S1—O11.428 (4)
C26—H260.9300S1—O21.436 (4)
C27—C281.379 (4)S1—C131.740 (3)
C27—H270.9300C13—C141.3900
C28—C291.374 (3)C13—C181.3900
C28—H280.9300C14—C151.3900
C29—C301.387 (3)C14—H140.9300
C29—H290.9300C15—C161.3900
C30—C111.462 (3)C15—H150.9300
C11—C121.406 (3)C16—C171.3900
C12—C71.403 (3)C16—H160.9300
C12—C191.485 (3)C17—C181.3900
C7—C61.451 (3)C17—H170.9300
C6—C51.390 (4)C18—H180.9300
C6—C11.398 (3)S1'—O2'1.422 (7)
C5—C41.387 (4)S1'—O1'1.428 (8)
C5—H50.9300S1'—C13'1.736 (7)
C4—C31.384 (5)C13'—C14'1.3900
C4—H40.9300C13'—C18'1.3900
C3—C21.369 (4)C14'—C15'1.3900
C3—H30.9300C14'—H14'0.9300
C2—C11.383 (3)C15'—C16'1.3900
C2—H20.9300C15'—H15'0.9300
C1—N11.423 (3)C16'—C17'1.3900
C19—C241.376 (3)C16'—H16'0.9300
C19—C201.378 (3)C17'—C18'1.3900
C20—C211.373 (3)C17'—H17'0.9300
C20—H200.9300C18'—H18'0.9300
C21—C221.358 (4)
C9—C8—C7123.5 (2)C23—C22—N2119.3 (3)
C9—C8—N1127.4 (2)C22—C23—C24118.6 (2)
C7—C8—N1109.02 (19)C22—C23—H23120.7
C10—C9—C8114.1 (2)C24—C23—H23120.7
C10—C9—H9123.0C23—C24—C19121.2 (2)
C8—C9—H9123.0C23—C24—H24119.4
C9—C10—O5122.5 (2)C19—C24—H24119.4
C9—C10—C11125.9 (2)C1—N1—C8107.16 (18)
O5—C10—C11111.62 (19)C1—N1—S1'122.0 (4)
O5—C25—C30112.2 (2)C8—N1—S1'123.3 (4)
O5—C25—C26123.2 (2)C1—N1—S1120.53 (18)
C30—C25—C26124.5 (2)C8—N1—S1121.89 (19)
C27—C26—C25115.6 (2)O3—N2—O4122.6 (3)
C27—C26—H26122.2O3—N2—C22118.7 (3)
C25—C26—H26122.2O4—N2—C22118.7 (3)
C26—C27—C28121.1 (3)C25—O5—C10105.33 (17)
C26—C27—H27119.5O1—S1—O2120.9 (5)
C28—C27—H27119.5O1—S1—N1109.8 (5)
C29—C28—C27122.4 (3)O2—S1—N1105.2 (4)
C29—C28—H28118.8O1—S1—C13107.3 (5)
C27—C28—H28118.8O2—S1—C13107.5 (5)
C28—C29—C30118.1 (2)N1—S1—C13105.2 (3)
C28—C29—H29121.0C14—C13—C18120.0
C30—C29—H29121.0C14—C13—S1116.5 (4)
C25—C30—C29118.3 (2)C18—C13—S1123.4 (4)
C25—C30—C11105.33 (19)C13—C14—C15120.0
C29—C30—C11136.3 (2)C13—C14—H14120.0
C10—C11—C12119.5 (2)C15—C14—H14120.0
C10—C11—C30105.46 (19)C16—C15—C14120.0
C12—C11—C30135.0 (2)C16—C15—H15120.0
C7—C12—C11116.4 (2)C14—C15—H15120.0
C7—C12—C19122.4 (2)C15—C16—C17120.0
C11—C12—C19121.1 (2)C15—C16—H16120.0
C12—C7—C8120.5 (2)C17—C16—H16120.0
C12—C7—C6132.6 (2)C16—C17—C18120.0
C8—C7—C6106.8 (2)C16—C17—H17120.0
C5—C6—C1118.6 (2)C18—C17—H17120.0
C5—C6—C7133.2 (2)C17—C18—C13120.0
C1—C6—C7108.0 (2)C17—C18—H18120.0
C4—C5—C6119.2 (3)C13—C18—H18120.0
C4—C5—H5120.4O2'—S1'—O1'120.6 (13)
C6—C5—H5120.4O2'—S1'—N1108.6 (7)
C3—C4—C5120.3 (3)O1'—S1'—N1101.5 (11)
C3—C4—H4119.8O2'—S1'—C13'110.4 (12)
C5—C4—H4119.8O1'—S1'—C13'112.2 (12)
C2—C3—C4121.9 (3)N1—S1'—C13'101.3 (6)
C2—C3—H3119.0C14'—C13'—C18'120.0
C4—C3—H3119.0C14'—C13'—S1'125.4 (10)
C3—C2—C1117.4 (3)C18'—C13'—S1'114.5 (10)
C3—C2—H2121.3C13'—C14'—C15'120.0
C1—C2—H2121.3C13'—C14'—H14'120.0
C2—C1—C6122.6 (3)C15'—C14'—H14'120.0
C2—C1—N1128.4 (2)C16'—C15'—C14'120.0
C6—C1—N1108.9 (2)C16'—C15'—H15'120.0
C24—C19—C20118.2 (2)C14'—C15'—H15'120.0
C24—C19—C12121.1 (2)C15'—C16'—C17'120.0
C20—C19—C12120.7 (2)C15'—C16'—H16'120.0
C21—C20—C19121.5 (2)C17'—C16'—H16'120.0
C21—C20—H20119.2C18'—C17'—C16'120.0
C19—C20—H20119.2C18'—C17'—H17'120.0
C22—C21—C20118.4 (2)C16'—C17'—H17'120.0
C22—C21—H21120.8C17'—C18'—C13'120.0
C20—C21—H21120.8C17'—C18'—H18'120.0
C21—C22—C23122.0 (2)C13'—C18'—H18'120.0
C21—C22—N2118.7 (3)
C7—C8—C9—C100.9 (3)C6—C1—N1—C80.2 (2)
N1—C8—C9—C10177.3 (2)C2—C1—N1—S1'32.8 (5)
C8—C9—C10—O5178.72 (19)C6—C1—N1—S1'150.8 (4)
C8—C9—C10—C110.0 (4)C2—C1—N1—S137.9 (4)
O5—C25—C26—C27178.4 (2)C6—C1—N1—S1145.7 (2)
C30—C25—C26—C270.9 (4)C9—C8—N1—C1175.9 (2)
C25—C26—C27—C281.0 (4)C7—C8—N1—C10.9 (2)
C26—C27—C28—C290.5 (4)C9—C8—N1—S1'33.9 (5)
C27—C28—C29—C300.3 (4)C7—C8—N1—S1'149.2 (4)
O5—C25—C30—C29179.2 (2)C9—C8—N1—S139.2 (3)
C26—C25—C30—C290.1 (4)C7—C8—N1—S1144.0 (2)
O5—C25—C30—C110.4 (3)C21—C22—N2—O3172.2 (3)
C26—C25—C30—C11178.9 (2)C23—C22—N2—O39.1 (5)
C28—C29—C30—C250.5 (4)C21—C22—N2—O49.4 (4)
C28—C29—C30—C11177.8 (2)C23—C22—N2—O4169.3 (3)
C9—C10—C11—C120.2 (4)C30—C25—O5—C100.9 (2)
O5—C10—C11—C12178.98 (18)C26—C25—O5—C10178.4 (2)
C9—C10—C11—C30177.9 (2)C9—C10—O5—C25177.8 (2)
O5—C10—C11—C300.9 (2)C11—C10—O5—C251.1 (2)
C25—C30—C11—C100.3 (2)C1—N1—S1—O148.8 (5)
C29—C30—C11—C10178.2 (3)C8—N1—S1—O1170.8 (4)
C25—C30—C11—C12178.0 (2)S1'—N1—S1—O162 (5)
C29—C30—C11—C120.5 (5)C1—N1—S1—O2179.7 (5)
C10—C11—C12—C70.6 (3)C8—N1—S1—O239.3 (5)
C30—C11—C12—C7178.0 (2)S1'—N1—S1—O270 (5)
C10—C11—C12—C19177.9 (2)C1—N1—S1—C1366.4 (3)
C30—C11—C12—C190.5 (4)C8—N1—S1—C1374.0 (3)
C11—C12—C7—C81.5 (3)S1'—N1—S1—C13177 (5)
C19—C12—C7—C8177.0 (2)O1—S1—C13—C14168.3 (6)
C11—C12—C7—C6174.7 (2)O2—S1—C13—C1437.0 (5)
C19—C12—C7—C66.8 (4)N1—S1—C13—C1474.8 (3)
C9—C8—C7—C121.7 (3)O1—S1—C13—C1815.2 (7)
N1—C8—C7—C12178.71 (19)O2—S1—C13—C18146.6 (6)
C9—C8—C7—C6175.3 (2)N1—S1—C13—C18101.7 (4)
N1—C8—C7—C61.7 (2)C18—C13—C14—C150.0
C12—C7—C6—C52.4 (5)S1—C13—C14—C15176.6 (5)
C8—C7—C6—C5174.2 (3)C13—C14—C15—C160.0
C12—C7—C6—C1178.3 (2)C14—C15—C16—C170.0
C8—C7—C6—C11.8 (3)C15—C16—C17—C180.0
C1—C6—C5—C41.2 (4)C16—C17—C18—C130.0
C7—C6—C5—C4176.8 (3)C14—C13—C18—C170.0
C6—C5—C4—C30.2 (5)S1—C13—C18—C17176.3 (5)
C5—C4—C3—C20.7 (5)C1—N1—S1'—O2'175.6 (10)
C4—C3—C2—C10.6 (5)C8—N1—S1'—O2'38.5 (11)
C3—C2—C1—C60.4 (4)S1—N1—S1'—O2'112 (6)
C3—C2—C1—N1175.6 (2)C1—N1—S1'—O1'47.6 (11)
C5—C6—C1—C21.3 (4)C8—N1—S1'—O1'166.5 (10)
C7—C6—C1—C2177.9 (2)S1—N1—S1'—O1'120 (6)
C5—C6—C1—N1175.4 (2)C1—N1—S1'—C13'68.1 (8)
C7—C6—C1—N11.2 (3)C8—N1—S1'—C13'77.8 (8)
C7—C12—C19—C2472.6 (3)S1—N1—S1'—C13'4 (5)
C11—C12—C19—C24105.9 (3)O2'—S1'—C13'—C14'51.1 (13)
C7—C12—C19—C20109.0 (3)O1'—S1'—C13'—C14'171.2 (15)
C11—C12—C19—C2072.6 (3)N1—S1'—C13'—C14'63.7 (11)
C24—C19—C20—C211.0 (4)O2'—S1'—C13'—C18'124.6 (12)
C12—C19—C20—C21179.5 (3)O1'—S1'—C13'—C18'13.0 (17)
C19—C20—C21—C221.5 (4)N1—S1'—C13'—C18'120.5 (9)
C20—C21—C22—C230.9 (5)C18'—C13'—C14'—C15'0.0
C20—C21—C22—N2179.5 (3)S1'—C13'—C14'—C15'175.5 (12)
C21—C22—C23—C240.0 (5)C13'—C14'—C15'—C16'0.0
N2—C22—C23—C24178.5 (3)C14'—C15'—C16'—C17'0.0
C22—C23—C24—C190.5 (5)C15'—C16'—C17'—C18'0.0
C20—C19—C24—C230.0 (4)C16'—C17'—C18'—C13'0.0
C12—C19—C24—C23178.5 (3)C14'—C13'—C18'—C17'0.0
C2—C1—N1—C8176.6 (2)S1'—C13'—C18'—C17'176.0 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the furan ring O5/C10/C11/C25/C30 and Cg3 is the centroid of the benzene ring C1–C6.
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.413.015 (9)122
C9—H9···O20.932.282.849 (9)119
C14—H14···O4i0.932.553.296 (7)138
C20—H20···O2ii0.932.533.454 (11)172
C16—H16···Cg1iii0.932.763.676 (6)169
C23—H23···Cg3iv0.932.993.908 (4)169
Symmetry codes: (i) x1/2, y+5/2, z1/2; (ii) x+1, y+2, z; (iii) x, y+2, z; (iv) x+1/2, y+1/2, z+1/2.
(II) 2-Methyl-4-(4-nitrophenyl)-9-phenylsulfonyl-9H-thieno[2,3-b]carbazole top
Crystal data top
C27H18N2O4S2F(000) = 1032
Mr = 498.55Dx = 1.413 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5100 reflections
a = 12.5052 (8) Åθ = 2.2–27.0°
b = 11.2594 (6) ŵ = 0.27 mm1
c = 17.0731 (9) ÅT = 296 K
β = 102.914 (2)°Block, colourless
V = 2343.1 (2) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5100 independent reflections
Radiation source: fine-focus sealed tube3714 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω & φ scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1515
Tmin = 0.911, Tmax = 0.936k = 1414
44472 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0625P)2 + 2.4597P]
where P = (Fo2 + 2Fc2)/3
5100 reflections(Δ/σ)max = 0.001
317 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6060 (2)0.1940 (2)0.88312 (17)0.0422 (6)
C20.5786 (3)0.2854 (3)0.8277 (2)0.0559 (8)
H20.58430.36450.84380.067*
C30.5428 (3)0.2548 (3)0.7482 (2)0.0630 (9)
H30.52420.31460.71000.076*
C40.5337 (3)0.1379 (3)0.7237 (2)0.0631 (9)
H40.50820.12030.66950.076*
C50.5616 (3)0.0466 (3)0.77821 (17)0.0508 (7)
H50.55620.03210.76120.061*
C60.5983 (2)0.0746 (2)0.85962 (16)0.0390 (6)
C70.6289 (2)0.0029 (2)0.93182 (15)0.0353 (5)
C80.6520 (2)0.0804 (2)0.99817 (16)0.0360 (6)
C90.6768 (2)0.0413 (2)1.07625 (16)0.0393 (6)
H90.69170.09371.11940.047*
C100.6786 (2)0.0812 (2)1.08733 (15)0.0380 (6)
C110.6568 (2)0.1622 (2)1.02287 (15)0.0353 (5)
C120.6333 (2)0.1197 (2)0.94342 (15)0.0350 (5)
C130.8439 (2)0.2964 (2)0.98979 (16)0.0444 (6)
C140.9114 (3)0.2047 (3)1.02414 (18)0.0523 (7)
H140.88860.15231.05930.063*
C151.0124 (3)0.1910 (4)1.0062 (2)0.0681 (9)
H151.05790.12871.02860.082*
C161.0456 (3)0.2685 (5)0.9557 (3)0.0829 (12)
H161.11450.25950.94430.100*
C170.9798 (4)0.3594 (5)0.9214 (3)0.0949 (15)
H171.00390.41170.88690.114*
C180.8765 (3)0.3742 (4)0.9378 (2)0.0735 (11)
H180.83070.43540.91410.088*
C190.6151 (2)0.2052 (2)0.87505 (15)0.0354 (5)
C200.5183 (2)0.2687 (3)0.85455 (19)0.0537 (8)
H200.46510.25920.88440.064*
C210.4998 (3)0.3460 (3)0.7902 (2)0.0554 (8)
H210.43390.38720.77550.067*
C220.5802 (2)0.3609 (2)0.74852 (16)0.0430 (6)
C230.6776 (3)0.3019 (3)0.7681 (2)0.0584 (8)
H230.73160.31450.73930.070*
C240.6946 (2)0.2227 (3)0.83158 (19)0.0531 (8)
H240.76020.18080.84520.064*
C250.6646 (2)0.2867 (2)1.05076 (15)0.0384 (6)
H250.65260.35281.01730.046*
C260.6920 (3)0.2909 (2)1.13271 (18)0.0481 (7)
C270.7108 (4)0.4006 (3)1.1839 (2)0.0753 (11)
H27A0.69280.46951.15040.113*
H27B0.66510.39811.22220.113*
H27C0.78640.40441.21180.113*
N10.63886 (18)0.19995 (19)0.96867 (14)0.0411 (5)
N20.5598 (3)0.4437 (2)0.68029 (16)0.0575 (7)
O10.6654 (2)0.41840 (18)0.97873 (17)0.0737 (7)
O20.7283 (2)0.29254 (19)1.09819 (13)0.0611 (6)
O30.6358 (2)0.4681 (3)0.64953 (16)0.0853 (9)
O40.4680 (2)0.4842 (2)0.65745 (15)0.0765 (8)
S10.71501 (6)0.31228 (6)1.01429 (5)0.0488 (2)
S20.70682 (7)0.15330 (7)1.17880 (5)0.0541 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0382 (14)0.0378 (14)0.0513 (16)0.0023 (11)0.0117 (12)0.0048 (12)
C20.0580 (19)0.0376 (15)0.070 (2)0.0046 (14)0.0099 (16)0.0134 (14)
C30.068 (2)0.056 (2)0.062 (2)0.0058 (16)0.0080 (17)0.0246 (16)
C40.076 (2)0.064 (2)0.0454 (17)0.0001 (18)0.0045 (16)0.0116 (15)
C50.0608 (19)0.0445 (16)0.0440 (16)0.0026 (14)0.0049 (14)0.0012 (13)
C60.0371 (14)0.0362 (13)0.0443 (15)0.0005 (11)0.0102 (11)0.0033 (11)
C70.0329 (13)0.0343 (13)0.0390 (13)0.0026 (10)0.0084 (10)0.0021 (10)
C80.0336 (13)0.0288 (12)0.0467 (15)0.0012 (10)0.0113 (11)0.0034 (10)
C90.0426 (14)0.0371 (14)0.0381 (14)0.0032 (11)0.0088 (11)0.0078 (11)
C100.0356 (13)0.0427 (14)0.0361 (14)0.0020 (11)0.0085 (11)0.0002 (11)
C110.0311 (13)0.0346 (13)0.0407 (14)0.0019 (10)0.0090 (10)0.0003 (10)
C120.0323 (13)0.0332 (13)0.0397 (13)0.0031 (10)0.0087 (10)0.0028 (10)
C130.0502 (16)0.0416 (15)0.0404 (14)0.0121 (12)0.0083 (12)0.0014 (12)
C140.0515 (18)0.0549 (18)0.0494 (17)0.0044 (14)0.0086 (14)0.0041 (14)
C150.0486 (19)0.083 (3)0.069 (2)0.0032 (18)0.0053 (16)0.004 (2)
C160.053 (2)0.120 (4)0.078 (3)0.009 (2)0.0188 (19)0.008 (3)
C170.081 (3)0.127 (4)0.083 (3)0.025 (3)0.033 (2)0.037 (3)
C180.068 (2)0.072 (2)0.077 (2)0.0113 (19)0.0093 (19)0.031 (2)
C190.0390 (14)0.0305 (12)0.0373 (13)0.0020 (10)0.0095 (11)0.0005 (10)
C200.0455 (16)0.0565 (18)0.0640 (19)0.0130 (14)0.0229 (14)0.0197 (15)
C210.0454 (17)0.0556 (18)0.065 (2)0.0183 (14)0.0112 (14)0.0174 (15)
C220.0514 (16)0.0332 (13)0.0427 (15)0.0001 (12)0.0073 (12)0.0086 (11)
C230.0526 (18)0.067 (2)0.0615 (19)0.0067 (15)0.0251 (15)0.0215 (16)
C240.0452 (16)0.0558 (18)0.0626 (19)0.0183 (14)0.0215 (14)0.0202 (15)
C250.0373 (14)0.0386 (14)0.0404 (14)0.0032 (11)0.0111 (11)0.0083 (11)
C260.0526 (17)0.0402 (15)0.0526 (17)0.0009 (13)0.0141 (14)0.0086 (13)
C270.107 (3)0.054 (2)0.067 (2)0.007 (2)0.024 (2)0.0234 (17)
N10.0430 (13)0.0302 (11)0.0495 (13)0.0007 (9)0.0090 (10)0.0027 (9)
N20.0718 (19)0.0405 (14)0.0556 (16)0.0054 (13)0.0043 (14)0.0111 (12)
O10.0785 (17)0.0302 (11)0.110 (2)0.0068 (11)0.0148 (14)0.0106 (12)
O20.0765 (15)0.0538 (13)0.0603 (13)0.0182 (11)0.0305 (11)0.0233 (11)
O30.091 (2)0.089 (2)0.0765 (17)0.0123 (16)0.0200 (15)0.0388 (15)
O40.0852 (19)0.0571 (15)0.0761 (17)0.0124 (13)0.0053 (14)0.0266 (12)
S10.0555 (5)0.0302 (3)0.0627 (5)0.0035 (3)0.0172 (4)0.0106 (3)
S20.0642 (5)0.0521 (5)0.0442 (4)0.0033 (4)0.0081 (4)0.0038 (3)
Geometric parameters (Å, º) top
C1—C21.388 (4)C15—H150.9300
C1—C61.400 (4)C16—C171.361 (6)
C1—N11.428 (4)C16—H160.9300
C2—C31.374 (5)C17—C181.391 (6)
C2—H20.9300C17—H170.9300
C3—C41.379 (5)C18—H180.9300
C3—H30.9300C19—C241.381 (4)
C4—C51.378 (4)C19—C201.382 (4)
C4—H40.9300C20—C211.381 (4)
C5—C61.399 (4)C20—H200.9300
C5—H50.9300C21—C221.365 (4)
C6—C71.452 (4)C21—H210.9300
C7—C121.394 (3)C22—C231.363 (4)
C7—C81.408 (3)C22—N21.469 (4)
C8—C91.372 (4)C23—C241.383 (4)
C8—N11.434 (3)C23—H230.9300
C9—C101.391 (4)C24—H240.9300
C9—H90.9300C25—C261.365 (4)
C10—C111.408 (4)C25—H250.9300
C10—S21.725 (3)C26—C271.501 (4)
C11—C121.406 (4)C26—S21.729 (3)
C11—C251.477 (3)C27—H27A0.9600
C12—C191.491 (3)C27—H27B0.9600
C13—C181.372 (4)C27—H27C0.9600
C13—C141.379 (4)N1—S11.668 (2)
C13—S11.762 (3)N2—O41.216 (4)
C14—C151.374 (5)N2—O31.216 (4)
C14—H140.9300O1—S11.419 (2)
C15—C161.356 (6)O2—S11.422 (2)
C2—C1—C6121.7 (3)C16—C17—H17119.9
C2—C1—N1129.3 (3)C18—C17—H17119.9
C6—C1—N1108.9 (2)C13—C18—C17118.6 (4)
C3—C2—C1117.7 (3)C13—C18—H18120.7
C3—C2—H2121.2C17—C18—H18120.7
C1—C2—H2121.2C24—C19—C20119.0 (2)
C2—C3—C4121.7 (3)C24—C19—C12120.7 (2)
C2—C3—H3119.2C20—C19—C12120.2 (2)
C4—C3—H3119.2C21—C20—C19120.6 (3)
C5—C4—C3121.1 (3)C21—C20—H20119.7
C5—C4—H4119.5C19—C20—H20119.7
C3—C4—H4119.5C22—C21—C20118.7 (3)
C4—C5—C6118.7 (3)C22—C21—H21120.6
C4—C5—H5120.7C20—C21—H21120.6
C6—C5—H5120.7C23—C22—C21122.3 (3)
C5—C6—C1119.2 (3)C23—C22—N2119.4 (3)
C5—C6—C7133.1 (3)C21—C22—N2118.3 (3)
C1—C6—C7107.6 (2)C22—C23—C24118.6 (3)
C12—C7—C8120.3 (2)C22—C23—H23120.7
C12—C7—C6131.8 (2)C24—C23—H23120.7
C8—C7—C6107.8 (2)C19—C24—C23120.7 (3)
C9—C8—C7123.0 (2)C19—C24—H24119.6
C9—C8—N1128.7 (2)C23—C24—H24119.6
C7—C8—N1108.2 (2)C26—C25—C11110.3 (2)
C8—C9—C10116.3 (2)C26—C25—H25124.9
C8—C9—H9121.8C11—C25—H25124.9
C10—C9—H9121.8C25—C26—C27126.6 (3)
C9—C10—C11122.8 (2)C25—C26—S2114.4 (2)
C9—C10—S2125.7 (2)C27—C26—S2119.1 (2)
C11—C10—S2111.5 (2)C26—C27—H27A109.5
C12—C11—C10119.7 (2)C26—C27—H27B109.5
C12—C11—C25128.2 (2)H27A—C27—H27B109.5
C10—C11—C25112.1 (2)C26—C27—H27C109.5
C7—C12—C11117.8 (2)H27A—C27—H27C109.5
C7—C12—C19122.3 (2)H27B—C27—H27C109.5
C11—C12—C19119.9 (2)C1—N1—C8107.4 (2)
C18—C13—C14120.7 (3)C1—N1—S1121.13 (18)
C18—C13—S1120.6 (3)C8—N1—S1122.65 (18)
C14—C13—S1118.7 (2)O4—N2—O3123.3 (3)
C15—C14—C13119.7 (3)O4—N2—C22118.4 (3)
C15—C14—H14120.2O3—N2—C22118.2 (3)
C13—C14—H14120.2O1—S1—O2120.27 (15)
C16—C15—C14119.8 (4)O1—S1—N1106.83 (14)
C16—C15—H15120.1O2—S1—N1106.12 (12)
C14—C15—H15120.1O1—S1—C13108.62 (15)
C15—C16—C17121.0 (4)O2—S1—C13108.44 (14)
C15—C16—H16119.5N1—S1—C13105.62 (12)
C17—C16—H16119.5C10—S2—C2691.74 (14)
C16—C17—C18120.2 (4)
C6—C1—C2—C30.3 (5)C7—C12—C19—C20106.1 (3)
N1—C1—C2—C3175.9 (3)C11—C12—C19—C2074.5 (3)
C1—C2—C3—C40.2 (5)C24—C19—C20—C211.8 (5)
C2—C3—C4—C50.8 (6)C12—C19—C20—C21178.5 (3)
C3—C4—C5—C60.9 (5)C19—C20—C21—C221.7 (5)
C4—C5—C6—C10.3 (4)C20—C21—C22—C230.3 (5)
C4—C5—C6—C7176.7 (3)C20—C21—C22—N2179.8 (3)
C2—C1—C6—C50.3 (4)C21—C22—C23—C241.0 (5)
N1—C1—C6—C5176.7 (2)N2—C22—C23—C24178.8 (3)
C2—C1—C6—C7178.0 (3)C20—C19—C24—C230.4 (5)
N1—C1—C6—C71.0 (3)C12—C19—C24—C23179.9 (3)
C5—C6—C7—C121.2 (5)C22—C23—C24—C191.0 (5)
C1—C6—C7—C12178.4 (3)C12—C11—C25—C26178.4 (3)
C5—C6—C7—C8175.8 (3)C10—C11—C25—C260.4 (3)
C1—C6—C7—C81.5 (3)C11—C25—C26—C27178.2 (3)
C12—C7—C8—C91.6 (4)C11—C25—C26—S21.0 (3)
C6—C7—C8—C9175.7 (2)C2—C1—N1—C8176.8 (3)
C12—C7—C8—N1178.7 (2)C6—C1—N1—C80.2 (3)
C6—C7—C8—N11.4 (3)C2—C1—N1—S134.9 (4)
C7—C8—C9—C100.1 (4)C6—C1—N1—S1148.4 (2)
N1—C8—C9—C10176.6 (2)C9—C8—N1—C1176.1 (3)
C8—C9—C10—C110.3 (4)C7—C8—N1—C10.7 (3)
C8—C9—C10—S2179.7 (2)C9—C8—N1—S136.2 (4)
C9—C10—C11—C120.7 (4)C7—C8—N1—S1146.90 (19)
S2—C10—C11—C12179.24 (19)C23—C22—N2—O4170.9 (3)
C9—C10—C11—C25179.6 (2)C21—C22—N2—O49.0 (4)
S2—C10—C11—C250.3 (3)C23—C22—N2—O39.1 (4)
C8—C7—C12—C112.5 (4)C21—C22—N2—O3171.0 (3)
C6—C7—C12—C11174.1 (3)C1—N1—S1—O148.2 (2)
C8—C7—C12—C19176.8 (2)C8—N1—S1—O1168.5 (2)
C6—C7—C12—C196.6 (4)C1—N1—S1—O2177.6 (2)
C10—C11—C12—C72.1 (4)C8—N1—S1—O239.0 (2)
C25—C11—C12—C7179.2 (2)C1—N1—S1—C1367.3 (2)
C10—C11—C12—C19177.3 (2)C8—N1—S1—C1376.0 (2)
C25—C11—C12—C191.4 (4)C18—C13—S1—O15.6 (3)
C18—C13—C14—C150.0 (5)C14—C13—S1—O1174.2 (2)
S1—C13—C14—C15179.7 (3)C18—C13—S1—O2137.9 (3)
C13—C14—C15—C160.8 (5)C14—C13—S1—O241.9 (3)
C14—C15—C16—C170.8 (7)C18—C13—S1—N1108.7 (3)
C15—C16—C17—C180.0 (7)C14—C13—S1—N171.5 (3)
C14—C13—C18—C170.9 (6)C9—C10—S2—C26179.2 (3)
S1—C13—C18—C17178.9 (3)C11—C10—S2—C260.8 (2)
C16—C17—C18—C130.8 (7)C25—C26—S2—C101.1 (2)
C7—C12—C19—C2474.2 (4)C27—C26—S2—C10178.2 (3)
C11—C12—C19—C24105.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the thiophene ring S2/C10/C11/C25/C26 and Cg3 is centroid of the benzene ring C1–C6.
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.382.970 (4)121
C9—H9···O20.932.332.907 (3)120
C3—H3···O4i0.932.483.356 (4)157
C14—H14···O4ii0.932.583.335 (4)139
C20—H20···O2iii0.932.533.368 (5)150
C16—H16···Cg1iv0.932.893.812 (4)172
C23—H23···Cg3v0.932.753.646 (4)163
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y, z+2; (iv) x+2, y, z+2; (v) x+3/2, y1/2, z+3/2.
 

Acknowledgements

The authors thank Dr Jagan and Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT Madras, Chennai, India, for the data collection.

References

First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFriend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Brédas, J. L., Lögdlund, M. & Salaneck, W. R. (1999). Nature, 397, 121–128.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationItoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893–897.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPanchatcharam, R., Dhayalan, V., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2011). Acta Cryst. E67, o2829.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444–447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSacak, M. (1999). J. Appl. Polym. Sci. 74, 1792–1796.  CAS Google Scholar
First citationSanthanam, K. S. V. & Sundaresan, N. S. (1986). Indian J. Technol. 24, 417–422.  CAS Google Scholar
First citationSaxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, ch. 8 and 11. New York: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSureshbabu, R., Saravanan, V., Dhayalan, V. & Mohanakrishnan, A. K. (2011). Eur. J. Org. Chem. 922–935.  Google Scholar
First citationTachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2001). J. Agric. Food Chem. 49, 5589–5594.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, Q., Chen, J., Cheng, Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). J. Mater. Chem. 14, 895–900.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds