research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Silver(I) nitrate complexes of three tetra­kis-thio­ether-substituted pyrazine ligands: metal–organic chain, network and framework structures

CROSSMARK_Color_square_no_text.svg

aCanAm Bioresearch Inc., 9-1250 Waverley Street, Winnipeg, Manitoba R3T 6C6, Canada, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by M. Weil, Vienna University of Technology, Austria (Received 13 February 2017; accepted 19 February 2017; online 24 February 2017)

The reaction of the ligand 2,3,5,6-tetra­kis­[(methyl­sulfanyl)­meth­yl]pyrazine (L1) with silver(I) nitrate led to {[Ag(C12H20N2S4)](NO3)}n, (I), catena-poly[[silver(I)-μ-2,3,5,6-tetra­kis­[(methyl­sulfan­yl)meth­yl]pyrazine] nitrate], a compound with a metal–organic chain structure. The asymmetric unit is composed of two half ligands, located about inversion centres, with one ligand coordinating to the silver atoms in a bis-tridentate manner and the other in a bis-bidentate manner. The charge on the metal atom is compensated for by a free nitrate anion. Hence, the silver atom has a fivefold S3N2 coordination sphere. The reaction of the ligand 2,3,5,6-tetra­kis­[(phenyl­sulfanyl)­meth­yl]pyrazine (L2) with silver(I) nitrate, led to [Ag2(NO3)2(C32H28N2S4)]n, (II), poly[di-μ-nitrato-bis­{μ-2,3,5,6-tetra­kis­[(phenyl­sulfan­yl)meth­yl]pyrazine}disilver], a compound with a metal–organic network structure. The asymmetric unit is composed of half a ligand, located about an inversion centre, that coordinates to the silver atoms in a bis-tridentate manner. The nitrate anion coordinates to the silver atom in a bidentate/monodentate manner, bridging the silver atoms, which therefore have a sixfold S2NO3 coordination sphere. The reaction of the ligand 2,3,5,6-tetra­kis­[(pyridin-2-yl­sulfanyl)­meth­yl]pyrazine (L3) with silver(I) nitrate led to [Ag3(NO3)3(C28H24N6S4)]n, (III), poly[trinitrato{μ6-2,3,5,6-tetra­kis[(pyri­din-2-ylsulfan­yl)meth­yl]pyrazine}­trisilver(I)], a compound with a metal–organic framework structure. The asymmetric unit is composed of half a ligand, located about an inversion centre, that coordinates to the silver atoms in a bis-tridentate manner. One pyridine N atom bridges the monomeric units, so forming a chain structure. Two nitrate O atoms also coordinate to this silver atom, hence it has a sixfold S2N2O2 coordination sphere. The chains are linked via a second silver atom, located on a twofold rotation axis, coordinated by the second pyridine N atom. A second nitrate anion, also lying about the twofold rotation axis, coordinates to this silver atom via an Ag—O bond, hence this second silver atom has a threefold N2O coordination sphere. In the crystal of (I), the nitrate anion plays an essential role in forming C—H⋯O hydrogen bonds that link the metal–organic chains to form a three-dimensional supra­molecular structure. In the crystal of (II), the metal–organic networks (lying parallel to the bc plane) stack up the a-axis direction but there are no significant inter­molecular inter­actions present between the layers. In the crystal of (III), there are a number of C—H⋯O hydrogen bonds present within the metal–organic framework. The role of the nitrate anion in the formation of the coordination polymers is also examined.

1. Chemical context

A series of tetra­kis-thio­ether pyrazine ligands have been prepared in order to study their coordination behaviour with various transition metals (Assoumatine, 1999[Assoumatine, T. (1999). PhD thesis, University of Neuchâtel, Switzerland.]). The ligands 2,3,5,6-tetra­kis­[(methyl­sulfanyl)­meth­yl]pyrazine (L1), 2,3,5,6-tetra­kis­[(phenyl­sulfanyl)­meth­yl]pyrazine (L2) and 2,3,5,6-tetra­kis­[(pyridin-2-yl­sulfanyl)­meth­yl]pyrazine (L3), were synthesized by the reaction of 2,3,5,6-tetra­kis­(bromo­meth­yl)pyrazine (Assoumatine & Stoeckli-Evans, 2014b[Assoumatine, T. & Stoeckli-Evans, H. (2014b). Acta Cryst. E70, o887-o888.]), with the appropriate 2-mercapto derivative. Their crystal structures and syntheses have been reported previously: L1 (Assoumatine & Stoeckli-Evans, 2014a[Assoumatine, T. & Stoeckli-Evans, H. (2014a). Acta Cryst. E70, 51-53.]), L2 (Assoumatine et al., 2007[Assoumatine, T., Gasser, G. & Stoeckli-Evans, H. (2007). Acta Cryst. C63, o219-o222.]) and L3 (Assoumatine & Stoeckli-Evans, 2016[Assoumatine, T. & Stoeckli-Evans, H. (2016). IUCrData, 1, x161977.]). The reaction of similar ligands with various silver(I) salts have also resulted in the formation of coordination polymers. For example, 2-{[(pyridin-4-ylmeth­yl)sulfanyl]­meth­yl}pyrazine (Black & Hanton, 2007[Black, C. A. & Hanton, L. R. (2007). Cryst. Growth Des. 7, 1868-1871.]) led to metal–organic frameworks, while ligands 2,3-bis­{[(pyridin-2-ylmeth­yl)sulfanyl]­meth­yl}pyrazine (Cara­doc-Davies & Hanton, 2001[Caradoc-Davies, P. L. & Hanton, L. R. (2001). Chem. Commun. pp. 1098-1099.]) and 2,5-bis­{[(pyridin-2-ylmeth­yl)sulfanyl]­meth­yl}pyrazine (Caradoc-Davies et al., 2001[Caradoc-Davies, P. L., Hanton, L. R. & Henderson, W. (2001). J. Chem. Soc. Dalton Trans. pp. 2749-2755.]) both resulted in compounds with metal–organic chains.

[Scheme 1]
[Scheme 2]
[Scheme 3]
[Scheme 4]

2. Structural commentary

The reaction of the ligand 2,3,5,6-tetra­kis­[(methyl­sulfanyl)­meth­yl]pyrazine (L1) with silver(I) nitrate, led to the formation of a metal–organic chain (MOC) structure, (I)[link] (Fig. 1[link]). Selected bond lengths and angles involving the Ag1 atom are given in Table 1[link]. The asymmetric unit is composed of two half ligands, located about inversion centres, with one ligand coordinating to the silver atom in a bis-tridentate manner and the other in a bis-bidentate manner. Their pyrazine rings are almost normal to one another, making a dihedral angle of 88.6 (2)°. The charge on the metal atom is compensated for by a free nitrate anion. The silver atom, Ag1, has a fivefold S3N2 coordination sphere with a highly distorted shape and a τ5 value of 0.63 (τ5 = 0 for an ideal square-pyramidal coordination sphere, and = 1 for an ideal trigonal-pyramidal coordination sphere; Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). Within the MOC structure, there are significant C—H⋯S inter­actions present, involving the thio­ether substituent that does not coordinate to the silver atom, viz. atom S3 (Table 4 and Fig. 1[link]).

Table 1
Selected geometric parameters (Å, °) for (I)[link]

Ag1—N1 2.714 (4) Ag1—S2 2.5987 (16)
Ag1—N2 2.436 (5) Ag1—S4i 2.5910 (15)
Ag1—S1 2.5895 (15)    
       
N1—Ag1—N2 167.75 (13) N2—Ag1—S2 109.60 (11)
N1—Ag1—S1 64.36 (9) N2—Ag1—S4i 77.43 (10)
N1—Ag1—S2 72.54 (9) S1—Ag1—S2 129.99 (5)
N1—Ag1—S4i 113.79 (9) S1—Ag1—S4i 111.41 (5)
N2—Ag1—S1 107.74 (11) S4i—Ag1—S2 108.26 (5)
Symmetry code: (i) -x, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular entities of compound (I)[link], with atom labelling for the asymmetric unit. Unlabelled atoms are related to labelled atoms by symmetry operation (i) = −x, −y + 1, −z + 1, for the ligand involving atom N2, and by symmetry operation (ii) = −x + 1, −y + 1, −z + 2, for the ligand involving atom N1. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular C—H⋯S contacts are shown as dashed lines (see Table 4[link]).

The reaction of the ligand 2,3,5,6-tetra­kis­[(phenyl­sulfanyl)­meth­yl]pyrazine (L2) with silver(I) nitrate, led to the formation of a metal–organic network (MON) structure, (II)[link] (Fig. 2[link]). Selected bond lengths and angles involving atom Ag1 are given in Table 2[link]. The asymmetric unit is composed of half a ligand, located about an inversion centre, a silver atom and a nitrate anion. The ligand coordinates to the silver atoms in a bis-tridentate manner. The nitrate anion coordinates to the silver atom in a bidentate/monodentate manner, bridging the silver atoms, which therefore have a sixfold S2NO3 coordination sphere, best described as a highly distorted octa­hedron (Table 2[link]).

Table 2
Selected geometric parameters (Å, °) for (II)[link]

Ag1—N1 2.527 (4) Ag1—O1 2.551 (4)
Ag1—S1 2.6560 (15) Ag1—O2 2.507 (4)
Ag1—S2i 2.6790 (14) Ag1—O2ii 2.539 (4)
       
N1—Ag1—S1 76.40 (9) O2ii—Ag1—O1 49.56 (12)
N1—Ag1—S2i 70.89 (9) O2—Ag1—S1 80.10 (11)
S1—Ag1—S2i 146.98 (4) O2ii—Ag1—S1 101.67 (11)
O2—Ag1—N1 112.54 (12) O1—Ag1—S1 120.09 (11)
O2—Ag1—O2ii 117.32 (8) O2—Ag1—S2i 116.46 (10)
N1—Ag1—O2ii 128.98 (12) O2ii—Ag1—S2i 95.47 (11)
O2—Ag1—O1 75.15 (13) O1—Ag1—S2i 92.47 (11)
N1—Ag1—O1 163.34 (14)    
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The mol­ecular entities of compound (II)[link], with atom labelling for the asymmetric unit. For the ligand, unlabelled atoms are related to the labelled atoms by symmetry operation (i) −x + 2, −y + 2, −z + 1; other symmetry codes are (ii) x, −y + [{3\over 2}], z + [{1\over 2}]; (iii) −x + 2, y + [{1\over 2}], −z + [{1\over 2}]. Displacement ellipsoids are drawn at the 50% probability level.

The reaction of the ligand 2,3,5,6-tetra­kis­[(pyridin-2-yl­sulfanyl)­meth­yl]pyrazine (L3) with silver(I) nitrate, led to the formation of a metal–organic framework (MOF) structure, (III)[link] (Fig. 3[link]). Selected bond lengths and angles involving atoms Ag1 and Ag2 are given in Table 3[link]. The asymmetric unit is composed of half a ligand, located about an inversion centre, a silver atom and a nitrate anion, plus half a second AgNO3 unit located about a twofold rotation axis. The organic ligand coordinates to the silver atoms (Ag1), in a bis-tridentate manner. One pyridine N atom, N2, bridges the monomeric units, so forming a chain structure along the b-axis direction. The nitrate O atoms, O11 and O13, coordinate to silver atom Ag1, hence it has a highly distorted octa­hedral S2N2O2 coord­ination sphere (Table 3[link]). The chains are linked via a second silver atom, Ag2, located on a twofold rotation axis, coordinated by the second pyridine N atom, N3. A second nitrate anion, also lying about the twofold rotation axis, coordinates to this silver atom via an Ag2—O21 bond, hence silver atom Ag2 has a T-shaped N2O coordination sphere.

Table 3
Selected geometric parameters (Å, °) for (III)[link]

Ag1—N1 2.578 (3) Ag1—O11 2.700 (5)
Ag1—N2i 2.267 (3) Ag1—O13 2.752 (5)
Ag1—S1 2.7943 (13) Ag2—N3 2.208 (3)
Ag1—S2ii 2.6010 (11) Ag2—O21 2.567 (5)
       
N1—Ag1—N2i 155.31 (11) S2ii—Ag1—O13 120.26 (10)
S1—Ag1—S2ii 122.71 (3) O11—Ag1—N1 73.76 (11)
S1—Ag1—N1 68.98 (7) O11—Ag1—N2i 99.33 (12)
S1—Ag1—N2i 96.92 (8) O13—Ag1—N1 69.73 (11)
S2ii—Ag1—N1 70.29 (7) O13—Ag1—N2i 88.28 (12)
S2ii—Ag1—N2i 133.03 (8) O11—Ag1—O13 45.99 (14)
S1—Ag1—O11 122.18 (10) N3—Ag2—N3iii 175.41 (12)
S1—Ag1—O13 79.78 (10) O21—Ag2—N3 92.30 (9)
S2ii—Ag1—O11 81.18 (10)    
Symmetry codes: (i) -x, -y+1, -z; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) [-x+1, y, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
The mol­ecular entities of compound (III)[link], with atom labelling for the asymmetric unit. For the ligand, unlabelled atoms are related to the labelled atoms by symmetry operation (ii) −x + [{1\over 2}], −y + [{1\over 2}], −z; other symmetry codes are (i) −x, −y + 1, −z; (iii) −x + 1, y, −z + [{1\over 2}]; (iv) x + [{1\over 2}], y − [{1\over 2}], z. Displacement ellipsoids are drawn at the 50% probability level.

It can be seen from Tables 1[link]–3[link][link] that the Ag—N(pyrazine) and Ag—S bond lengths differ considerably for the three compounds. In compound (I)[link], the Ag1—N2 bond length, involving the ligand that coordinates in a bis-bidentate manner, is considerably shorter at 2.436 (5) Å, compared to the Ag1—N1 bond length of 2.714 (4) Å, involving the ligand that coordinates in a bis-tridentate manner. These Ag—N(pyrazine) bond lengths contrast with those for compounds (II)[link] and (III)[link], where both ligands coordinate in a bis-tridentate manner, with values of 2.527 (4) and 2.578 (3) Å, respectively. The Ag1—S bond lengths in compound (I)[link] are almost the same, varying from 2.5895 (15) to 2.5987 (16) Å. These distances are shorter than those in (II)[link], which are 2.6560 (15) and 2.6790 (14) Å, but similar to bond length Ag1—S2ii = 2.6010 (11) Å in (III)[link]. The longest Ag—S distance [2.7943 (13) Å] is found for bond Ag1—S1 in (III)[link]. Finally, in compound (III)[link], the two Ag—N(pyridine) bond lengths also differ; Ag1—N2i is 2.267 (3) Å, while bond length Ag2—N3 is shorter at 2.208 (3) Å (see Table 3[link]). Despite the large variation in the Ag—N(pyrazine), Ag—S or Ag—N(pyridine) bond lengths, which perhaps indicates how flexible the ligands are, the values are within the limits observed for similar silver coordinating pyrazine, thio­ether or pyridine ligands, when compared to the values observed for such structures present in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The various histograms of the bond lengths have skewed-right distributions and the values vary from 2.10 to 2.75 Å for Ag—N(pyrazine), from 2.48 to 2.79 Å for Ag—S, and 1.90 to 2.99 Å for Ag—N(pyridine).

3. Supra­molecular features

In the crystal of (I)[link], the metal–organic chains (Fig. 4[link]) propagate along [101]. They are linked via a number of C—H⋯O hydrogen bonds (Table 4[link]), forming a three-dimensional supra­molecular structure, as illustrated in Fig. 5[link].

Table 4
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9C⋯S2 0.96 2.86 3.650 (8) 141
C11—H11A⋯S3 0.97 2.74 3.502 (6) 136
C11—H11B⋯O13A 0.97 2.52 3.438 (17) 157
C2—H2A⋯O11ii 0.97 2.55 3.460 (9) 156
C2—H2B⋯O12Aiii 0.97 2.53 3.431 (15) 154
C3—H3C⋯O12Aiii 0.96 2.37 3.171 (17) 141
C3—H3C⋯O12Biii 0.96 2.57 3.364 (16) 140
C6—H6A⋯O13Ai 0.96 2.52 3.375 (19) 149
C9—H9A⋯O11iv 0.96 2.58 3.503 (10) 162
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 4]
Figure 4
A partial view, normal to plane (1[\overline{1}]0), of the metal–organic chain structure of compound (I)[link]. The H atoms have been omitted for clarity
[Figure 5]
Figure 5
A view along the b axis of compound (I)[link], with emphasis on the crystal packing. Hydrogen bonds are shown as dashed lines (see Table 4[link]), and only those H atoms involved in inter­molecular C—H⋯O hydrogen bonds have been included.

In the crystal of (II)[link], the metal–organic networks extend parallel to the bc plane and stack up the a axis (Fig. 6[link]), but there are no significant inter­molecular inter­actions present between the layers.

[Figure 6]
Figure 6
A view along the a axis of compound (II)[link], illustrating the role of the NO3 anion in forming the network structure. H atoms have been omitted for clarity

In the crystal of (III)[link], the metal–organic framework (Fig. 7[link]) is reinforced by a number of C—H⋯O hydrogen bonds (Table 5[link]). The voids in this three-dimensional structure, occupied by disordered solvent mol­ecules, amount to only ca 3.7% of the total volume of the unit cell.

Table 5
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O21 0.94 2.57 3.287 (5) 133
C3—H3B⋯O21iv 0.98 2.40 3.253 (4) 145
C3—H3B⋯O22iv 0.98 2.49 3.420 (6) 158
C7—H7⋯O13v 0.94 2.51 3.268 (6) 138
C9—H9A⋯O22iv 0.98 2.32 3.291 (6) 171
C12—H12⋯O11vi 0.94 2.51 3.310 (7) 142
C14—H14⋯O22iv 0.94 2.59 3.349 (7) 138
Symmetry codes: (iv) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (v) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (vi) -x, -y, -z.
[Figure 7]
Figure 7
A view along the c axis of compound (III)[link]. H atoms have been omitted for clarity

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, first update November 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for tetra­kis-substituted pyrazine ligands gave 774 hits, which include 194 hits for compounds involving tetra­methyl­pyrazine. The first such ligand, tetra­kis-2,3,5,6-(2′-pyrid­yl)pyrazine, was synthesized by Goodwin & Lions (1959[Goodwin, H. A. & Lions, F. (1959). J. Am. Chem. Soc. 81, 6415-6422.]), and the crystal structures of three polymorphs have been reported; a monoclininc P21/n polymorph (VUKGAJ01; Bock et al., 1992[Bock, H., Vaupel, T., Näther, C., Ruppert, K. & Havlas, Z. (1992). Angew. Chem. Int. Ed. Engl. 31, 299-301.]), a tetra­gonal I41/a polymorph (VUKGAJ; Greaves & Stoeckli-Evans, 1992[Greaves, B. & Stoeckli-Evans, H. (1992). Acta Cryst. C48, 2269-2271.]) and a second monoclinic C2/c polymorph (VUKGAJ03; Behrens & Rehder, 2009[Behrens, A. & Rehder, D. (2009). Private Communication (CCDC No. 261615, refcode VUKGAJ03). CCDC, Cambridge, England.]). The most recent tetra­kis-substituted pyrazine ligand to be described is N,N′,N′′,N′′′-tetra­ethyl­pyrazine-2,3,5,6-tetra­carboxamide (OSUTIH; Lohrman et al., 2016[Lohrman, J., Telikepalli, H., Johnson, T. S., Jackson, T. A., Day, V. W. & Bowman-James, K. (2016). Inorg. Chem. 55, 5098-5100.]). In the last update of the CSD there are a total of three tetra­kis-substituted thio­ether pyrazine compounds, viz. two polymorphs of compound 2,3,5,6-tetra­kis­(naphthalen-2-ylsulf­an­yl­meth­yl)pyrazine (Pacifico & Stoeckli-Evans, 2004[Pacifico, J. & Stoeckli-Evans, H. (2004). Acta Cryst. C60, o152-o155.]), and the ligands L1 and L2.

The role of the anion in coordination chemistry is often essential for the formation of multi-dimensional structures. The nitrate anion can be present as an isolated anion, coordinating to the metal atom or even bridging metal atoms. A search of the CSD for silver nitrate complexes yielded 2192 hits, among which it was noted that the nitrate anion can coordinate in at least 10 different manners. In the present study, three different situations are observed. In (I)[link], the nitrate anion is present as an isolated anion. Its role here is to form C—H⋯O hydrogen bonds, resulting in the formation of a three-dimensional supra­molecular structure (Fig. 5[link] and Table 4[link]). In (II)[link], the nitrate anion is essential in forming the network structure. The –Ag–L2–Ag–L2– chains, which propagate along [010], are linked by the nitrate anion in the [001] direction, so forming the metal–organic network (Fig. 6[link] and Table 2[link]). Finally, there are two independent nitrate anions present in (III)[link]. They coordinate to the metal atoms in different manners, but they do not appear to be the essential elements in forming the three-dimensional framework (Fig. 7[link] and Table 3[link]). Here, it is the presence of the pyridine rings, which twist about the S—Car bonds, that enables the metal atoms to cross-link, so forming the metal–organic framework.

5. Synthesis and crystallization

Compound (I)[link]:

A solution of L1 (50 mg, 0.16 mmol; Assoumatine & Stoeckli-Evans, 2014a[Assoumatine, T. & Stoeckli-Evans, H. (2014a). Acta Cryst. E70, 51-53.]) in CH2Cl2 (5 ml) was introduced into a 16 mm diameter glass tube and layered with MeCN (2 ml) as a buffer zone. Then a solution of AgNO3 (27 mg, 0.16 mmol) in MeCN (5 ml) was added very gently to avoid possible mixing. The glass tube was sealed and left in the dark at room temperature for at least two weeks, whereupon yellow plate-like crystals of complex (I)[link] were isolated at the inter­face between the two solutions. IR (KBr disc, cm−1): ν = 2985 w, 2912 w, 1406 bm, 1341 bs, 1141 w, 1115 w, 982 w, 828 w, 777 w, 701 vw, 478 vw.

Compound (II)[link]:

A solution of L2 (50 mg, 0.09 mmol; Assoumatine et al., 2007[Assoumatine, T., Gasser, G. & Stoeckli-Evans, H. (2007). Acta Cryst. C63, o219-o222.]) in THF (5 ml) was introduced into a 16 mm diameter glass tube and layered with MeCN (2 ml) as a buffer zone. Then a solution of AgNO3 (15 mg, 0.09 mmol) in MeCN (5 ml) was added very gently to avoid possible mixing. The glass tube was sealed and left in the dark at room temperature for at least three weeks, whereupon yellow block-like crystals of complex (II)[link] were isolated from the bottom of the tube. IR (KBr disc, cm−1): ν = 3053 vw, 2962 vw, 2927 vw, 1583 w, 1480 w, 1386 bs, 1278 vs, 1133 vw, 1023 w, 850 vw, 738 s, 690 m, 495 vw, 478 vw.

Compound (III)[link]:

A solution of L3 (50 mg, 0.09 mmol; Assoumatine & Stoeckli-Evans, 2016[Assoumatine, T. & Stoeckli-Evans, H. (2016). IUCrData, 1, x161977.]) in CHCl3 (5 ml) was introduced into a 16 mm diameter glass tube and layered with MeCN (2 ml) as a buffer zone. Then a solution of AgNO3 (15 mg, 0.09 mmol) in MeCN (5 ml) was added very gently to avoid possible mixing. The glass tube was sealed and left in the dark at room temperature for at least two weeks, whereupon pale-yellow needle-like crystals of complex (III)[link] were isolated at the inter­face between the two solutions. IR (KBr disc, cm−1): ν = 3097 vw, 2899 vw, 1581 m, 1562 w, 1460 m, 1386 bs, 1305 bs, 1163 w, 1126 w, 1032 vw, 1004 vw, 825 vw, 759 m, 723 vw, 461vw.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. Complexes (I)[link] and (II)[link] were measured at 293 K on a four-circle diffractometer, while complex (III)[link] was measured at 223 K on a one-circle image-plate diffractometer. In complex (I)[link], the nitrate ion is positionally disordered and atoms O12A/O12B and O13A/O13B were refined with a fixed occupancy ratio of 0.5:0.5. No absorption correction was applied for complex (II)[link] owing to the irregular shape of the crystal, and as there were no suitable reflections for ψ scans. For complex (III)[link], a region of disordered electron density (25 electrons for a solvent-accessible volume of 130 Å3) was corrected for using the SQUEEZE routine in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Their formula mass and unit-cell characteristics were not taken into account for the final model. For complexes (I)[link] and (II)[link], only one equivalent of data were measured, hence Rint = 0. In all three complexes, the H atoms were included in calculated positions and refined as riding: C—H = 0.96–0.97 Å for (I)[link], 0.93–0.97 Å for (II)[link] and 0.94–0.98 Å for (III)[link], with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 6
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula [Ag(C12H20N2S4](NO3) [Ag2(NO3)2(C32H28N2S4)] [Ag3(NO3)3(C28H24N6S4)]
Mr 490.42 908.56 1082.41
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c Monoclinic, C2/c
Temperature (K) 293 293 223
a, b, c (Å) 10.167 (2), 13.482 (3), 13.377 (3) 11.8437 (14), 18.5674 (14), 7.8444 (12) 13.6319 (9), 16.2211 (10), 15.7201 (11)
β (°) 100.838 (19) 96.856 (11) 96.607 (8)
V3) 1800.9 (7) 1712.7 (4) 3453.0 (4)
Z 4 2 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 1.60 1.44 1.99
Crystal size (mm) 0.61 × 0.61 × 0.17 0.46 × 0.46 × 0.38 0.45 × 0.08 × 0.08
 
Data collection
Diffractometer Stoe AED2 4-circle Stoe AED2 4-circle STOE IPDS1
Absorption correction Analytical (ABST; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Multi-scan (MULABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])
Tmin, Tmax 0.457, 0.789 0.949, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3318, 3318, 2857 3178, 3178, 2606 13264, 3311, 1936
Rint 0 0 0.072
(sin θ/λ)max−1) 0.607 0.606 0.614
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.161, 1.09 0.045, 0.100, 1.16 0.030, 0.052, 0.76
No. of reflections 3318 3178 3311
No. of parameters 207 218 242
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.97, −1.50 0.62, −0.61 0.43, −0.44
Computer programs: STADI4 and X-RED (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]), EXPOSE, CELL and INTEGRATE in IPDS-I (Stoe & Cie, 1998[Stoe & Cie (1998). IPDS-I Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: STADI4 (Stoe & Cie, 1997) for (I), (II); EXPOSE in IPDS-I (Stoe & Cie, 1998) for (III). Cell refinement: STADI4 (Stoe & Cie, 1997) for (I), (II); CELL in IPDS-I (Stoe & Cie, 1998) for (III). Data reduction: X-RED (Stoe & Cie, 1997) for (I), (II); INTEGRATE in IPDS-I (Stoe & Cie, 1998) for (III). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014/6 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(I) catena-Poly[[silver(I)-µ-2,3,5,6-tetrakis[(methylsulfanyl)methyl]pyrazine] nitrate] top
Crystal data top
[Ag(C12H20N2S4](NO3)F(000) = 992
Mr = 490.42Dx = 1.809 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.167 (2) ÅCell parameters from 31 reflections
b = 13.482 (3) Åθ = 14.1–19.7°
c = 13.377 (3) ŵ = 1.60 mm1
β = 100.838 (19)°T = 293 K
V = 1800.9 (7) Å3Plate, yellow
Z = 40.61 × 0.61 × 0.17 mm
Data collection top
Stoe AED2 4-circle
diffractometer
2857 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.6°, θmin = 2.2°
ω/2θ scansh = 1112
Absorption correction: analytical
(ABST; Spek, 2009)
k = 016
Tmin = 0.457, Tmax = 0.789l = 016
3318 measured reflections2 standard reflections every 120 min
3318 independent reflections intensity decay: 5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0974P)2 + 4.9525P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3318 reflectionsΔρmax = 1.97 e Å3
207 parametersΔρmin = 1.50 e Å3
0 restraintsExtinction correction: SHELXL-2016/6 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0035 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.23796 (5)0.48987 (4)0.75616 (3)0.0401 (2)
S10.43682 (14)0.37806 (10)0.73224 (10)0.0323 (3)
S20.11067 (14)0.50053 (10)0.90707 (11)0.0320 (3)
S30.06264 (16)0.24651 (10)0.63652 (12)0.0413 (4)
S40.26369 (13)0.33208 (10)0.31050 (10)0.0330 (3)
N10.4152 (4)0.4454 (3)0.9286 (3)0.0292 (9)
N20.0779 (5)0.4916 (3)0.5959 (4)0.0282 (10)
C10.5407 (5)0.4649 (4)0.9166 (4)0.0272 (11)
C20.5796 (6)0.4261 (5)0.8198 (4)0.0360 (13)
H2A0.6457190.3738870.8368420.043*
H2B0.6200360.4792110.7871380.043*
C30.4998 (7)0.3836 (5)0.6154 (5)0.0486 (16)
H3A0.4304810.3641400.5598080.073*
H3B0.5746650.3394210.6195180.073*
H3C0.5277520.4500910.6046540.073*
C40.3736 (5)0.4814 (4)1.0107 (4)0.0268 (11)
C50.2294 (5)0.4566 (4)1.0169 (4)0.0322 (11)
H5A0.2079250.4861531.0780100.039*
H5B0.2204550.3852181.0223560.039*
C60.1099 (7)0.6312 (5)0.9332 (6)0.0512 (16)
H6A0.0470930.6637870.8809300.077*
H6B0.1978000.6578950.9347610.077*
H6C0.0843580.6418230.9979250.077*
C70.0317 (5)0.4104 (4)0.5426 (4)0.0273 (10)
C100.0478 (5)0.4186 (4)0.4465 (4)0.0265 (10)
C110.0956 (5)0.3274 (4)0.3842 (4)0.0334 (12)
H11A0.0897670.2711400.4300440.040*
H11B0.0344960.3150520.3379940.040*
C80.0713 (5)0.3120 (4)0.5925 (4)0.0313 (11)
H8A0.1435630.3227870.6500600.038*
H8B0.1056640.2700390.5443390.038*
C90.0972 (9)0.3316 (5)0.7311 (6)0.062 (2)
H9A0.1618740.3028660.7664520.093*
H9B0.1322670.3921500.6989340.093*
H9C0.0161520.3452840.7786940.093*
C120.3592 (7)0.3497 (6)0.4101 (6)0.0569 (18)
H12A0.4518200.3596800.3803180.085*
H12B0.3260700.4067970.4499370.085*
H12C0.3506330.2921370.4530420.085*
N100.2281 (6)0.3702 (5)0.3423 (5)0.0544 (15)
O110.2331 (7)0.2979 (5)0.3953 (5)0.0842 (13)
O12A0.2834 (16)0.4447 (11)0.3565 (11)0.0842 (13)0.5
O13A0.1631 (17)0.3451 (10)0.2526 (12)0.0842 (13)0.5
O12B0.2588 (16)0.4507 (11)0.4035 (11)0.0842 (13)0.5
O13B0.1847 (18)0.3871 (10)0.2537 (12)0.0842 (13)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0397 (3)0.0501 (3)0.0284 (3)0.00285 (18)0.0014 (2)0.00409 (17)
S10.0349 (7)0.0359 (7)0.0280 (7)0.0023 (5)0.0105 (5)0.0025 (5)
S20.0243 (7)0.0424 (8)0.0293 (7)0.0031 (5)0.0056 (5)0.0003 (5)
S30.0473 (9)0.0327 (7)0.0422 (8)0.0100 (6)0.0044 (7)0.0024 (6)
S40.0312 (7)0.0361 (7)0.0315 (7)0.0046 (5)0.0056 (5)0.0069 (5)
N10.022 (2)0.040 (2)0.027 (2)0.0010 (18)0.0078 (18)0.0002 (18)
N20.030 (2)0.029 (2)0.027 (2)0.0020 (17)0.0065 (19)0.0017 (16)
C10.028 (3)0.035 (3)0.020 (2)0.005 (2)0.007 (2)0.0033 (19)
C20.029 (3)0.054 (3)0.029 (3)0.002 (2)0.016 (2)0.006 (2)
C30.061 (4)0.056 (4)0.031 (3)0.010 (3)0.017 (3)0.011 (3)
C40.022 (3)0.037 (3)0.023 (2)0.005 (2)0.007 (2)0.004 (2)
C50.023 (3)0.041 (3)0.034 (3)0.005 (2)0.010 (2)0.005 (2)
C60.060 (4)0.038 (3)0.059 (4)0.003 (3)0.022 (3)0.004 (3)
C70.025 (2)0.028 (2)0.030 (3)0.0005 (19)0.008 (2)0.002 (2)
C100.024 (2)0.028 (2)0.028 (2)0.0012 (19)0.007 (2)0.002 (2)
C110.031 (3)0.033 (3)0.034 (3)0.000 (2)0.001 (2)0.009 (2)
C80.034 (3)0.031 (3)0.027 (3)0.001 (2)0.000 (2)0.003 (2)
C90.077 (5)0.046 (4)0.076 (5)0.009 (3)0.047 (4)0.005 (4)
C120.056 (4)0.062 (4)0.063 (4)0.006 (3)0.036 (4)0.003 (3)
N100.038 (3)0.061 (4)0.068 (4)0.006 (3)0.020 (3)0.006 (3)
O110.109 (4)0.071 (3)0.076 (3)0.016 (3)0.026 (3)0.011 (3)
O12A0.109 (4)0.071 (3)0.076 (3)0.016 (3)0.026 (3)0.011 (3)
O13A0.109 (4)0.071 (3)0.076 (3)0.016 (3)0.026 (3)0.011 (3)
O12B0.109 (4)0.071 (3)0.076 (3)0.016 (3)0.026 (3)0.011 (3)
O13B0.109 (4)0.071 (3)0.076 (3)0.016 (3)0.026 (3)0.011 (3)
Geometric parameters (Å, º) top
Ag1—N12.714 (4)C4—C51.522 (7)
Ag1—N22.436 (5)C5—H5A0.9700
Ag1—S12.5895 (15)C5—H5B0.9700
Ag1—S22.5987 (16)C6—H6A0.9600
Ag1—S4i2.5910 (15)C6—H6B0.9600
S1—C31.798 (6)C6—H6C0.9600
S1—C21.805 (6)C7—C101.389 (7)
S2—C61.797 (7)C7—C81.506 (7)
S2—C51.817 (6)C10—C111.513 (7)
S3—C91.791 (7)C11—H11A0.9700
S3—C81.812 (6)C11—H11B0.9700
S4—C111.806 (5)C8—H8A0.9700
S4—C121.806 (7)C8—H8B0.9700
N1—C41.341 (7)C9—H9A0.9600
N1—C11.342 (7)C9—H9B0.9600
N2—C71.342 (7)C9—H9C0.9600
N2—C10i1.348 (6)C12—H12A0.9600
C1—C4ii1.381 (8)C12—H12B0.9600
C1—C21.517 (7)C12—H12C0.9600
C2—H2A0.9700N10—O12A1.148 (15)
C2—H2B0.9700N10—O111.202 (8)
C3—H3A0.9600N10—O13B1.205 (17)
C3—H3B0.9600N10—O13A1.301 (17)
C3—H3C0.9600N10—O12B1.360 (16)
N1—Ag1—N2167.75 (13)C4—C5—H5B109.1
N1—Ag1—S164.36 (9)S2—C5—H5B109.1
N1—Ag1—S272.54 (9)H5A—C5—H5B107.8
N1—Ag1—S4i113.79 (9)S2—C6—H6A109.5
N2—Ag1—S1107.74 (11)S2—C6—H6B109.5
N2—Ag1—S2109.60 (11)H6A—C6—H6B109.5
N2—Ag1—S4i77.43 (10)S2—C6—H6C109.5
S1—Ag1—S2129.99 (5)H6A—C6—H6C109.5
S1—Ag1—S4i111.41 (5)H6B—C6—H6C109.5
S4i—Ag1—S2108.26 (5)N2—C7—C10120.8 (5)
C3—S1—C2100.1 (3)N2—C7—C8116.5 (4)
C3—S1—Ag1119.8 (2)C10—C7—C8122.8 (4)
C2—S1—Ag1105.22 (19)N2i—C10—C7120.5 (4)
C6—S2—C5100.9 (3)N2i—C10—C11118.3 (5)
C6—S2—Ag1103.1 (2)C7—C10—C11121.1 (4)
C5—S2—Ag1104.98 (18)C10—C11—S4116.4 (4)
C9—S3—C8100.2 (3)C10—C11—H11A108.2
C11—S4—C12100.8 (3)S4—C11—H11A108.2
C11—S4—Ag1i94.24 (19)C10—C11—H11B108.2
C12—S4—Ag1i103.6 (3)S4—C11—H11B108.2
C4—N1—C1118.7 (5)H11A—C11—H11B107.3
C7—N2—C10i118.7 (5)C7—C8—S3114.8 (4)
C7—N2—Ag1124.7 (3)C7—C8—H8A108.6
C10i—N2—Ag1116.1 (3)S3—C8—H8A108.6
N1—C1—C4ii120.5 (5)C7—C8—H8B108.6
N1—C1—C2116.1 (5)S3—C8—H8B108.6
C4ii—C1—C2123.4 (5)H8A—C8—H8B107.6
C1—C2—S1111.8 (4)S3—C9—H9A109.5
C1—C2—H2A109.3S3—C9—H9B109.5
S1—C2—H2A109.3H9A—C9—H9B109.5
C1—C2—H2B109.3S3—C9—H9C109.5
S1—C2—H2B109.3H9A—C9—H9C109.5
H2A—C2—H2B107.9H9B—C9—H9C109.5
S1—C3—H3A109.5S4—C12—H12A109.5
S1—C3—H3B109.5S4—C12—H12B109.5
H3A—C3—H3B109.5H12A—C12—H12B109.5
S1—C3—H3C109.5S4—C12—H12C109.5
H3A—C3—H3C109.5H12A—C12—H12C109.5
H3B—C3—H3C109.5H12B—C12—H12C109.5
N1—C4—C1ii120.8 (5)O12A—N10—O11130.3 (10)
N1—C4—C5114.9 (5)O11—N10—O13B134.4 (9)
C1ii—C4—C5124.3 (5)O12A—N10—O13A121.9 (11)
C4—C5—S2112.6 (4)O11—N10—O13A106.9 (8)
C4—C5—H5A109.1O11—N10—O12B108.2 (8)
S2—C5—H5A109.1O13B—N10—O12B116.2 (10)
C4—N1—C1—C4ii1.9 (8)C10i—N2—C7—C8178.5 (5)
C4—N1—C1—C2177.3 (5)Ag1—N2—C7—C87.0 (6)
N1—C1—C2—S19.1 (6)N2—C7—C10—N2i1.3 (8)
C4ii—C1—C2—S1170.1 (4)C8—C7—C10—N2i178.4 (5)
C3—S1—C2—C1159.3 (4)N2—C7—C10—C11177.5 (5)
Ag1—S1—C2—C134.5 (4)C8—C7—C10—C112.3 (8)
C1—N1—C4—C1ii1.9 (8)N2i—C10—C11—S441.6 (6)
C1—N1—C4—C5179.2 (5)C7—C10—C11—S4142.1 (4)
N1—C4—C5—S258.1 (6)C12—S4—C11—C1060.4 (5)
C1ii—C4—C5—S2123.1 (5)Ag1i—S4—C11—C1044.3 (4)
C6—S2—C5—C474.8 (5)N2—C7—C8—S3107.7 (5)
Ag1—S2—C5—C432.1 (4)C10—C7—C8—S372.5 (6)
C10i—N2—C7—C101.3 (8)C9—S3—C8—C763.6 (5)
Ag1—N2—C7—C10172.8 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9C···S20.962.863.650 (8)141
C11—H11A···S30.972.743.502 (6)136
C11—H11B···O13A0.972.523.438 (17)157
C2—H2A···O11iii0.972.553.460 (9)156
C2—H2B···O12Aiv0.972.533.431 (15)154
C3—H3C···O12Aiv0.962.373.171 (17)141
C3—H3C···O12Biv0.962.573.364 (16)140
C6—H6A···O13Ai0.962.523.375 (19)149
C9—H9A···O11v0.962.583.503 (10)162
Symmetry codes: (i) x, y+1, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x1/2, y+1/2, z+1/2.
(II) Poly[di-µ-nitrato-bis{µ-2,3,5,6-tetrakis[(phenylsulfanyl)methyl]pyrazine}disilver] top
Crystal data top
[Ag2(NO3)2(C32H28N2S4)]F(000) = 908
Mr = 908.56Dx = 1.762 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.8437 (14) ÅCell parameters from 24 reflections
b = 18.5674 (14) Åθ = 11.2–17.7°
c = 7.8444 (12) ŵ = 1.44 mm1
β = 96.856 (11)°T = 293 K
V = 1712.7 (4) Å3Block, pale yellow
Z = 20.46 × 0.46 × 0.38 mm
Data collection top
Stoe AED2 4-circle
diffractometer
Rint = 0.0
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 2.1°
Graphite monochromatorh = 99
ω/2θ scansk = 022
3178 measured reflectionsl = 014
3178 independent reflections2 standard reflections every 120 min
2606 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0308P)2 + 3.2342P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.001
3178 reflectionsΔρmax = 0.62 e Å3
218 parametersΔρmin = 0.61 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0018 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag11.03726 (4)0.81386 (2)0.31389 (6)0.05335 (17)
S10.82101 (11)0.85133 (7)0.23374 (16)0.0473 (3)
S20.75690 (11)1.14870 (6)0.53250 (17)0.0458 (3)
O11.0997 (4)0.6845 (2)0.2690 (5)0.0699 (12)
O21.0189 (4)0.7981 (2)0.0056 (5)0.0671 (11)
O31.0734 (4)0.5953 (2)0.4353 (5)0.0786 (13)
N11.0335 (3)0.94469 (19)0.4019 (4)0.0368 (8)
N101.0647 (4)0.6592 (2)0.4005 (5)0.0464 (10)
C10.9323 (4)0.9750 (2)0.3633 (5)0.0354 (10)
C20.8967 (4)1.0317 (2)0.4638 (5)0.0365 (10)
C30.8593 (4)0.9458 (2)0.2087 (6)0.0435 (11)
H3A0.89980.95050.10890.052*
H3B0.79040.97430.18860.052*
C40.7519 (4)0.8528 (3)0.4246 (6)0.0446 (11)
C50.8133 (5)0.8402 (3)0.5828 (7)0.0529 (13)
H50.89190.83490.59150.063*
C60.7584 (6)0.8354 (3)0.7273 (7)0.0625 (15)
H60.80020.82660.83320.075*
C70.6437 (6)0.8435 (4)0.7171 (9)0.0738 (18)
H70.60720.84020.81540.089*
C80.5828 (6)0.8564 (5)0.5616 (10)0.091 (2)
H80.50440.86210.55450.110*
C90.6358 (5)0.8613 (4)0.4139 (9)0.0767 (19)
H90.59330.87010.30840.092*
C100.7834 (4)1.0681 (2)0.4170 (6)0.0406 (10)
H10A0.72411.03370.43340.049*
H10B0.77631.07970.29570.049*
C110.7013 (4)1.1194 (3)0.7201 (6)0.0439 (11)
C120.6681 (5)1.1731 (3)0.8251 (7)0.0588 (14)
H120.67841.22110.79690.071*
C130.6194 (5)1.1561 (4)0.9719 (8)0.0700 (17)
H130.59771.19261.04220.084*
C140.6031 (5)1.0855 (4)1.0141 (7)0.0710 (19)
H140.56941.07421.11190.085*
C150.6368 (5)1.0312 (4)0.9113 (7)0.0646 (16)
H150.62620.98320.94010.078*
C160.6866 (5)1.0481 (3)0.7647 (7)0.0539 (13)
H160.71011.01150.69630.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0616 (3)0.0377 (2)0.0624 (3)0.00179 (19)0.01433 (19)0.00855 (18)
S10.0601 (8)0.0426 (7)0.0388 (6)0.0055 (6)0.0047 (6)0.0088 (5)
S20.0516 (7)0.0354 (6)0.0513 (7)0.0076 (5)0.0109 (6)0.0029 (5)
O10.107 (3)0.057 (2)0.052 (2)0.015 (2)0.034 (2)0.0080 (19)
O20.097 (3)0.057 (2)0.052 (2)0.019 (2)0.029 (2)0.0007 (18)
O30.130 (4)0.040 (2)0.070 (3)0.010 (2)0.024 (3)0.0085 (19)
N10.047 (2)0.0323 (19)0.0303 (19)0.0022 (17)0.0034 (16)0.0011 (15)
N100.058 (3)0.041 (2)0.041 (2)0.003 (2)0.0092 (19)0.0019 (19)
C10.047 (3)0.028 (2)0.031 (2)0.0015 (19)0.0042 (19)0.0014 (17)
C20.047 (3)0.031 (2)0.032 (2)0.003 (2)0.006 (2)0.0035 (18)
C30.059 (3)0.037 (2)0.032 (2)0.003 (2)0.003 (2)0.0010 (19)
C40.050 (3)0.040 (3)0.044 (3)0.003 (2)0.005 (2)0.002 (2)
C50.046 (3)0.062 (3)0.052 (3)0.009 (3)0.009 (2)0.006 (3)
C60.078 (4)0.064 (4)0.048 (3)0.011 (3)0.015 (3)0.006 (3)
C70.079 (5)0.080 (4)0.069 (4)0.001 (4)0.035 (4)0.002 (3)
C80.049 (4)0.132 (7)0.096 (6)0.002 (4)0.022 (4)0.005 (5)
C90.054 (4)0.109 (6)0.065 (4)0.003 (4)0.005 (3)0.004 (4)
C100.048 (3)0.036 (2)0.037 (2)0.002 (2)0.004 (2)0.000 (2)
C110.040 (3)0.050 (3)0.043 (3)0.001 (2)0.006 (2)0.003 (2)
C120.065 (4)0.056 (3)0.057 (3)0.002 (3)0.013 (3)0.017 (3)
C130.066 (4)0.090 (5)0.055 (4)0.002 (4)0.011 (3)0.019 (3)
C140.052 (3)0.122 (6)0.041 (3)0.012 (4)0.010 (3)0.001 (3)
C150.060 (4)0.079 (4)0.055 (3)0.016 (3)0.009 (3)0.012 (3)
C160.060 (3)0.052 (3)0.051 (3)0.002 (3)0.013 (3)0.001 (2)
Geometric parameters (Å, º) top
Ag1—N12.527 (4)C4—C91.376 (8)
Ag1—S12.6560 (15)C4—C51.382 (7)
Ag1—S2i2.6790 (14)C5—C61.376 (7)
Ag1—O12.551 (4)C5—H50.9300
Ag1—O22.507 (4)C6—C71.359 (9)
Ag1—O2ii2.539 (4)C6—H60.9300
S1—C41.790 (5)C7—C81.363 (10)
S1—C31.828 (5)C7—H70.9300
S2—C111.768 (5)C8—C91.385 (9)
S2—C101.796 (4)C8—H80.9300
S2—Ag1i2.6790 (14)C9—H90.9300
O1—N101.248 (5)C10—H10A0.9700
O2—N10iii1.250 (5)C10—H10B0.9700
O2—Ag1iii2.539 (4)C11—C121.381 (7)
O3—N101.219 (5)C11—C161.385 (7)
N1—C11.326 (6)C12—C131.385 (8)
N1—C2i1.334 (5)C12—H120.9300
N10—O2ii1.250 (5)C13—C141.372 (9)
C1—C21.409 (6)C13—H130.9300
C1—C31.504 (6)C14—C151.380 (9)
C2—N1i1.334 (5)C14—H140.9300
C2—C101.508 (6)C15—C161.390 (7)
C3—H3A0.9700C15—H150.9300
C3—H3B0.9700C16—H160.9300
N1—Ag1—S176.40 (9)C9—C4—C5119.3 (5)
N1—Ag1—S2i70.89 (9)C9—C4—S1120.3 (4)
S1—Ag1—S2i146.98 (4)C5—C4—S1120.2 (4)
O2—Ag1—N1112.54 (12)C6—C5—C4120.1 (5)
O2—Ag1—O2ii117.32 (8)C6—C5—H5120.0
N1—Ag1—O2ii128.98 (12)C4—C5—H5120.0
O2—Ag1—O175.15 (13)C7—C6—C5120.8 (6)
N1—Ag1—O1163.34 (14)C7—C6—H6119.6
O2ii—Ag1—O149.56 (12)C5—C6—H6119.6
O2—Ag1—S180.10 (11)C6—C7—C8119.4 (6)
O2ii—Ag1—S1101.67 (11)C6—C7—H7120.3
O1—Ag1—S1120.09 (11)C8—C7—H7120.3
O2—Ag1—S2i116.46 (10)C7—C8—C9121.1 (6)
O2ii—Ag1—S2i95.47 (11)C7—C8—H8119.5
O1—Ag1—S2i92.47 (11)C9—C8—H8119.5
C4—S1—C3102.6 (2)C4—C9—C8119.4 (6)
C4—S1—Ag1109.31 (17)C4—C9—H9120.3
C3—S1—Ag191.85 (17)C8—C9—H9120.3
C11—S2—C10105.6 (2)C2—C10—S2117.1 (3)
C11—S2—Ag1i96.58 (16)C2—C10—H10A108.0
C10—S2—Ag1i103.79 (16)S2—C10—H10A108.0
N10—O1—Ag196.3 (3)C2—C10—H10B108.0
N10iii—O2—Ag1121.5 (3)S2—C10—H10B108.0
N10iii—O2—Ag1iii96.8 (3)H10A—C10—H10B107.3
Ag1—O2—Ag1iii130.58 (17)C12—C11—C16119.1 (5)
C1—N1—C2i119.9 (4)C12—C11—S2115.8 (4)
C1—N1—Ag1113.0 (3)C16—C11—S2125.1 (4)
C2i—N1—Ag1120.2 (3)C11—C12—C13120.5 (6)
O3—N10—O1121.6 (4)C11—C12—H12119.8
O3—N10—O2ii121.1 (4)C13—C12—H12119.8
O1—N10—O2ii117.3 (4)C14—C13—C12120.3 (6)
N1—C1—C2120.8 (4)C14—C13—H13119.9
N1—C1—C3116.6 (4)C12—C13—H13119.9
C2—C1—C3122.6 (4)C13—C14—C15119.9 (5)
N1i—C2—C1119.2 (4)C13—C14—H14120.0
N1i—C2—C10119.6 (4)C15—C14—H14120.0
C1—C2—C10121.1 (4)C14—C15—C16119.9 (6)
C1—C3—S1112.7 (3)C14—C15—H15120.0
C1—C3—H3A109.1C16—C15—H15120.0
S1—C3—H3A109.1C11—C16—C15120.3 (5)
C1—C3—H3B109.1C11—C16—H16119.8
S1—C3—H3B109.1C15—C16—H16119.8
H3A—C3—H3B107.8
Ag1—O1—N10—O3178.4 (5)C5—C6—C7—C80.0 (10)
Ag1—O1—N10—O2ii0.7 (5)C6—C7—C8—C90.2 (12)
C2i—N1—C1—C20.7 (7)C5—C4—C9—C80.4 (10)
Ag1—N1—C1—C2150.3 (3)S1—C4—C9—C8174.8 (6)
C2i—N1—C1—C3179.3 (4)C7—C8—C9—C40.0 (12)
Ag1—N1—C1—C329.7 (5)N1i—C2—C10—S27.1 (6)
N1—C1—C2—N1i0.7 (7)C1—C2—C10—S2170.1 (3)
C3—C1—C2—N1i179.3 (4)C11—S2—C10—C286.4 (4)
N1—C1—C2—C10177.9 (4)Ag1i—S2—C10—C214.6 (4)
C3—C1—C2—C102.2 (6)C10—S2—C11—C12176.3 (4)
N1—C1—C3—S162.9 (5)Ag1i—S2—C11—C1277.3 (4)
C2—C1—C3—S1117.1 (4)C10—S2—C11—C161.8 (5)
C4—S1—C3—C157.2 (4)Ag1i—S2—C11—C16104.5 (5)
Ag1—S1—C3—C153.1 (3)C16—C11—C12—C130.7 (8)
C3—S1—C4—C992.2 (5)S2—C11—C12—C13177.6 (5)
Ag1—S1—C4—C9171.3 (5)C11—C12—C13—C140.4 (9)
C3—S1—C4—C592.6 (5)C12—C13—C14—C151.0 (10)
Ag1—S1—C4—C53.9 (5)C13—C14—C15—C160.4 (9)
C9—C4—C5—C60.6 (9)C12—C11—C16—C151.3 (8)
S1—C4—C5—C6174.6 (4)S2—C11—C16—C15176.8 (4)
C4—C5—C6—C70.4 (9)C14—C15—C16—C110.8 (9)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y+3/2, z+1/2; (iii) x, y+3/2, z1/2.
(III) Poly[[trinitrato{µ6-2,3,5,6-tetrakis[(pyridin-2-ylsulfanyl)methyl]pyrazine}trisilver(I)] top
Crystal data top
[Ag3(NO3)3(C28H24N6S4)]F(000) = 2128
Mr = 1082.41Dx = 2.082 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 13.6319 (9) ÅCell parameters from 5000 reflections
b = 16.2211 (10) Åθ = 2.0–25.9°
c = 15.7201 (11) ŵ = 1.99 mm1
β = 96.607 (8)°T = 223 K
V = 3453.0 (4) Å3Needle, pale yellow
Z = 40.45 × 0.08 × 0.08 mm
Data collection top
STOE IPDS 1
diffractometer
3311 independent reflections
Radiation source: fine-focus sealed tube1936 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.072
φ rotation scansθmax = 25.9°, θmin = 2.0°
Absorption correction: multi-scan
(MULABS; Spek, 2009)
h = 1616
Tmin = 0.949, Tmax = 1.000k = 1919
13264 measured reflectionsl = 1918
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0179P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.76(Δ/σ)max < 0.001
3311 reflectionsΔρmax = 0.43 e Å3
242 parametersΔρmin = 0.44 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00014 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.01942 (2)0.37808 (2)0.08024 (3)0.04096 (12)
Ag20.50000.03325 (3)0.25000.05015 (18)
S10.09150 (7)0.43818 (6)0.08153 (8)0.0309 (3)
S20.37324 (7)0.12904 (6)0.20654 (7)0.0293 (3)
O110.0033 (3)0.2151 (3)0.1140 (3)0.0993 (17)
O120.0505 (3)0.1241 (2)0.0186 (3)0.0881 (13)
O130.0038 (3)0.2406 (3)0.0181 (3)0.0871 (14)
O210.50000.1915 (3)0.25000.082 (2)
O220.5755 (3)0.3025 (3)0.2419 (3)0.0890 (15)
N10.1890 (2)0.31443 (19)0.0280 (2)0.0228 (8)
N20.1418 (2)0.59202 (19)0.0729 (2)0.0278 (8)
N30.3466 (2)0.0278 (2)0.1875 (2)0.0277 (8)
N110.0173 (3)0.1915 (3)0.0375 (4)0.0643 (14)
N210.50000.2669 (3)0.25000.0365 (13)
C10.2093 (3)0.2984 (2)0.0553 (3)0.0232 (9)
C20.2715 (3)0.2341 (2)0.0833 (3)0.0217 (9)
C30.1631 (3)0.3497 (2)0.1204 (3)0.0306 (11)
H3A0.21610.36890.16320.037*
H3B0.12040.31360.14990.037*
C40.1816 (3)0.5165 (2)0.0793 (3)0.0295 (10)
C50.2821 (3)0.5034 (3)0.0844 (3)0.0517 (14)
H50.30820.44970.08670.062*
C60.3433 (3)0.5714 (3)0.0861 (4)0.0617 (16)
H60.41220.56450.09120.074*
C70.3033 (3)0.6488 (3)0.0803 (3)0.0518 (14)
H70.34420.69560.08140.062*
C80.2039 (3)0.6569 (3)0.0731 (3)0.0407 (12)
H80.17680.71020.06790.049*
C90.2962 (3)0.2171 (2)0.1786 (3)0.0279 (10)
H9A0.23410.20990.20360.034*
H9B0.32900.26600.20530.034*
C110.2968 (3)0.0982 (3)0.1679 (3)0.0406 (12)
H110.33170.14830.17220.049*
C120.1982 (4)0.0998 (3)0.1421 (3)0.0568 (15)
H120.16530.15010.12960.068*
C130.1476 (4)0.0263 (3)0.1347 (4)0.0654 (17)
H130.07920.02600.11740.079*
C140.1966 (3)0.0468 (3)0.1524 (3)0.0492 (13)
H140.16310.09760.14660.059*
C150.2959 (3)0.0433 (2)0.1789 (3)0.0276 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.02369 (17)0.0330 (2)0.0673 (3)0.00667 (16)0.01013 (16)0.0075 (2)
Ag20.0223 (3)0.0276 (3)0.0975 (5)0.0000.0062 (3)0.000
S10.0246 (5)0.0246 (6)0.0447 (7)0.0066 (5)0.0092 (5)0.0023 (5)
S20.0227 (5)0.0279 (6)0.0354 (6)0.0041 (5)0.0043 (5)0.0031 (6)
O110.080 (3)0.112 (4)0.097 (4)0.053 (3)0.026 (3)0.032 (3)
O120.058 (2)0.044 (2)0.160 (4)0.010 (2)0.000 (2)0.016 (3)
O130.053 (2)0.061 (3)0.154 (4)0.013 (2)0.037 (3)0.001 (3)
O210.106 (4)0.025 (3)0.129 (5)0.0000.077 (4)0.000
O220.070 (3)0.100 (3)0.105 (3)0.054 (3)0.041 (3)0.036 (3)
N10.0195 (17)0.0221 (18)0.027 (2)0.0040 (14)0.0037 (16)0.0043 (16)
N20.0240 (18)0.0266 (19)0.033 (2)0.0020 (15)0.0058 (16)0.0011 (16)
N30.0243 (18)0.0279 (19)0.030 (2)0.0017 (16)0.0012 (16)0.0009 (18)
N110.030 (2)0.048 (3)0.114 (5)0.015 (2)0.004 (3)0.004 (4)
N210.032 (3)0.037 (3)0.041 (4)0.0000.005 (3)0.000
C10.017 (2)0.018 (2)0.034 (3)0.0004 (16)0.0019 (19)0.000 (2)
C20.017 (2)0.018 (2)0.030 (3)0.0008 (16)0.0046 (19)0.005 (2)
C30.034 (2)0.029 (2)0.031 (3)0.0115 (19)0.016 (2)0.006 (2)
C40.022 (2)0.035 (3)0.031 (3)0.0032 (19)0.0019 (19)0.000 (2)
C50.033 (3)0.043 (3)0.082 (4)0.010 (2)0.014 (3)0.001 (3)
C60.026 (3)0.062 (4)0.098 (5)0.002 (3)0.012 (3)0.002 (3)
C70.036 (3)0.050 (3)0.070 (4)0.010 (2)0.008 (3)0.009 (3)
C80.037 (3)0.034 (3)0.053 (3)0.001 (2)0.010 (2)0.000 (2)
C90.026 (2)0.023 (2)0.034 (3)0.0067 (18)0.000 (2)0.000 (2)
C110.041 (3)0.032 (3)0.048 (3)0.005 (2)0.003 (2)0.003 (2)
C120.048 (3)0.044 (3)0.072 (4)0.015 (3)0.020 (3)0.006 (3)
C130.034 (3)0.054 (4)0.100 (5)0.007 (3)0.026 (3)0.018 (3)
C140.032 (3)0.038 (3)0.074 (4)0.006 (2)0.010 (2)0.014 (3)
C150.025 (2)0.030 (2)0.028 (3)0.0002 (19)0.0030 (19)0.006 (2)
Geometric parameters (Å, º) top
Ag1—N12.578 (3)N21—O22iii1.200 (4)
Ag1—N2i2.267 (3)C1—C21.384 (5)
Ag1—S12.7943 (13)C1—C31.512 (5)
Ag1—S2ii2.6010 (11)C2—N1ii1.331 (5)
Ag1—O112.700 (5)C2—C91.523 (5)
Ag1—O132.752 (5)C3—H3A0.9800
Ag2—N32.208 (3)C3—H3B0.9800
Ag2—N3iii2.208 (3)C4—C51.379 (6)
Ag2—O212.567 (5)C5—C61.382 (6)
S1—C41.770 (4)C5—H50.9400
S1—C31.802 (4)C6—C71.368 (6)
S2—C151.769 (4)C6—H60.9400
S2—C91.798 (4)C7—C81.353 (6)
S2—Ag1ii2.6011 (11)C7—H70.9400
O11—N111.255 (6)C8—H80.9400
O12—N111.208 (5)C9—H9A0.9800
O13—N111.239 (6)C9—H9B0.9800
O21—N211.223 (6)C11—C121.360 (6)
O22—N211.200 (4)C11—H110.9400
N1—C2ii1.331 (5)C12—C131.377 (6)
N1—C11.332 (5)C12—H120.9400
N2—C41.339 (5)C13—C141.374 (6)
N2—C81.351 (5)C13—H130.9400
N2—Ag1i2.266 (3)C14—C151.372 (6)
N3—C151.343 (5)C14—H140.9400
N3—C111.345 (5)
N1—Ag1—N2i155.31 (11)N1ii—C2—C9118.4 (3)
S1—Ag1—S2ii122.71 (3)C1—C2—C9120.4 (4)
S1—Ag1—N168.98 (7)C1—C3—S1117.4 (3)
S1—Ag1—N2i96.92 (8)C1—C3—H3A107.9
S2ii—Ag1—N170.29 (7)S1—C3—H3A107.9
S2ii—Ag1—N2i133.03 (8)C1—C3—H3B107.9
S1—Ag1—O11122.18 (10)S1—C3—H3B107.9
S1—Ag1—O1379.78 (10)H3A—C3—H3B107.2
S2ii—Ag1—O1181.18 (10)N2—C4—C5122.4 (4)
S2ii—Ag1—O13120.26 (10)N2—C4—S1112.5 (3)
O11—Ag1—N173.76 (11)C5—C4—S1125.1 (3)
O11—Ag1—N2i99.33 (12)C4—C5—C6118.2 (4)
O13—Ag1—N169.73 (11)C4—C5—H5120.9
O13—Ag1—N2i88.28 (12)C6—C5—H5120.9
O11—Ag1—O1345.99 (14)C7—C6—C5119.7 (4)
N3—Ag2—N3iii175.41 (12)C7—C6—H6120.1
O21—Ag2—N392.30 (9)C5—C6—H6120.1
O21—Ag2—N3iii92.30 (9)C8—C7—C6118.8 (4)
C4—S1—C3103.19 (19)C8—C7—H7120.6
C4—S1—Ag1113.84 (14)C6—C7—H7120.6
C3—S1—Ag198.68 (14)N2—C8—C7123.1 (4)
C15—S2—C9104.50 (18)N2—C8—H8118.4
C15—S2—Ag1ii98.56 (13)C7—C8—H8118.4
C9—S2—Ag1ii102.31 (13)C2—C9—S2116.1 (3)
N21—O21—Ag2180.0C2—C9—H9A108.3
C2ii—N1—C1118.2 (3)S2—C9—H9A108.3
C2ii—N1—Ag1116.4 (3)C2—C9—H9B108.3
C1—N1—Ag1118.0 (2)S2—C9—H9B108.3
C4—N2—C8117.6 (3)H9A—C9—H9B107.4
C4—N2—Ag1i125.4 (2)N3—C11—C12122.7 (4)
C8—N2—Ag1i116.4 (3)N3—C11—H11118.6
C15—N3—C11117.8 (3)C12—C11—H11118.6
C15—N3—Ag2121.9 (3)C11—C12—C13118.5 (4)
C11—N3—Ag2119.7 (3)C11—C12—H12120.8
O12—N11—O13121.3 (6)C13—C12—H12120.8
O12—N11—O11121.5 (6)C14—C13—C12120.3 (4)
O13—N11—O11117.2 (6)C14—C13—H13119.9
O22—N21—O22iii122.4 (6)C12—C13—H13119.9
O22—N21—O21118.8 (3)C15—C14—C13117.7 (4)
O22iii—N21—O21118.8 (3)C15—C14—H14121.1
N1—C1—C2120.7 (3)C13—C14—H14121.1
N1—C1—C3120.1 (3)N3—C15—C14123.0 (4)
C2—C1—C3119.2 (4)N3—C15—S2111.5 (3)
N1ii—C2—C1121.1 (4)C14—C15—S2125.5 (3)
C2ii—N1—C1—C21.2 (6)C5—C6—C7—C80.0 (8)
Ag1—N1—C1—C2150.0 (3)C4—N2—C8—C70.8 (6)
C2ii—N1—C1—C3177.7 (3)Ag1i—N2—C8—C7171.1 (4)
Ag1—N1—C1—C328.9 (4)C6—C7—C8—N21.4 (8)
N1—C1—C2—N1ii1.3 (6)N1ii—C2—C9—S22.7 (5)
C3—C1—C2—N1ii177.7 (3)C1—C2—C9—S2177.3 (3)
N1—C1—C2—C9178.7 (3)C15—S2—C9—C272.0 (3)
C3—C1—C2—C92.3 (5)Ag1ii—S2—C9—C230.3 (3)
N1—C1—C3—S16.3 (5)C15—N3—C11—C121.6 (6)
C2—C1—C3—S1174.7 (3)Ag2—N3—C11—C12169.3 (4)
C4—S1—C3—C185.5 (3)N3—C11—C12—C130.9 (7)
Ag1—S1—C3—C131.6 (3)C11—C12—C13—C140.6 (8)
C8—N2—C4—C51.0 (6)C12—C13—C14—C151.2 (8)
Ag1i—N2—C4—C5172.2 (3)C11—N3—C15—C140.9 (6)
C8—N2—C4—S1178.2 (3)Ag2—N3—C15—C14169.7 (3)
Ag1i—N2—C4—S17.1 (4)C11—N3—C15—S2179.5 (3)
C3—S1—C4—N2164.1 (3)Ag2—N3—C15—S29.8 (4)
Ag1—S1—C4—N290.0 (3)C13—C14—C15—N30.4 (7)
C3—S1—C4—C515.1 (5)C13—C14—C15—S2179.1 (4)
Ag1—S1—C4—C590.8 (4)C9—S2—C15—N3173.2 (3)
N2—C4—C5—C62.3 (7)Ag1ii—S2—C15—N368.1 (3)
S1—C4—C5—C6176.8 (4)C9—S2—C15—C147.2 (4)
C4—C5—C6—C71.7 (8)Ag1ii—S2—C15—C14112.4 (4)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z; (iii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O210.942.573.287 (5)133
C3—H3B···O21iv0.982.403.253 (4)145
C3—H3B···O22iv0.982.493.420 (6)158
C7—H7···O13v0.942.513.268 (6)138
C9—H9A···O22iv0.982.323.291 (6)171
C12—H12···O11vi0.942.513.310 (7)142
C14—H14···O22iv0.942.593.349 (7)138
Symmetry codes: (iv) x1/2, y+1/2, z; (v) x+1/2, y+1/2, z; (vi) x, y, z.
 

Funding information

Funding for this research was provided by: Swiss National Science FoundationUniversity of Neuchâtel

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAssoumatine, T. (1999). PhD thesis, University of Neuchâtel, Switzerland.  Google Scholar
First citationAssoumatine, T., Gasser, G. & Stoeckli-Evans, H. (2007). Acta Cryst. C63, o219–o222.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAssoumatine, T. & Stoeckli-Evans, H. (2014a). Acta Cryst. E70, 51–53.  CSD CrossRef IUCr Journals Google Scholar
First citationAssoumatine, T. & Stoeckli-Evans, H. (2014b). Acta Cryst. E70, o887–o888.  CSD CrossRef IUCr Journals Google Scholar
First citationAssoumatine, T. & Stoeckli-Evans, H. (2016). IUCrData, 1, x161977.  Google Scholar
First citationBehrens, A. & Rehder, D. (2009). Private Communication (CCDC No. 261615, refcode VUKGAJ03). CCDC, Cambridge, England.  Google Scholar
First citationBlack, C. A. & Hanton, L. R. (2007). Cryst. Growth Des. 7, 1868–1871.  CSD CrossRef CAS Google Scholar
First citationBock, H., Vaupel, T., Näther, C., Ruppert, K. & Havlas, Z. (1992). Angew. Chem. Int. Ed. Engl. 31, 299–301.  CSD CrossRef Google Scholar
First citationCaradoc-Davies, P. L. & Hanton, L. R. (2001). Chem. Commun. pp. 1098–1099.  Web of Science CSD CrossRef Google Scholar
First citationCaradoc-Davies, P. L., Hanton, L. R. & Henderson, W. (2001). J. Chem. Soc. Dalton Trans. pp. 2749–2755.  Google Scholar
First citationGoodwin, H. A. & Lions, F. (1959). J. Am. Chem. Soc. 81, 6415–6422.  CrossRef CAS Web of Science Google Scholar
First citationGreaves, B. & Stoeckli-Evans, H. (1992). Acta Cryst. C48, 2269–2271.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLohrman, J., Telikepalli, H., Johnson, T. S., Jackson, T. A., Day, V. W. & Bowman-James, K. (2016). Inorg. Chem. 55, 5098–5100.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPacifico, J. & Stoeckli-Evans, H. (2004). Acta Cryst. C60, o152–o155.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (1997). STADI4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (1998). IPDS-I Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds