research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of deca­carbon­yl(μ3-3,7-di­thia­nonane-1,9-di­thiol­ato)bis­­(μ2-propane-1,3-di­thiol­ato)nickel(II)tetra­iron(II) di­chloro­methane disolvate

CROSSMARK_Color_square_no_text.svg

aScience and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, People's Republic of China, and bInstitute of Materials, China Academy of Engineering Physics, Jiangyou 621908, People's Republic of China
*Correspondence e-mail: chenlin101101@aliyun.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 16 January 2018; accepted 29 January 2018; online 13 February 2018)

The title compound,, [Fe4Ni(C3H6S2)2(C7H14S4)(CO)10]·2CH2Cl2, is reported as a biomimic model for the active site of [FeFe]-hydrogenases. Bis(2-mercaptoeth­yl)-1,3-propane­dithio ether nickel(II) was firstly introduced into [Fe2(C3H6S2)(CO)5] as an S-containing ligand. It coordinates with two [Fe2(C3H6S2)(CO)5] groups, and a five-metal core complex is formed. The Fe2S2 core is in a butterfly conformation. The Fe—Fe distances in the [Fe2(C3H6S2)(CO)5] groups are 2.5126 (6) and 2.5086 (7) Å. The distances between the adjacent Fe and Ni atoms are 3.5322 (1) and 3.5143 (1) Å. There are intra­molecular C—H⋯O and C—H⋯S contacts present in the complex. In the crystal, the five metal cores are linked via C—H⋯O hydrogen bonds, forming columns lying parallel to (110). The di­chloro­methane solvent mol­ecules are each partially disordered over two positions and only one is linked to the five-metal core complex by a C—H⋯O hydrogen bond.

1. Chemical context

[FeFe]-hydrogenases are special enzymes in numerous microorganisms, which catalyse hydrogen evolution or splitting. Crystallographic and IR spectroscopic studies on [FeFe]-hydrogenases have revealed that the active site of [FeFe]-hydrogenases is comprised of a 2Fe2S butterfly structure containing diatomic ligands CO and CN, a cysteinyl-S ligand connecting to a 4Fe4S subcluster, and a three-atom linker bridged between the two S atoms of the Fe2S2 H-cluster (Tard et al., 2005[Tard, C., Liu, X. M., Ibrahim, S. K., Bruschi, M., De Gioia, L., Davies, S. C., Yang, X., Wang, L. S., Sawers, G. & Pickett, C. J. (2005). Nature, 433, 610-613.]; Tard & Pickett 2009[Tard, C. & Pickett, C. J. (2009). Chem. Rev. 109, 2245-2274.]).

[Scheme 1]

Vigorous functional modelling studies have commenced with the [2Fe2S] subunit, but less attention has been paid in structural modelling studies to the overall H-cluster. The 4Fe4S sub-cluster was found to work as electrons relaying in numerous microorganisms. The 4Fe4S sub-cluster itself is a strong electron-donating group. The limited number of studies on the 4Fe4S sub-cluster encouraged us to synthesize the title compound, introducing bis­(2-mercaptoeth­yl)-1,3-propane­dithio­ethernickel(II) into the 2Fe2S cluster to mimic the 4Fe4S sub-cluster.

2. Structural commentary

The structure of the title compound, illustrated in Fig. 1[link], resembles the active site of [FeFe]-hydrogenases, with two butterfly architectonic 2Fe2S clusters and one planar NiS4 core. The Ni atom is displaced by only 0.0023 Å (5) out of the mean plane of the four S atoms. The Fe1—Fe2 and Fe3—Fe4 bond lengths are 2.5126 (6) and 2.5086 (7) Å, respectively, slightly shorter than those in the structures of natural enzymes (ca 2.6 Å: Peters et al., 1998[Peters, J. W., Lanzilotta, W. N., Lemon, B. J. & Seefeldt, L. C. (1998). Science, 282, 1853-1858.]; Nicolet et al., 1999[Nicolet, Y., Piras, C., Legrand, P., Hatchikian, C. E. & Fontecilla-Camps, J. C. (1999). Structure, 7, 13-23.]). The Fe2⋯Ni1 and Fe3⋯Ni1 distances are 3.5320 (6) and 3.5144 (6) Å, respectively. There are intra­molecular C—H⋯O and C—H⋯S contacts present in the complex (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19A⋯O3 0.97 2.52 3.440 (5) 159
C15—H15B⋯S6 0.97 2.83 3.578 (4) 134
C13—H13B⋯O4i 0.97 2.57 3.470 (5) 154
C20—H20A⋯O8ii 0.97 2.57 3.263 (5) 128
C24—H24A⋯O7iii 0.97 2.44 3.08 (2) 123
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+2, -y+1, -z; (iii) x-1, y, z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity, and the disordered atoms of the CH2Cl2 mol­ecules are shown with suffix A.

The introduction of bis­(2-mercaptoeth­yl)-1,3-propane­dithio­ethernickel(II) into the 2Fe2S cluster results in a significant red shift for the C=O group in the IR spectrum; the highest and lowest absorption wave-numbers differ by 123 cm−1, which suggests a significant difference in the electron density between the two FeII ions. The IR signal therefore indicates that bis­(2-mercaptoeth­yl)-1,3-propane­dithio­ether­nickel(II) can mimic the strong electron-donating ability of the 4Fe4S subcluster.

3. Superamolecular features

In the crystal, the five-metal core complexes are linked via C—H⋯O hydrogen bonds, forming columns propagating along [110]; see Table 1[link] and Fig. 2[link]. The di­chloro­methane solvent mol­ecules are each partially disordered over two positions and only one is linked to the five-metal core complex by a C—H⋯O hydrogen bond (Fig. 2[link], Table 1[link]).

[Figure 2]
Figure 2
A view along the c axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1[link]), and H atoms not involved in these inter­actions have been omitted.

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave over 100 hits for the μ–propane­dithiol­ate diiron penta­carbonyl skeleton. Examining these structures, it can be seen that during the past few years, a series of model complexes [(μ-pdt)Fe2(CO)5L] (L = PMe3, PPh3, ect., pdt = propane­dithiol­ate) were synthesized as H-cluster analogues of [FeFe]-hydrogenase (Dong et al., 2006[Dong, W., Wang, M., Liu, X., Jin, K., Li, G., Wang, F. & Sun, L. (2006). Chem. Commun. pp. 305-307.]; Felton et al., 2009[Felton, G. A. N., Mebi, C. A., Petro, B. J., Vannucci, A. K., Evans, D. H., Glass, R. S. & Lichtenberger, D. L. (2009). J. Organomet. Chem. 694, 2681-2699.]). However, less attention has been paid to structural modelling studies to the overall H-cluster. Pickett and coworkers have synthesized and spectroscopically characterized [6Fe6S] model complexes, but without crystal structure analyses (Tard et al., 2005[Tard, C., Liu, X. M., Ibrahim, S. K., Bruschi, M., De Gioia, L., Davies, S. C., Yang, X., Wang, L. S., Sawers, G. & Pickett, C. J. (2005). Nature, 433, 610-613.]). Other model complexes reported as analogues of [2Fe3S] or [3Fe3S] subunits have been reported (Tard et al., 2009[Tard, C. & Pickett, C. J. (2009). Chem. Rev. 109, 2245-2274.]). A novel 2Fe2S–FeII model complex A and its analogues [(μ-pdt)Fe2(CO)5]2M(sip)2 [M = Fe (A), Ni (B); pdt = propane­dithiol­ate; sip = sulfanyl­propyl­imino­methyl­pyridine] have been reported (CSD refcodes ALIZIF and ALIZOL, respectively; Hu et al., 2010[Hu, M. Q., Wen, H. M., Ma, C. B., Li, N., Yan, Q. Y., Chen, H. & Chen, C. N. (2010). Dalton Trans. 39, 9484-9486.]).

5. Experimental

All reactions and operations were carried out under a dry, pre-purified nitro­gen atmosphere with standard Schlenk techniques. All solvents were dried and distilled prior to use according to standard methods. The starting materials, Fe2(C3H6S2)(CO)6 (A) and NiC7H14S4 (B), were prepared according to literature methods (Maiolo et al., 1981[Maiolo, F., Testaferri, L., Tiecco, M. & Tingoli, M. (1981). J. Org. Chem. 46, 3070-3073.]). Me3NO·2H2O (1 mmol, 0.111 g) was added to a CH3CN solution of complex A (1 mmol, 0.168 g) under an N2 atmos­phere with stirring. A CH2Cl2/CH3OH (2:1) solution of complex B (0.5 mmol, 0.143 g) was added after 30 min. The colour of the solution changed gradually from red to dark red. After one h, the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel using hexane as eluent to give the title compound as a red solid (yield 0.164 g, 51%). It is unstable in solution in air. Single crystals suitable for the X-ray diffraction study were obtained by slow evaporation of a solution in CH2Cl2/hexane (1:10, v/v) at 263 K. IR (CH2Cl2, cm−1): ν (CO) 2020 (m), 1956 (s), 1897 (v). Analysis calculated for C25H30Cl4Fe4NiO10S8: C, 25.64; H, 2.58; S, 21.91%; Found: C, 25.62; H, 2.56; S, 21.92%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were placed in calculated positions and refined as riding: C—H = 0.97 Å with Uiso(H) = 1.2Ueq(C). The di­chloro­methane solvent mol­ecules are each partially disordered over two positions. That involving atoms Cl1 and Cl2 have atoms Cl1/Cl1A and C24/C24A with fixed occupancies of 0.5 each, while that involving atoms Cl3 and Cl4 have atom Cl3/Cl3A with a refined occupancy ratio of 0.77 (6):0.23 (6).

Table 2
Experimental details

Crystal data
Chemical formula [Fe4Ni(C3H6S2)2(C7H14S4)(CO)10]·2CH2Cl2
Mr 1170.88
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 243
a, b, c (Å) 12.4340 (8), 13.9981 (10), 14.4912 (9)
α, β, γ (°) 77.860 (4), 67.570 (4), 64.036 (4)
V3) 2093.3 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.50
Crystal size (mm) 0.40 × 0.30 × 0.20
 
Data collection
Diffractometer Bruker APEXII area detector
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.435, 0.635
No. of measured, independent and observed [I > 2σ(I)] reflections 20488, 7352, 5928
Rint 0.034
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.075, 1.01
No. of reflections 7352
No. of parameters 497
No. of restraints 12
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.94, −0.59
Computer programs: APEX2 and SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury(Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Decacarbonyl(µ3-3,7-dithianonane-1,9-dithiolato)bis(µ2-propane-1,3-dithiolato)nickel(II)tetrairon(II) dichloromethane disolvate top
Crystal data top
[Fe4Ni(C3H6S2)2(C7H14S4)(CO)10]·2CH2Cl2Z = 2
Mr = 1170.88F(000) = 1176
Triclinic, P1Dx = 1.858 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.4340 (8) ÅCell parameters from 6326 reflections
b = 13.9981 (10) Åθ = 1.9–25.0°
c = 14.4912 (9) ŵ = 2.50 mm1
α = 77.860 (4)°T = 243 K
β = 67.570 (4)°Block, red
γ = 64.036 (4)°0.40 × 0.30 × 0.20 mm
V = 2093.3 (2) Å3
Data collection top
Bruker APEXII area detector
diffractometer
7352 independent reflections
Radiation source: fine-focus sealed tube5928 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
phi and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1414
Tmin = 0.435, Tmax = 0.635k = 1616
20488 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0322P)2 + 1.0504P]
where P = (Fo2 + 2Fc2)/3
7352 reflections(Δ/σ)max = 0.002
497 parametersΔρmax = 0.94 e Å3
12 restraintsΔρmin = 0.59 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.63313 (4)0.79098 (4)0.59106 (3)0.02955 (12)
Fe20.71720 (4)0.66176 (3)0.45877 (3)0.02572 (11)
Fe30.81044 (4)0.79149 (3)0.02362 (3)0.02590 (11)
Fe40.88790 (4)0.91380 (4)0.11165 (4)0.03041 (12)
Ni10.75218 (3)0.60567 (3)0.21998 (3)0.02502 (10)
S10.84093 (8)0.68240 (7)0.52818 (7)0.0376 (2)
S20.64699 (8)0.84026 (7)0.42929 (7)0.0373 (2)
S30.90803 (7)0.88819 (7)0.04133 (7)0.0320 (2)
S40.67953 (7)0.94975 (7)0.02773 (6)0.03083 (19)
S50.85931 (7)0.62317 (6)0.29938 (6)0.02740 (18)
S60.68591 (7)0.77643 (6)0.18533 (6)0.02789 (18)
S70.62939 (8)0.59262 (7)0.15145 (6)0.0325 (2)
S80.83260 (8)0.43272 (6)0.24203 (6)0.03208 (19)
O10.6078 (2)0.9814 (2)0.6672 (2)0.0544 (7)
O20.6228 (3)0.6580 (3)0.7763 (2)0.0759 (10)
O30.4837 (2)0.6692 (2)0.4504 (2)0.0603 (8)
O40.3661 (2)0.8440 (2)0.6263 (2)0.0582 (8)
O50.7473 (3)0.4637 (2)0.5800 (2)0.0745 (10)
O60.7703 (3)0.6795 (2)0.0997 (2)0.0656 (8)
O71.0350 (2)0.5987 (2)0.0248 (2)0.0556 (7)
O81.1618 (2)0.7912 (2)0.1818 (2)0.0583 (8)
O90.8921 (3)1.1258 (2)0.1749 (2)0.0697 (9)
O100.8462 (3)0.8648 (2)0.2789 (2)0.0589 (8)
C10.6208 (3)0.9071 (3)0.6366 (3)0.0370 (8)
C20.6287 (4)0.7096 (3)0.7035 (3)0.0453 (9)
C30.5787 (3)0.6654 (3)0.4492 (3)0.0376 (8)
C40.4700 (3)0.8252 (3)0.6137 (3)0.0396 (9)
C50.7381 (3)0.5402 (3)0.5288 (3)0.0418 (9)
C60.7805 (3)0.7242 (3)0.0477 (3)0.0387 (8)
C70.9462 (3)0.6750 (3)0.0261 (3)0.0359 (8)
C81.0549 (3)0.8382 (3)0.1562 (3)0.0383 (8)
C90.8892 (3)1.0439 (3)0.1504 (3)0.0422 (9)
C100.8630 (3)0.8853 (3)0.2144 (3)0.0408 (9)
C110.9377 (4)0.7519 (4)0.4431 (3)0.0619 (13)
H11A0.99700.74880.47290.074*
H11B0.98670.71400.38190.074*
C120.8670 (4)0.8653 (4)0.4168 (3)0.0689 (15)
H12A0.92760.89610.37570.083*
H12B0.81820.90360.47770.083*
C130.7789 (4)0.8813 (3)0.3618 (3)0.0578 (12)
H13A0.82850.84260.30110.069*
H13B0.74420.95620.34190.069*
C140.6123 (3)1.0571 (3)0.0566 (3)0.0460 (9)
H14A0.61641.12080.01580.055*
H14B0.52331.07060.09010.055*
C150.6679 (4)1.0435 (3)0.1332 (3)0.0607 (11)
H15A0.62751.11100.16450.073*
H15B0.64280.99280.18390.073*
C160.8032 (3)1.0094 (3)0.1091 (3)0.0498 (10)
H16A0.82010.99990.17120.060*
H16B0.82651.06690.07000.060*
C170.5253 (3)0.8050 (3)0.1922 (3)0.0358 (8)
H17A0.47420.80060.26160.043*
H17B0.48850.87720.16590.043*
C180.5215 (3)0.7290 (3)0.1343 (3)0.0389 (9)
H18A0.54430.75070.06370.047*
H18B0.43590.73230.15630.047*
C190.5269 (3)0.5391 (3)0.2543 (3)0.0384 (8)
H19A0.49150.58060.31240.046*
H19B0.45740.54440.23560.046*
C200.6004 (3)0.4242 (3)0.2799 (3)0.0406 (9)
H20A0.64330.38590.21900.049*
H20B0.54020.39440.32440.049*
C210.6982 (3)0.4026 (3)0.3286 (3)0.0373 (8)
H21A0.72840.32840.35180.045*
H21B0.65860.44560.38620.045*
C220.9260 (3)0.4059 (3)0.3229 (3)0.0390 (9)
H22A0.87290.40820.39250.047*
H22B0.99390.33560.31210.047*
C230.9805 (3)0.4890 (3)0.2984 (3)0.0380 (9)
H23A1.04500.47760.23290.046*
H23B1.02040.48150.34690.046*
C240.2347 (12)0.6444 (8)1.0636 (13)0.084 (5)0.50
H24A0.22970.58771.03900.101*0.50
H24B0.15990.70811.06240.101*0.50
Cl10.3634 (8)0.6661 (6)0.9840 (8)0.099 (2)0.50
C24A0.2888 (15)0.5782 (14)1.0674 (11)0.111 (5)0.50
H24C0.21910.60391.04150.133*0.50
H24D0.32700.50131.06580.133*0.50
Cl1A0.4044 (7)0.6293 (7)0.9861 (7)0.106 (2)0.50
Cl20.23047 (12)0.61093 (11)1.18636 (13)0.0906 (4)
C250.7905 (4)1.1147 (4)0.4497 (3)0.0579 (11)
H25A0.70781.14370.45760.069*
H25B0.81051.04040.42740.069*
Cl30.7839 (13)1.1824 (16)0.3584 (7)0.077 (2)0.77 (6)
Cl3A0.7681 (19)1.215 (3)0.382 (4)0.070 (7)0.23 (6)
Cl40.90311 (11)1.12301 (10)0.56564 (9)0.0686 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0318 (2)0.0291 (3)0.0275 (3)0.0109 (2)0.0094 (2)0.0046 (2)
Fe20.0280 (2)0.0249 (2)0.0249 (3)0.01072 (19)0.00932 (19)0.00100 (19)
Fe30.0287 (2)0.0246 (2)0.0253 (3)0.01209 (19)0.00882 (19)0.00017 (19)
Fe40.0321 (2)0.0322 (3)0.0283 (3)0.0166 (2)0.0092 (2)0.0031 (2)
Ni10.0291 (2)0.0233 (2)0.0248 (2)0.01258 (17)0.00913 (17)0.00011 (17)
S10.0312 (4)0.0456 (5)0.0374 (5)0.0104 (4)0.0159 (4)0.0070 (4)
S20.0453 (5)0.0255 (5)0.0313 (5)0.0049 (4)0.0147 (4)0.0011 (4)
S30.0328 (4)0.0336 (5)0.0357 (5)0.0150 (4)0.0157 (4)0.0015 (4)
S40.0295 (4)0.0324 (5)0.0315 (5)0.0116 (3)0.0138 (4)0.0020 (4)
S50.0296 (4)0.0275 (4)0.0267 (4)0.0118 (3)0.0101 (3)0.0017 (3)
S60.0342 (4)0.0249 (4)0.0256 (4)0.0141 (3)0.0098 (3)0.0021 (3)
S70.0377 (4)0.0347 (5)0.0326 (5)0.0199 (4)0.0139 (4)0.0008 (4)
S80.0383 (4)0.0248 (4)0.0320 (5)0.0123 (4)0.0096 (4)0.0033 (4)
O10.0494 (15)0.0471 (17)0.072 (2)0.0168 (13)0.0161 (14)0.0250 (15)
O20.101 (2)0.079 (2)0.046 (2)0.038 (2)0.0312 (19)0.0208 (17)
O30.0382 (14)0.097 (2)0.0568 (19)0.0337 (15)0.0072 (13)0.0268 (17)
O40.0315 (14)0.0600 (19)0.079 (2)0.0138 (13)0.0101 (13)0.0212 (16)
O50.108 (2)0.0373 (17)0.0499 (19)0.0269 (17)0.0060 (18)0.0124 (14)
O60.092 (2)0.075 (2)0.0529 (19)0.0474 (18)0.0224 (17)0.0175 (16)
O70.0447 (15)0.0417 (17)0.0584 (19)0.0022 (13)0.0121 (14)0.0021 (14)
O80.0347 (15)0.0520 (17)0.083 (2)0.0141 (13)0.0042 (14)0.0303 (16)
O90.105 (2)0.0460 (19)0.072 (2)0.0437 (18)0.0391 (19)0.0189 (16)
O100.0622 (17)0.080 (2)0.0408 (17)0.0291 (16)0.0211 (14)0.0068 (15)
C10.0333 (18)0.041 (2)0.036 (2)0.0129 (16)0.0103 (16)0.0072 (17)
C20.050 (2)0.050 (2)0.036 (2)0.0194 (19)0.0140 (19)0.005 (2)
C30.0376 (19)0.046 (2)0.030 (2)0.0165 (17)0.0061 (16)0.0129 (17)
C40.041 (2)0.034 (2)0.042 (2)0.0118 (16)0.0118 (17)0.0096 (17)
C50.050 (2)0.032 (2)0.033 (2)0.0151 (17)0.0038 (17)0.0047 (17)
C60.048 (2)0.038 (2)0.034 (2)0.0223 (17)0.0109 (17)0.0021 (17)
C70.0370 (19)0.037 (2)0.030 (2)0.0158 (17)0.0059 (16)0.0019 (16)
C80.044 (2)0.041 (2)0.039 (2)0.0256 (18)0.0107 (17)0.0049 (17)
C90.050 (2)0.043 (2)0.036 (2)0.0220 (19)0.0148 (18)0.0044 (18)
C100.0358 (19)0.050 (2)0.034 (2)0.0178 (17)0.0104 (17)0.0029 (18)
C110.047 (2)0.087 (4)0.065 (3)0.041 (2)0.005 (2)0.022 (3)
C120.073 (3)0.077 (3)0.064 (3)0.060 (3)0.020 (2)0.031 (3)
C130.082 (3)0.032 (2)0.045 (3)0.031 (2)0.003 (2)0.0018 (18)
C140.0418 (18)0.0329 (19)0.056 (2)0.0040 (15)0.0186 (17)0.0082 (17)
C150.058 (2)0.053 (2)0.067 (2)0.0070 (18)0.0216 (19)0.0259 (19)
C160.055 (2)0.045 (2)0.057 (2)0.0145 (17)0.0242 (19)0.0190 (19)
C170.0304 (17)0.036 (2)0.036 (2)0.0127 (15)0.0085 (15)0.0046 (16)
C180.0354 (18)0.044 (2)0.043 (2)0.0199 (16)0.0191 (17)0.0078 (17)
C190.0392 (19)0.042 (2)0.041 (2)0.0240 (17)0.0126 (17)0.0006 (17)
C200.046 (2)0.035 (2)0.045 (2)0.0268 (17)0.0076 (18)0.0004 (17)
C210.047 (2)0.0281 (19)0.034 (2)0.0196 (16)0.0077 (17)0.0048 (15)
C220.0445 (19)0.0256 (19)0.041 (2)0.0052 (16)0.0180 (17)0.0022 (16)
C230.0303 (17)0.035 (2)0.044 (2)0.0039 (15)0.0128 (16)0.0100 (17)
C240.079 (8)0.035 (6)0.177 (14)0.002 (5)0.098 (9)0.021 (7)
Cl10.130 (5)0.091 (4)0.092 (3)0.040 (3)0.057 (3)0.006 (3)
C24A0.139 (14)0.157 (15)0.095 (10)0.107 (12)0.033 (10)0.025 (12)
Cl1A0.114 (5)0.147 (7)0.088 (3)0.087 (5)0.039 (3)0.021 (4)
Cl20.0710 (8)0.0752 (9)0.1187 (13)0.0267 (7)0.0299 (8)0.0007 (8)
C250.050 (2)0.060 (3)0.061 (3)0.026 (2)0.012 (2)0.002 (2)
Cl30.052 (3)0.130 (5)0.061 (2)0.049 (3)0.0078 (15)0.021 (3)
Cl3A0.041 (4)0.086 (12)0.090 (14)0.015 (6)0.021 (6)0.038 (8)
Cl40.0661 (7)0.0681 (8)0.0531 (7)0.0241 (6)0.0090 (6)0.0070 (6)
Geometric parameters (Å, º) top
Fe1—C41.778 (4)C11—H11A0.9700
Fe1—C21.779 (4)C11—H11B0.9700
Fe1—C11.805 (4)C12—C131.504 (6)
Fe1—S22.2620 (10)C12—H12A0.9700
Fe1—S12.2724 (9)C12—H12B0.9700
Fe1—Fe22.5126 (6)C13—H13A0.9700
Fe2—C51.755 (4)C13—H13B0.9700
Fe2—C31.759 (3)C14—C151.460 (5)
Fe2—S22.2613 (10)C14—H14A0.9700
Fe2—S12.2703 (9)C14—H14B0.9700
Fe2—S52.3073 (9)C15—C161.449 (5)
Fe3—C61.761 (4)C15—H15A0.9700
Fe3—C71.767 (4)C15—H15B0.9700
Fe3—S42.2769 (9)C16—H16A0.9700
Fe3—S32.2787 (9)C16—H16B0.9700
Fe3—S62.2897 (9)C17—C181.513 (5)
Fe3—Fe42.5086 (7)C17—H17A0.9700
Fe4—C101.783 (4)C17—H17B0.9700
Fe4—C81.786 (4)C18—H18A0.9700
Fe4—C91.794 (4)C18—H18B0.9700
Fe4—S32.2619 (10)C19—C201.510 (5)
Fe4—S42.2708 (9)C19—H19A0.9700
Ni1—S62.1750 (9)C19—H19B0.9700
Ni1—S52.1754 (9)C20—C211.520 (5)
Ni1—S82.1822 (9)C20—H20A0.9700
Ni1—S72.1974 (9)C20—H20B0.9700
S1—C111.817 (4)C21—H21A0.9700
S2—C131.828 (4)C21—H21B0.9700
S3—C161.825 (3)C22—C231.507 (5)
S4—C141.828 (4)C22—H22A0.9700
S5—C231.820 (3)C22—H22B0.9700
S6—C171.823 (3)C23—H23A0.9700
S7—C181.822 (3)C23—H23B0.9700
S7—C191.823 (3)C24—Cl11.689 (19)
S8—C221.826 (4)C24—Cl21.728 (16)
S8—C211.827 (3)C24—H24A0.9700
O1—C11.139 (4)C24—H24B0.9700
O2—C21.142 (5)C24A—Cl21.671 (14)
O3—C31.152 (4)C24A—Cl1A1.794 (17)
O4—C41.147 (4)C24A—H24C0.9700
O5—C51.155 (4)C24A—H24D0.9700
O6—C61.148 (4)C25—Cl31.741 (9)
O7—C71.149 (4)C25—Cl3A1.75 (2)
O8—C81.139 (4)C25—Cl41.750 (4)
O9—C91.139 (4)C25—H25A0.9700
O10—C101.147 (4)C25—H25B0.9700
C11—C121.489 (6)
C4—Fe1—C291.51 (17)C12—C11—H11A108.4
C4—Fe1—C199.37 (15)S1—C11—H11A108.4
C2—Fe1—C197.89 (17)C12—C11—H11B108.4
C4—Fe1—S285.96 (13)S1—C11—H11B108.4
C2—Fe1—S2159.36 (12)H11A—C11—H11B107.4
C1—Fe1—S2102.74 (12)C11—C12—C13114.2 (3)
C4—Fe1—S1151.33 (11)C11—C12—H12A108.7
C2—Fe1—S187.50 (12)C13—C12—H12A108.7
C1—Fe1—S1109.15 (11)C11—C12—H12B108.7
S2—Fe1—S185.04 (4)C13—C12—H12B108.7
C4—Fe1—Fe296.33 (11)H12A—C12—H12B107.6
C2—Fe1—Fe2103.85 (12)C12—C13—S2116.7 (3)
C1—Fe1—Fe2152.74 (12)C12—C13—H13A108.1
S2—Fe1—Fe256.24 (3)S2—C13—H13A108.1
S1—Fe1—Fe256.38 (3)C12—C13—H13B108.1
C5—Fe2—C390.13 (18)S2—C13—H13B108.1
C5—Fe2—S2157.67 (12)H13A—C13—H13B107.3
C3—Fe2—S289.49 (12)C15—C14—S4118.8 (3)
C5—Fe2—S186.92 (13)C15—C14—H14A107.6
C3—Fe2—S1157.92 (11)S4—C14—H14A107.6
S2—Fe2—S185.10 (4)C15—C14—H14B107.6
C5—Fe2—S5106.91 (11)S4—C14—H14B107.6
C3—Fe2—S5102.64 (11)H14A—C14—H14B107.0
S2—Fe2—S594.94 (3)C16—C15—C14121.5 (4)
S1—Fe2—S599.15 (3)C16—C15—H15A107.0
C5—Fe2—Fe1102.21 (12)C14—C15—H15A107.0
C3—Fe2—Fe1103.06 (10)C16—C15—H15B107.0
S2—Fe2—Fe156.27 (3)C14—C15—H15B107.0
S1—Fe2—Fe156.46 (3)H15A—C15—H15B106.7
S5—Fe2—Fe1140.73 (3)C15—C16—S3118.0 (3)
C6—Fe3—C787.86 (16)C15—C16—H16A107.8
C6—Fe3—S489.82 (12)S3—C16—H16A107.8
C7—Fe3—S4161.61 (12)C15—C16—H16B107.8
C6—Fe3—S3152.86 (12)S3—C16—H16B107.8
C7—Fe3—S388.74 (11)H16A—C16—H16B107.1
S4—Fe3—S385.04 (3)C18—C17—S6112.5 (2)
C6—Fe3—S6106.05 (12)C18—C17—H17A109.1
C7—Fe3—S697.86 (11)S6—C17—H17A109.1
S4—Fe3—S6100.31 (3)C18—C17—H17B109.1
S3—Fe3—S6101.09 (3)S6—C17—H17B109.1
C6—Fe3—Fe499.19 (12)H17A—C17—H17B107.8
C7—Fe3—Fe4106.02 (11)C17—C18—S7111.7 (2)
S4—Fe3—Fe456.41 (3)C17—C18—H18A109.3
S3—Fe3—Fe456.14 (3)S7—C18—H18A109.3
S6—Fe3—Fe4145.71 (3)C17—C18—H18B109.3
C10—Fe4—C893.52 (16)S7—C18—H18B109.3
C10—Fe4—C9100.99 (17)H18A—C18—H18B107.9
C8—Fe4—C998.17 (16)C20—C19—S7110.6 (2)
C10—Fe4—S3156.81 (13)C20—C19—H19A109.5
C8—Fe4—S386.09 (12)S7—C19—H19A109.5
C9—Fe4—S3102.02 (12)C20—C19—H19B109.5
C10—Fe4—S486.56 (11)S7—C19—H19B109.5
C8—Fe4—S4158.66 (12)H19A—C19—H19B108.1
C9—Fe4—S4102.77 (12)C19—C20—C21116.8 (3)
S3—Fe4—S485.57 (3)C19—C20—H20A108.1
C10—Fe4—Fe3100.97 (12)C21—C20—H20A108.1
C8—Fe4—Fe3102.60 (12)C19—C20—H20B108.1
C9—Fe4—Fe3148.60 (12)C21—C20—H20B108.1
S3—Fe4—Fe356.78 (3)H20A—C20—H20B107.3
S4—Fe4—Fe356.64 (3)C20—C21—S8111.9 (2)
S6—Ni1—S588.17 (3)C20—C21—H21A109.2
S6—Ni1—S8174.85 (4)S8—C21—H21A109.2
S5—Ni1—S892.01 (3)C20—C21—H21B109.2
S6—Ni1—S791.05 (3)S8—C21—H21B109.2
S5—Ni1—S7175.01 (4)H21A—C21—H21B107.9
S8—Ni1—S789.22 (3)C23—C22—S8108.5 (2)
C11—S1—Fe2112.33 (15)C23—C22—H22A110.0
C11—S1—Fe1113.21 (15)S8—C22—H22A110.0
Fe2—S1—Fe167.16 (3)C23—C22—H22B110.0
C13—S2—Fe2111.11 (14)S8—C22—H22B110.0
C13—S2—Fe1112.09 (15)H22A—C22—H22B108.4
Fe2—S2—Fe167.49 (3)C22—C23—S5111.9 (2)
C16—S3—Fe4108.98 (14)C22—C23—H23A109.2
C16—S3—Fe3115.56 (13)S5—C23—H23A109.2
Fe4—S3—Fe367.07 (3)C22—C23—H23B109.2
C14—S4—Fe4110.26 (13)S5—C23—H23B109.2
C14—S4—Fe3114.30 (13)H23A—C23—H23B107.9
Fe4—S4—Fe366.96 (3)Cl1—C24—Cl2116.0 (6)
C23—S5—Ni1101.59 (11)Cl1—C24—H24A108.3
C23—S5—Fe2110.57 (13)Cl2—C24—H24A108.3
Ni1—S5—Fe2103.94 (3)Cl1—C24—H24B108.3
C17—S6—Ni199.83 (11)Cl2—C24—H24B108.3
C17—S6—Fe3111.08 (12)H24A—C24—H24B107.4
Ni1—S6—Fe3103.81 (3)Cl2—C24A—Cl1A115.0 (8)
C18—S7—C19102.54 (16)Cl2—C24A—H24C108.5
C18—S7—Ni1105.10 (11)Cl1A—C24A—H24C108.5
C19—S7—Ni1103.26 (12)Cl2—C24A—H24D108.5
C22—S8—C21101.18 (17)Cl1A—C24A—H24D108.5
C22—S8—Ni1104.79 (11)H24C—C24A—H24D107.5
C21—S8—Ni1103.69 (11)C24A—Cl2—C2429.9 (6)
O1—C1—Fe1177.2 (3)Cl3—C25—Cl3A17.1 (14)
O2—C2—Fe1178.3 (4)Cl3—C25—Cl4113.1 (3)
O3—C3—Fe2174.9 (3)Cl3A—C25—Cl4105.2 (17)
O4—C4—Fe1177.4 (3)Cl3—C25—H25A109.0
O5—C5—Fe2175.9 (3)Cl3A—C25—H25A98.9
O6—C6—Fe3174.5 (3)Cl4—C25—H25A109.0
O7—C7—Fe3177.9 (3)Cl3—C25—H25B109.0
O8—C8—Fe4177.5 (3)Cl3A—C25—H25B126.0
O9—C9—Fe4178.7 (4)Cl4—C25—H25B109.0
O10—C10—Fe4178.1 (4)H25A—C25—H25B107.8
C12—C11—S1115.6 (3)
C4—Fe1—Fe2—C592.64 (18)S6—Ni1—S5—Fe287.40 (4)
C2—Fe1—Fe2—C50.50 (18)S8—Ni1—S5—Fe297.75 (4)
C1—Fe1—Fe2—C5142.4 (3)S7—Ni1—S5—Fe26.4 (4)
S2—Fe1—Fe2—C5173.46 (13)C5—Fe2—S5—C2316.11 (18)
S1—Fe1—Fe2—C577.91 (13)C3—Fe2—S5—C23110.16 (17)
C4—Fe1—Fe2—C30.38 (18)S2—Fe2—S5—C23159.25 (12)
C2—Fe1—Fe2—C393.52 (18)S1—Fe2—S5—C2373.44 (12)
C1—Fe1—Fe2—C3124.6 (3)Fe1—Fe2—S5—C23120.04 (12)
S2—Fe1—Fe2—C380.44 (13)C5—Fe2—S5—Ni192.21 (14)
S1—Fe1—Fe2—C3170.93 (13)C3—Fe2—S5—Ni11.84 (13)
C4—Fe1—Fe2—S280.83 (13)S2—Fe2—S5—Ni192.43 (4)
C2—Fe1—Fe2—S2173.96 (13)S1—Fe2—S5—Ni1178.24 (4)
C1—Fe1—Fe2—S244.1 (2)Fe1—Fe2—S5—Ni1131.64 (4)
S1—Fe1—Fe2—S2108.63 (4)S5—Ni1—S6—C17144.38 (12)
C4—Fe1—Fe2—S1170.55 (13)S8—Ni1—S6—C17123.6 (4)
C2—Fe1—Fe2—S177.41 (13)S7—Ni1—S6—C1730.69 (12)
C1—Fe1—Fe2—S164.5 (2)S5—Ni1—S6—Fe3100.88 (4)
S2—Fe1—Fe2—S1108.63 (4)S8—Ni1—S6—Fe38.9 (4)
C4—Fe1—Fe2—S5130.07 (13)S7—Ni1—S6—Fe384.05 (4)
C2—Fe1—Fe2—S5136.80 (13)C6—Fe3—S6—C1745.78 (17)
C1—Fe1—Fe2—S55.1 (2)C7—Fe3—S6—C17135.81 (16)
S2—Fe1—Fe2—S549.24 (5)S4—Fe3—S6—C1747.03 (12)
S1—Fe1—Fe2—S559.39 (5)S3—Fe3—S6—C17133.94 (12)
C6—Fe3—Fe4—C105.20 (16)Fe4—Fe3—S6—C1790.02 (13)
C7—Fe3—Fe4—C1095.60 (16)C6—Fe3—S6—Ni160.67 (13)
S4—Fe3—Fe4—C1078.42 (12)C7—Fe3—S6—Ni129.36 (12)
S3—Fe3—Fe4—C10172.88 (12)S4—Fe3—S6—Ni1153.48 (3)
S6—Fe3—Fe4—C10132.06 (12)S3—Fe3—S6—Ni1119.61 (4)
C6—Fe3—Fe4—C890.97 (16)Fe4—Fe3—S6—Ni1163.53 (4)
C7—Fe3—Fe4—C80.57 (16)S6—Ni1—S7—C1812.91 (13)
S4—Fe3—Fe4—C8174.59 (11)S5—Ni1—S7—C1868.0 (4)
S3—Fe3—Fe4—C876.71 (11)S8—Ni1—S7—C18172.23 (13)
S6—Fe3—Fe4—C8131.77 (12)S6—Ni1—S7—C19120.04 (12)
C6—Fe3—Fe4—C9138.8 (3)S5—Ni1—S7—C1939.2 (5)
C7—Fe3—Fe4—C9130.8 (3)S8—Ni1—S7—C1965.10 (12)
S4—Fe3—Fe4—C955.2 (2)S6—Ni1—S8—C2297.6 (4)
S3—Fe3—Fe4—C953.5 (2)S5—Ni1—S8—C225.75 (13)
S6—Fe3—Fe4—C91.6 (2)S7—Ni1—S8—C22169.41 (13)
C6—Fe3—Fe4—S3167.68 (12)S6—Ni1—S8—C21156.7 (4)
C7—Fe3—Fe4—S377.28 (12)S5—Ni1—S8—C21111.45 (12)
S4—Fe3—Fe4—S3108.70 (4)S7—Ni1—S8—C2163.71 (12)
S6—Fe3—Fe4—S355.06 (6)C4—Fe1—C1—O115 (7)
C6—Fe3—Fe4—S483.62 (12)C2—Fe1—C1—O178 (7)
C7—Fe3—Fe4—S4174.02 (12)S2—Fe1—C1—O1103 (7)
S3—Fe3—Fe4—S4108.70 (4)S1—Fe1—C1—O1168 (7)
S6—Fe3—Fe4—S453.64 (6)Fe2—Fe1—C1—O1139 (7)
C5—Fe2—S1—C11146.3 (2)C4—Fe1—C2—O23 (13)
C3—Fe2—S1—C11130.9 (4)C1—Fe1—C2—O297 (13)
S2—Fe2—S1—C1154.54 (16)S2—Fe1—C2—O285 (13)
S5—Fe2—S1—C1139.69 (16)S1—Fe1—C2—O2154 (13)
Fe1—Fe2—S1—C11106.82 (16)Fe2—Fe1—C2—O299 (13)
C5—Fe2—S1—Fe1106.85 (11)C5—Fe2—C3—O371 (4)
C3—Fe2—S1—Fe124.1 (3)S2—Fe2—C3—O387 (4)
S2—Fe2—S1—Fe152.28 (3)S1—Fe2—C3—O312 (4)
S5—Fe2—S1—Fe1146.51 (3)S5—Fe2—C3—O3178 (100)
C4—Fe1—S1—C11125.4 (3)Fe1—Fe2—C3—O332 (4)
C2—Fe1—S1—C11146.0 (2)C2—Fe1—C4—O490 (9)
C1—Fe1—S1—C1148.5 (2)C1—Fe1—C4—O4172 (8)
S2—Fe1—S1—C1153.28 (16)S2—Fe1—C4—O470 (9)
Fe2—Fe1—S1—C11105.54 (16)S1—Fe1—C4—O42 (9)
C4—Fe1—S1—Fe219.9 (3)Fe2—Fe1—C4—O414 (9)
C2—Fe1—S1—Fe2108.47 (12)C3—Fe2—C5—O588 (5)
C1—Fe1—S1—Fe2154.04 (13)S2—Fe2—C5—O51 (6)
S2—Fe1—S1—Fe252.26 (3)S1—Fe2—C5—O570 (5)
C5—Fe2—S2—C13123.1 (4)S5—Fe2—C5—O5169 (5)
C3—Fe2—S2—C13147.83 (19)Fe1—Fe2—C5—O516 (5)
S1—Fe2—S2—C1353.60 (16)C7—Fe3—C6—O660 (4)
S5—Fe2—S2—C1345.19 (16)S4—Fe3—C6—O6102 (4)
Fe1—Fe2—S2—C13106.04 (16)S3—Fe3—C6—O623 (4)
C5—Fe2—S2—Fe117.0 (3)S6—Fe3—C6—O6157 (4)
C3—Fe2—S2—Fe1106.13 (11)Fe4—Fe3—C6—O646 (4)
S1—Fe2—S2—Fe152.44 (3)C6—Fe3—C7—O734 (9)
S5—Fe2—S2—Fe1151.23 (3)S4—Fe3—C7—O749 (9)
C4—Fe1—S2—C13155.00 (18)S3—Fe3—C7—O7119 (9)
C2—Fe1—S2—C13121.5 (4)S6—Fe3—C7—O7140 (9)
C1—Fe1—S2—C1356.29 (17)Fe4—Fe3—C7—O765 (9)
S1—Fe1—S2—C1352.24 (14)C10—Fe4—C8—O8176 (100)
Fe2—Fe1—S2—C13104.63 (14)C9—Fe4—C8—O875 (8)
C4—Fe1—S2—Fe2100.38 (11)S3—Fe4—C8—O827 (8)
C2—Fe1—S2—Fe216.8 (4)S4—Fe4—C8—O894 (8)
C1—Fe1—S2—Fe2160.92 (11)Fe3—Fe4—C8—O882 (8)
S1—Fe1—S2—Fe252.38 (3)C10—Fe4—C9—O9122 (17)
C10—Fe4—S3—C16128.5 (3)C8—Fe4—C9—O927 (17)
C8—Fe4—S3—C16141.69 (18)S3—Fe4—C9—O961 (17)
C9—Fe4—S3—C1644.16 (18)S4—Fe4—C9—O9149 (17)
S4—Fe4—S3—C1657.98 (14)Fe3—Fe4—C9—O9105 (17)
Fe3—Fe4—S3—C16110.49 (14)C8—Fe4—C10—O1096 (10)
C10—Fe4—S3—Fe318.0 (3)C9—Fe4—C10—O10165 (10)
C8—Fe4—S3—Fe3107.82 (11)S3—Fe4—C10—O108 (10)
C9—Fe4—S3—Fe3154.65 (12)S4—Fe4—C10—O1063 (10)
S4—Fe4—S3—Fe352.51 (3)Fe3—Fe4—C10—O108 (10)
C6—Fe3—S3—C16128.4 (3)Fe2—S1—C11—C1266.6 (3)
C7—Fe3—S3—C16148.79 (19)Fe1—S1—C11—C127.1 (4)
S4—Fe3—S3—C1648.53 (16)S1—C11—C12—C1363.0 (4)
S6—Fe3—S3—C1651.03 (16)C11—C12—C13—S263.8 (4)
Fe4—Fe3—S3—C16100.90 (16)Fe2—S2—C13—C1266.6 (3)
C6—Fe3—S3—Fe427.5 (3)Fe1—S2—C13—C126.8 (3)
C7—Fe3—S3—Fe4110.31 (11)Fe4—S4—C14—C1558.3 (4)
S4—Fe3—S3—Fe452.37 (3)Fe3—S4—C14—C1514.7 (4)
S6—Fe3—S3—Fe4151.92 (3)S4—C14—C15—C1649.9 (6)
C10—Fe4—S4—C14145.83 (19)C14—C15—C16—S353.0 (6)
C8—Fe4—S4—C14123.3 (3)Fe4—S3—C16—C1564.1 (4)
C9—Fe4—S4—C1445.33 (18)Fe3—S3—C16—C158.9 (4)
S3—Fe4—S4—C1456.01 (14)Ni1—S6—C17—C1848.1 (3)
Fe3—Fe4—S4—C14108.64 (14)Fe3—S6—C17—C1860.9 (3)
C10—Fe4—S4—Fe3105.53 (12)S6—C17—C18—S741.3 (3)
C8—Fe4—S4—Fe314.6 (3)C19—S7—C18—C1794.0 (3)
C9—Fe4—S4—Fe3153.97 (12)Ni1—S7—C18—C1713.7 (3)
S3—Fe4—S4—Fe352.63 (3)C18—S7—C19—C20179.8 (2)
C6—Fe3—S4—C14156.07 (18)Ni1—S7—C19—C2071.2 (2)
C7—Fe3—S4—C14121.3 (4)S7—C19—C20—C2169.7 (4)
S3—Fe3—S4—C1450.61 (14)C19—C20—C21—S868.6 (4)
S6—Fe3—S4—C1449.78 (15)C22—S8—C21—C20177.2 (2)
Fe4—Fe3—S4—C14102.76 (14)Ni1—S8—C21—C2068.8 (2)
C6—Fe3—S4—Fe4101.17 (12)C21—S8—C22—C23140.8 (2)
C7—Fe3—S4—Fe418.5 (4)Ni1—S8—C22—C2333.2 (2)
S3—Fe3—S4—Fe452.14 (3)S8—C22—C23—S551.1 (3)
S6—Fe3—S4—Fe4152.54 (3)Ni1—S5—C23—C2243.7 (3)
S6—Ni1—S5—C23157.74 (13)Fe2—S5—C23—C2266.2 (3)
S8—Ni1—S5—C2317.11 (13)Cl1A—C24A—Cl2—C2477.7 (16)
S7—Ni1—S5—C23121.3 (4)Cl1—C24—Cl2—C24A74.2 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19A···O30.972.523.440 (5)159
C15—H15B···S60.972.833.578 (4)134
C13—H13B···O4i0.972.573.470 (5)154
C20—H20A···O8ii0.972.573.263 (5)128
C24—H24A···O7iii0.972.443.08 (2)123
C24A—H24C···O7iii0.972.423.32 (2)154
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+1, z; (iii) x1, y, z+1.
 

Funding information

We are grateful to the Science Foundation of China for financial support (grant Nos. 2016M602712 and 2015M582573).

References

First citationBruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, W., Wang, M., Liu, X., Jin, K., Li, G., Wang, F. & Sun, L. (2006). Chem. Commun. pp. 305–307.  Web of Science CSD CrossRef Google Scholar
First citationFelton, G. A. N., Mebi, C. A., Petro, B. J., Vannucci, A. K., Evans, D. H., Glass, R. S. & Lichtenberger, D. L. (2009). J. Organomet. Chem. 694, 2681–2699.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, M. Q., Wen, H. M., Ma, C. B., Li, N., Yan, Q. Y., Chen, H. & Chen, C. N. (2010). Dalton Trans. 39, 9484–9486.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMaiolo, F., Testaferri, L., Tiecco, M. & Tingoli, M. (1981). J. Org. Chem. 46, 3070–3073.  CrossRef CAS Web of Science Google Scholar
First citationNicolet, Y., Piras, C., Legrand, P., Hatchikian, C. E. & Fontecilla-Camps, J. C. (1999). Structure, 7, 13–23.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPeters, J. W., Lanzilotta, W. N., Lemon, B. J. & Seefeldt, L. C. (1998). Science, 282, 1853–1858.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTard, C., Liu, X. M., Ibrahim, S. K., Bruschi, M., De Gioia, L., Davies, S. C., Yang, X., Wang, L. S., Sawers, G. & Pickett, C. J. (2005). Nature, 433, 610–613.  Web of Science CSD CrossRef CAS Google Scholar
First citationTard, C. & Pickett, C. J. (2009). Chem. Rev. 109, 2245–2274.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds