research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [2-({2-[(2-azanidyl­benzyl­­idene)amino]­benzyl­­idene}amino)-4-chloro­phenol­ato]nickel(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
*Correspondence e-mail: nakamura@sci.kumamoto-u.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 2 February 2017; accepted 23 March 2017; online 31 March 2017)

The title complex, [Ni(C20H14ClN3O)], with an asymmetrically chloride-appended Schiff base ligand has been synthesized and structurally characterized at 100 K. In the compound, the central nickel(II) ion has a square-planar coordination geometry with N3O donors of the π-conjugated tetra­dentate Schiff base ligand. In the crystal, the complexes are connected into an inversion dimer via an Ni⋯Ni inter­action [3.1753 (5) Å] and a pair of ππ inter­actions [centroid–centroid distance = 3.8416 (16) Å]. The dimers are linked via a C—H⋯Cl hydrogen bond, forming a chain along the c-axis direction. The dimer chains inter­act with each other through ππ inter­actions [centroid–centroid distance = 3.8736 (16) Å], forming a layer expanding parallel to the ac plane.

1. Chemical context

Metal complexes with a tetra­dentate Schiff base ligand as represented by H2(salen) [N,N′-ethyl­enebis(salicyl­idene­imine)] and its derivatives have played extremely important roles in the field of coordination chemistry. Up to now, a large number of salen derivatives have been prepared and used for complexation in the expectation of a wide range of features such as catalytic ability, magnetic, dielectric and luminescence properties and so on (Bermejo et al., 1996[Bermejo, M. R., Castiñeiras, A., Garcia-Monteagudo, J. C., Rey, M., Sousa, A., Watkinson, M., McAuliffe, C. A., Pritchard, R. G. & Beddoes, R. L. (1996). J. Chem. Soc. Dalton Trans. pp. 2935-2944.]). In these cases, symmetric tetra­dentate ligands mainly produce N2O2 or N4 type coordination environments. In this research, we have designed asymmetric structures, both in the coordination environment and in the mol­ecular configuration, for the construction of the supra­molecular structure through inter­molecular hydrogen bonds, and synthesized the title nickel(II) complex using an asymmetrically chloride-appended tetra­dentate Schiff base ligand.

[Scheme 1]

The structure of the title compound, which features a widely spread π-conjugated ring system, is also useful for supra­molecular assemblies through ππ inter­actions. The mononuclear copper(II) complex with a similar N3O type asymmetrical ligand was reported by Ghorai & Mukherjee (2014[Ghorai, S. & Mukherjee, C. (2014). Chem. Asian J. 9, 3518-3524.]).

2. Structural commentary

The nickel(II) atom is in a square-planar coordination with an asymmetrical coordination environment formed by the N3O donor set including one phenolate O atom, two imine N atoms and one amino N atom of the tetra­dentate Schiff base ligand (Fig. 1[link]). The Ni—O1, Ni—N1, Ni—N2, and Ni—N3 bond lengths are 1.8617 (18), 1.878 (2), 1.896 (2) and 1.831 (2) Å, respectively. The complex mol­ecule is approximately planar; the coordination plane (N1–N3/O1/Ni1) makes dihedral angles of 4.15 (12), 10.22 (12) and 13.42 (12)°, respectively, with the C1–C6, C8–C13 and C15–C20 benzene rings.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids at the 50% probability level.

3. Supra­molecular features

In the crystal, pairs of complex mol­ecules related by an inversion centre are dimerized by an Ni⋯Ni inter­action [3.1753 (5) Å] and a pair of ππ inter­actions between the C1–C6 and C15–C20 benzene rings [centroid–centroid distance = 3.8415 (16) Å]. Such dimerization caused by an Ni⋯Ni inter­action has also been observed in symmetric Ni(salen) compounds (Aullón et al., 1996[Aullón, G., Alemany, P. & Alvarez, S. (1996). Inorg. Chem. 35, 5061-5067.]; Siegler & Lutz, 2009[Siegler, M. A. & Lutz, M. (2009). Cryst. Growth Des. 9, 1194-1200.]). The dimeric mol­ecules of the title compound are linked by C—H⋯Cl hydrogen bonds (Table 1[link]), producing a chain of dimers along the c axis (Fig. 2[link]). The dimers further inter­act with each other through ππ inter­actions between the C1–C6 and C8–C13 benzene rings [centroid–centroid distance = 3.8738 (17) Å], forming a column along the a axis (Fig. 3[link]). Together, these C—H⋯Cl and ππ inter­actions result in a layer parallel to the ac plane. The layers are further linked by a short C—H⋯C contact (Table 1[link]), giving a three-dimensional network (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Cl1i 0.95 2.76 3.540 (3) 140
C10—H10⋯C20ii 0.95 2.80 3.626 (4) 146
Symmetry codes: (i) x, y, z-1; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing diagrams of the title compound, showing (a) a chain structure running along the c axis formed by C—H⋯Cl hydrogen bonds (red dashed lines) and (b) the chains viewed along the a axis.
[Figure 3]
Figure 3
A packing diagram of the title compound, showing the column structure along the a axis formed by Ni⋯Ni inter­actions (green solid lines) and ππ inter­actions (red dashed lines).
[Figure 4]
Figure 4
Packing diagrams of the title compound assembled by (a) C—H⋯Cl hydrogen bonds and C—H⋯C short contacts, and (b) ππ inter­actions and short contacts.

4. Synthesis and crystallization

The tetra­dentate Schiff base ligand was prepared by the reaction of 2-amino­benzaldehyde (Smith & Opie, 1948[Smith, L. I. & Opie, J. W. (1948). Org. Synth. 28, 11.]) (0.228 g, 2.0 mmol) and 2-amino-4-chloro­phenol (0.144 g, 1.0 mmol) in methanol (50 ml) under stirring for 1 h. The resulting solution including the ligand was used for complexation with the NiII ion. A methanol solution (50 ml) of Ni(CH3COO)2·4H2O (0.249 g, 1.0 mmol) was added to the solution and stirred for 1 h. The resulting solution was allowed to stand for a few days, during which time dark-purple block-shaped crystals precipitated. They were collected by suction filtration and dried in air to give single crystals of the title compound suitable for X-ray diffraction.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The position of the N-bound H atom was refined with N—H = 0.86 (1) Å and Uiso(H) = 1.5Ueq(N). Other H atoms were treated as riding with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C20H14ClN3O)]
Mr 406.50
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 7.5510 (4), 17.8689 (9), 12.6834 (6)
β (°) 109.9504 (14)
V3) 1608.64 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.39
Crystal size (mm) 0.46 × 0.27 × 0.25
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.476, 0.712
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 15243, 3638, 3177
Rint 0.039
(sin θ/λ)max−1) 0.647
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.103, 1.04
No. of reflections 3638
No. of parameters 238
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.35, −0.37
Computer programs: RAPID-AUTO (Rigaku, 1995[Rigaku (1995). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and CrystalStructure (Rigaku, 2014[Rigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Computing details top

Data collection: RAPID-AUTO (Rigaku, 1995); cell refinement: RAPID-AUTO (Rigaku, 1995); data reduction: RAPID-AUTO (Rigaku, 1995); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: CrystalStructure (Rigaku, 2014); software used to prepare material for publication: CrystalStructure (Rigaku, 2014).

[2-({2-[(2-Azanidylbenzylidene)amino]benzylidene}amino)-4-chlorophenolato]nickel(II) top
Crystal data top
[Ni(C20H14ClN3O)]F(000) = 832.00
Mr = 406.50Dx = 1.678 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 7.5510 (4) ÅCell parameters from 13442 reflections
b = 17.8689 (9) Åθ = 3.0–27.4°
c = 12.6834 (6) ŵ = 1.39 mm1
β = 109.9504 (14)°T = 100 K
V = 1608.64 (14) Å3Block, purple
Z = 40.46 × 0.27 × 0.25 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3177 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.039
ω scansθmax = 27.4°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 98
Tmin = 0.476, Tmax = 0.712k = 2323
15243 measured reflectionsl = 1616
3638 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0527P)2 + 1.948P]
where P = (Fo2 + 2Fc2)/3
3638 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 1.35 e Å3
1 restraintΔρmin = 0.37 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.29838 (4)0.53846 (2)0.46051 (3)0.01597 (11)
Cl10.22371 (10)0.39200 (4)0.93185 (6)0.03146 (17)
O10.3645 (3)0.58686 (10)0.59854 (15)0.0230 (4)
N10.2079 (3)0.46083 (11)0.52811 (18)0.0195 (4)
N20.2225 (3)0.49436 (12)0.31594 (18)0.0193 (4)
N30.3976 (3)0.62220 (12)0.41867 (19)0.0221 (4)
C10.3301 (4)0.54570 (14)0.6762 (2)0.0205 (5)
C20.3738 (4)0.56917 (15)0.7885 (2)0.0229 (5)
C30.3380 (4)0.52243 (15)0.8656 (2)0.0237 (5)
C40.2594 (4)0.45198 (15)0.8321 (2)0.0236 (5)
C50.2109 (4)0.42792 (15)0.7223 (2)0.0224 (5)
C60.2447 (4)0.47561 (15)0.6445 (2)0.0207 (5)
C70.1169 (4)0.40146 (14)0.4813 (2)0.0210 (5)
C80.0936 (3)0.37840 (14)0.3689 (2)0.0197 (5)
C90.0092 (4)0.30739 (15)0.3366 (2)0.0235 (5)
C100.0089 (4)0.27609 (15)0.2338 (2)0.0259 (6)
C110.0649 (4)0.31435 (15)0.1634 (2)0.0251 (5)
C120.1469 (4)0.38395 (15)0.1918 (2)0.0230 (5)
C130.1542 (3)0.41975 (13)0.2923 (2)0.0187 (5)
C140.2147 (4)0.53457 (14)0.2259 (2)0.0199 (5)
C150.2954 (4)0.60452 (14)0.2207 (2)0.0214 (5)
C160.2781 (4)0.63380 (15)0.1133 (2)0.0247 (5)
C170.3660 (4)0.69883 (15)0.1023 (2)0.0262 (5)
C180.4758 (4)0.73809 (15)0.2007 (2)0.0267 (6)
C190.4922 (4)0.71300 (14)0.3054 (2)0.0253 (6)
C200.3979 (3)0.64586 (14)0.3194 (2)0.0210 (5)
H10.452 (4)0.6459 (17)0.478 (2)0.0315*
H20.427850.617110.811030.0275*
H30.366810.53820.941160.0285*
H50.155840.380050.700550.0268*
H70.062280.371310.523820.0253*
H90.036140.280570.386820.0282*
H100.070530.229370.211930.0310*
H110.059130.29230.094180.0301*
H120.199360.408190.142640.0276*
H140.144850.512830.155610.0239*
H160.20410.607670.047820.0296*
H170.353990.717550.030070.0314*
H180.539050.78270.193380.0321*
H190.566620.740210.369590.0304*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01684 (17)0.01610 (17)0.01561 (17)0.00035 (11)0.00636 (13)0.00011 (12)
Cl10.0320 (4)0.0439 (4)0.0214 (3)0.0047 (3)0.0130 (3)0.0036 (3)
O10.0285 (10)0.0222 (9)0.0181 (9)0.0016 (8)0.0076 (8)0.0014 (7)
N10.0167 (10)0.0209 (11)0.0216 (11)0.0035 (8)0.0072 (9)0.0015 (8)
N20.0177 (10)0.0202 (10)0.0215 (10)0.0012 (8)0.0088 (9)0.0001 (8)
N30.0210 (11)0.0203 (11)0.0238 (11)0.0001 (9)0.0062 (9)0.0002 (9)
C10.0183 (12)0.0243 (13)0.0183 (12)0.0059 (10)0.0054 (10)0.0001 (10)
C20.0230 (12)0.0228 (12)0.0200 (12)0.0049 (10)0.0036 (10)0.0025 (10)
C30.0204 (12)0.0315 (14)0.0190 (12)0.0063 (11)0.0064 (10)0.0022 (11)
C40.0198 (12)0.0304 (14)0.0222 (13)0.0036 (10)0.0092 (10)0.0040 (11)
C50.0180 (12)0.0254 (13)0.0241 (13)0.0006 (10)0.0078 (10)0.0024 (11)
C60.0171 (11)0.0261 (13)0.0196 (12)0.0047 (10)0.0070 (10)0.0001 (10)
C70.0188 (12)0.0246 (13)0.0211 (12)0.0017 (10)0.0085 (10)0.0024 (10)
C80.0160 (11)0.0228 (12)0.0197 (12)0.0032 (9)0.0055 (10)0.0023 (10)
C90.0195 (12)0.0238 (13)0.0276 (13)0.0001 (10)0.0085 (11)0.0055 (11)
C100.0218 (13)0.0217 (12)0.0310 (14)0.0024 (10)0.0049 (11)0.0047 (11)
C110.0241 (13)0.0267 (13)0.0221 (13)0.0019 (11)0.0048 (11)0.0039 (11)
C120.0252 (13)0.0232 (13)0.0206 (12)0.0038 (10)0.0077 (11)0.0003 (10)
C130.0167 (11)0.0183 (12)0.0209 (12)0.0025 (9)0.0062 (10)0.0012 (10)
C140.0189 (12)0.0216 (12)0.0203 (12)0.0019 (10)0.0080 (10)0.0009 (10)
C150.0207 (12)0.0182 (12)0.0279 (13)0.0029 (10)0.0115 (11)0.0015 (10)
C160.0242 (13)0.0246 (13)0.0274 (14)0.0022 (11)0.0116 (11)0.0010 (11)
C170.0302 (14)0.0236 (13)0.0291 (14)0.0032 (11)0.0158 (12)0.0052 (11)
C180.0273 (13)0.0204 (12)0.0364 (15)0.0002 (11)0.0160 (12)0.0038 (11)
C190.0216 (12)0.0211 (13)0.0330 (15)0.0002 (10)0.0087 (11)0.0007 (11)
C200.0165 (11)0.0193 (12)0.0285 (13)0.0055 (9)0.0094 (10)0.0044 (10)
Geometric parameters (Å, º) top
Ni1—N31.831 (2)C8—C131.416 (3)
Ni1—O11.8617 (18)C8—C91.416 (4)
Ni1—N11.878 (2)C9—C101.382 (4)
Ni1—N21.896 (2)C9—H90.9500
Cl1—C41.748 (3)C10—C111.383 (4)
O1—C11.324 (3)C10—H100.9500
N1—C71.293 (3)C11—C121.381 (4)
N1—C61.430 (3)C11—H110.9500
N2—C141.333 (3)C12—C131.410 (3)
N2—C131.424 (3)C12—H120.9500
N3—C201.329 (3)C14—C151.402 (3)
N3—H10.836 (18)C14—H140.9500
C1—C61.403 (4)C15—C161.424 (4)
C1—C21.412 (3)C15—C201.432 (4)
C2—C31.381 (4)C16—C171.369 (4)
C2—H20.9500C16—H160.9500
C3—C41.395 (4)C17—C181.425 (4)
C3—H30.9500C17—H170.9500
C4—C51.382 (4)C18—C191.367 (4)
C5—C61.392 (4)C18—H180.9500
C5—H50.9500C19—C201.436 (4)
C7—C81.436 (3)C19—H190.9500
C7—H70.9500
N3—Ni1—O183.57 (9)C13—C8—C7125.0 (2)
N3—Ni1—N1169.92 (10)C9—C8—C7115.8 (2)
O1—Ni1—N186.35 (9)C10—C9—C8121.7 (2)
N3—Ni1—N294.46 (10)C10—C9—H9119.1
O1—Ni1—N2176.53 (9)C8—C9—H9119.1
N1—Ni1—N295.61 (9)C9—C10—C11118.5 (2)
C1—O1—Ni1112.57 (16)C9—C10—H10120.8
C7—N1—C6120.7 (2)C11—C10—H10120.8
C7—N1—Ni1128.02 (18)C12—C11—C10121.4 (3)
C6—N1—Ni1111.23 (16)C12—C11—H11119.3
C14—N2—C13114.6 (2)C10—C11—H11119.3
C14—N2—Ni1121.00 (18)C11—C12—C13121.3 (2)
C13—N2—Ni1124.14 (16)C11—C12—H12119.3
C20—N3—Ni1131.89 (19)C13—C12—H12119.3
C20—N3—H1122 (2)C12—C13—C8117.5 (2)
Ni1—N3—H1106 (2)C12—C13—N2121.0 (2)
O1—C1—C6118.0 (2)C8—C13—N2121.5 (2)
O1—C1—C2123.2 (2)N2—C14—C15128.9 (2)
C6—C1—C2118.7 (2)N2—C14—H14115.6
C3—C2—C1120.0 (3)C15—C14—H14115.6
C3—C2—H2120.0C14—C15—C16118.3 (2)
C1—C2—H2120.0C14—C15—C20122.2 (2)
C2—C3—C4119.7 (2)C16—C15—C20119.5 (2)
C2—C3—H3120.1C17—C16—C15121.3 (3)
C4—C3—H3120.1C17—C16—H16119.3
C5—C4—C3121.8 (2)C15—C16—H16119.3
C5—C4—Cl1119.0 (2)C16—C17—C18119.1 (3)
C3—C4—Cl1119.2 (2)C16—C17—H17120.5
C4—C5—C6118.3 (2)C18—C17—H17120.5
C4—C5—H5120.8C19—C18—C17121.5 (2)
C6—C5—H5120.8C19—C18—H18119.3
C5—C6—C1121.4 (2)C17—C18—H18119.3
C5—C6—N1126.9 (2)C18—C19—C20120.6 (3)
C1—C6—N1111.7 (2)C18—C19—H19119.7
N1—C7—C8123.8 (2)C20—C19—H19119.7
N1—C7—H7118.1N3—C20—C15119.2 (2)
C8—C7—H7118.1N3—C20—C19122.9 (2)
C13—C8—C9119.2 (2)C15—C20—C19117.8 (2)
N3—Ni1—O1—C1176.59 (18)Ni1—N1—C7—C810.2 (4)
N1—Ni1—O1—C13.42 (17)N1—C7—C8—C134.8 (4)
N3—Ni1—N1—C7173.9 (5)N1—C7—C8—C9172.8 (2)
O1—Ni1—N1—C7174.0 (2)C13—C8—C9—C102.6 (4)
N2—Ni1—N1—C73.1 (2)C7—C8—C9—C10175.2 (2)
N3—Ni1—N1—C63.6 (6)C8—C9—C10—C112.7 (4)
O1—Ni1—N1—C63.50 (16)C9—C10—C11—C123.2 (4)
N2—Ni1—N1—C6179.37 (16)C10—C11—C12—C131.7 (4)
N3—Ni1—N2—C1415.0 (2)C11—C12—C13—C86.9 (4)
N1—Ni1—N2—C14164.51 (19)C11—C12—C13—N2173.9 (2)
N3—Ni1—N2—C13170.91 (19)C9—C8—C13—C127.2 (3)
N1—Ni1—N2—C139.6 (2)C7—C8—C13—C12170.3 (2)
O1—Ni1—N3—C20171.4 (2)C9—C8—C13—N2173.6 (2)
N1—Ni1—N3—C20171.3 (4)C7—C8—C13—N28.9 (4)
N2—Ni1—N3—C205.7 (2)C14—N2—C13—C1222.3 (3)
Ni1—O1—C1—C62.6 (3)Ni1—N2—C13—C12163.25 (19)
Ni1—O1—C1—C2177.86 (19)C14—N2—C13—C8158.5 (2)
O1—C1—C2—C3178.4 (2)Ni1—N2—C13—C815.9 (3)
C6—C1—C2—C32.1 (4)C13—N2—C14—C15169.2 (2)
C1—C2—C3—C40.3 (4)Ni1—N2—C14—C1516.1 (4)
C2—C3—C4—C51.8 (4)N2—C14—C15—C16175.5 (2)
C2—C3—C4—Cl1177.5 (2)N2—C14—C15—C202.7 (4)
C3—C4—C5—C60.9 (4)C14—C15—C16—C17174.8 (2)
Cl1—C4—C5—C6178.37 (19)C20—C15—C16—C173.5 (4)
C4—C5—C6—C11.5 (4)C15—C16—C17—C180.4 (4)
C4—C5—C6—N1178.9 (2)C16—C17—C18—C191.3 (4)
O1—C1—C6—C5177.4 (2)C17—C18—C19—C200.2 (4)
C2—C1—C6—C53.0 (4)Ni1—N3—C20—C154.8 (4)
O1—C1—C6—N10.2 (3)Ni1—N3—C20—C19177.35 (19)
C2—C1—C6—N1179.3 (2)C14—C15—C20—N38.6 (4)
C7—N1—C6—C57.7 (4)C16—C15—C20—N3173.2 (2)
Ni1—N1—C6—C5174.6 (2)C14—C15—C20—C19173.4 (2)
C7—N1—C6—C1174.8 (2)C16—C15—C20—C194.8 (3)
Ni1—N1—C6—C12.9 (3)C18—C19—C20—N3174.7 (2)
C6—N1—C7—C8172.5 (2)C18—C19—C20—C153.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cl1i0.952.763.540 (3)140
C10—H10···C20ii0.952.803.626 (4)146
Symmetry codes: (i) x, y, z1; (ii) x, y1/2, z+1/2.
 

Funding information

Funding for this research was provided by: JSPS Grant-in-Aid for Young Scientists (B) (award No. JP15K17833); JSPS Grant-in-Aid for Scientific Research on Innovative Areas (Dynamical Ordering and Integrated Functions) (award No. JP16H00777); KAKENHI Grant-in-Aid for Scientific Research (B) (award No. JP26288026); Cooperative Research Program of the Network Joint Research Centre for Materials and Devices.

References

First citationAullón, G., Alemany, P. & Alvarez, S. (1996). Inorg. Chem. 35, 5061–5067.  PubMed Google Scholar
First citationBermejo, M. R., Castiñeiras, A., Garcia-Monteagudo, J. C., Rey, M., Sousa, A., Watkinson, M., McAuliffe, C. A., Pritchard, R. G. & Beddoes, R. L. (1996). J. Chem. Soc. Dalton Trans. pp. 2935–2944.  CrossRef Google Scholar
First citationGhorai, S. & Mukherjee, C. (2014). Chem. Asian J. 9, 3518–3524.  CrossRef CAS PubMed Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1995). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiegler, M. A. & Lutz, M. (2009). Cryst. Growth Des. 9, 1194–1200.  CrossRef CAS Google Scholar
First citationSmith, L. I. & Opie, J. W. (1948). Org. Synth. 28, 11.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds