research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris[2,2,6,6-tetra­methyl-8-(tri­methyl­sil­yl)benzo[1,2-d;4,5-d′]bis­­(1,3-di­thiol)-4-yl]methanol di­ethyl ether monosolvate

aUniversity of Bonn, Institute of Physical and Theoretical Chemistry, Wegelerstrasse 12, 53115 Bonn, Germany, and bUniversity of Bonn, Institute of Inorganic Chemistry, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
*Correspondence e-mail: schiemann@pc.uni-bonn.de

Edited by G. S. Nichol, University of Edinburgh, Scotland (Received 23 January 2018; accepted 17 March 2018; online 23 March 2018)

The title compound, a tri­aryl­methanol, C46H64OS12Si3 1, was synthesized via li­thia­tion of tris-2,2,6,6-tetra­methyl­benzo[1,2-d;4,5-d′]bis­[1,3]di­thiol-4-yl-methanol, 2, and electrophilic quenching with tri­methyl­silyl chloride. The current crystal structure reveals information about the reactivity of this compound and compares well with the structure reported for the unsubstituted parent compound 2 [Driesschaert et al. (2012[Driesschaert, B., Robiette, R., Le Duff, C., Collard, L., Robeyns, K., Gallez, B. & Marchand-Brynaert, J. (2012). Eur. J. Org. Chem. 33, 6517-6525.]). Eur. J. Org. Chem. 33, 6517–6525]. The title compound 1 forms mol­ecular propellers and crystallizes in P[\overline{1}], featuring an unusually long Si—Car bond of 1.910 (3) Å. Moreover, the geometry at the central quaternary carbon is rather trigonal-pyramidal than tetra­hedral due to vast intra­molecular stress. One tri­methyl­silyl group is disordered over two positions in a 0.504 (4):0.496 (4) ratio and one S atom is disordered over two positions in a 0.509 (7):0.491 (7) ratio. The contribution of disordered diethyl ether solvent mol­ecule(s) was removed using the PLATON SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) solvent masking procedure. These solvent mol­ecules are not considered in the given chemical formula and other crystal data.

1. Chemical context

The reported tri­aryl­methanol 1 is the direct precursor of the corresponding tri­aryl­methyl radical. Such tetra­thi­aryl­methyl radicals, also called trityl radicals, can be used as spin labels for EPR-based distance measurements (Reginsson et al., 2012[Reginsson, G. W., Kunjir, N. C., Sigurdsson, S. T. & Schiemann, O. (2012). Chem. Eur. J. 18, 13580-13584.]; Kunjir et al., 2013[Kunjir, N. C., Reginsson, G. W., Schiemann, O. & Sigurdsson, S. T. (2013). Phys. Chem. Chem. Phys. 15, 19673-19685.]) and have recently been employed for structure determination in proteins (Jassoy et al., 2017[Jassoy, J. J., Berndhäuser, A., Duthie, F., Kühn, S. P., Hagelueken, G. & Schiemann, O. (2017). Angew. Chem. Int. Ed. 56, 177-181.]; Yang et al., 2012[Yang, Z., Liu, Y., Borbat, P., Zweier, J. L., Freed, J. H. & Hubbell, W. L. (2012). J. Am. Chem. Soc. 134, 9950-9952.]) as well as nucleic acids (Shevelev et al., 2015[Shevelev, G. Y., Krumkacheva, O., Lomzov, A. A., Kuzhelev, A., Trukhin, D. V., Rogozhnikova, O. Y., Tormyshev, V. M., Pyshnyi, D. V., Fedin, M. V. & Bagryanskaya, E. G. (2015). J. Phys. Chem. B, 119, 13641-13648.]). They are also used for dynamic nuclear polarization experiments (Jähnig et al., 2017[Jähnig, F., Kwiatkowski, G., Däpp, A., Hunkeler, A., Meier, B. H., Kozerke, S. & Ernst, M. (2017). Phys. Chem. Chem. Phys. 19, 19196-19204.]). Trityl radicals feature a very narrow linewidth in EPR spectra, slow spin–spin relaxation at room temperature and show line-broadening depending on the oxygen concentration in their surroundings. The latter property also makes them suitable as oxygen probes (Frank et al., 2015[Frank, J., Elewa, M., Said, M., El Shihawy, H. A., El-Sadek, M., Müller, D., Meister, A., Hause, G., Drescher, S., Metz, H., Imming, P. & Mäder, K. (2015). J. Org. Chem. 80, 6754-6766.]). However, most of the trityl radicals reported in the literature feature carb­oxy­lic acid derivatives as substituents in the para-position. The title compound 1 is a promising precursor for differently para-substituted trityl alcohols and their corresponding radicals.

2. Structural commentary

Compound 1 crystallizes (in space group P[\overline{1}] with the unit cell containing two mol­ecules) from diethyl ether as a racemic mixture with respect to the propeller-like conformation of the aryl building blocks. The unit cell consists of one P- and one M-configured mol­ecule, as shown in Fig. 1[link].

[Scheme 1]
[Figure 1]
Figure 1
Crystal structure of the title compound, 1. Displacement ellipsoids are at the 50% probability level. Only the major disorder component is shown.

The structure of the title compound deviates from C3 symmetry, since the dihedral angles between the aryl planes are not equivalent (±73.7, ±73.7, ±70.2°). Moreover, the structure of 1 exhibits an Si—Car bond length of 1.909 (3) Å to 1.945 (4) Å, whereas a bond length X3Si—Car of 1.863 (14) Å is typically expected (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1.]). This elongation of the Si—Car bond may be due to the sterical stress at the para-positions caused by vicinal sulfur atoms. Additionally, the bond angles between the tetra­thiaryl substituents at C1 are 112.2 (2), 113.5 (2) and 114.0 (2)°, exceeding the tetra­hedral angle of 109.5°. Therefore, regarding its geometry, C1 is situated between a tetra­hedral and a trigonal–planar environment with a deviation of 0.409 (4) Å from the plane through atoms C2, C17 and C32. This coincides with the experimental observation that the title compound forms the corresponding carbocation with low effort, meaning its structure is already similar to the transition state according to Hammond's postulate. However, the C1—O1 bond length of 1.439 (3) Å fits the value expected for tertiary alcohols, which is 1.440 (12) Å (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1.]) and does not show any elongation. Regarding the envelope-configured 1,3-di­thia­nes, C—S—C angles between 94.4 (2) and 96.1 (2)° and C—C—S—C torsion angles in 1,3-di­thia­nes between 18.7 and 26.9° are observed, with the methyl­ene groups pointing either above or below the aromatic ring plane although without regularity. This is also observed within the crystal structure of the unsubstituted trityl alcohol 2 (Fig. 2[link]).

[Figure 2]
Figure 2
Synthesis of the title compound 1.

The mol­ecular structure of compound 1 features an O1—H1⋯S8 hydrogen bond with a donor to acceptor atom distance of 3.031 (2) Å, which falls into the regime of a moderately strong hydrogen bond according to Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. New York: Oxford University Press.]). In addition, the H1⋯S8 distance of 2.32 Å is significantly shorter than 2.90 Å, the sum of the van der Waals radii (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). The remaining five intra­molecular hydrogen bonds listed in Table 1[link] belong into the category of weak electrostatic hydrogen bonds, with the shortest having a donor–acceptor atom distance of 3.435 (3) Å and the longest a donor–acceptor distance of 3.926 (5) Å. Other contacts between the mol­ecules were not observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯S8 0.84 2.32 3.031 (2) 142
C9—H9C⋯S5 0.98 3.05 3.926 (5) 150
C12—H12A⋯S3 0.98 2.51 3.184 (16) 126
C13—H13B⋯S6i 0.98 2.85 3.734 (10) 150
C15—H15B⋯S11ii 0.98 3.00 3.866 (4) 148
C16—H16C⋯S5 0.98 3.00 3.912 (4) 155
C26—H26C⋯S6 0.98 2.68 3.364 (5) 127
C31—H31A⋯S12ii 0.98 2.81 3.435 (3) 123
C41—H41A⋯S10 0.98 2.87 3.508 (5) 123
C42—H42C⋯S10 0.98 2.60 3.291 (3) 128
C45—H45C⋯S1 0.98 2.96 3.867 (4) 155
Symmetry codes: (i) -x+2, -y+2, -z+2; (ii) -x+2, -y+2, -z+1.

3. Supra­molecular features

In the crystal, a number of C—H⋯S inter­actions occur (Table 1[link]).

4. Database survey

The Cambridge Structural Database (CSD, Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contained two structures of para-substituted trityl radicals [ESECUB (Decroos et al., 2011[Decroos, C., Prangé, T., Mansuy, D., Boucher, J. & Li, Y. (2011). Chem. Commun. 47, 4805-4807.]) and TIXCEJ (Liu et al., 2008[Liu, Y., Villamena, J., Sun, Y., Xu, I., Dhimitruka, I. & Zweier, J. (2008). J. Org. Chem. 73, 1490-1497.])] and one structure determination for compound 2 (REGBUG; Driesschaert et al., 2012[Driesschaert, B., Robiette, R., Le Duff, C., Collard, L., Robeyns, K., Gallez, B. & Marchand-Brynaert, J. (2012). Eur. J. Org. Chem. 33, 6517-6525.]). As found here for compound 1, the reported structure of 2 also deviates from C3 symmetry, with dihedral angles for the aryl planes of ±75.3, ±70.7, ±69.9°. However, in contrast to the crystal structure reported here, Driesschaert et al. (2012[Driesschaert, B., Robiette, R., Le Duff, C., Collard, L., Robeyns, K., Gallez, B. & Marchand-Brynaert, J. (2012). Eur. J. Org. Chem. 33, 6517-6525.]) do not report on any hydrogen bonding within the structure of 2 but the C—H⋯S distances are very similar than those in Table 1[link].

5. Synthesis and crystallization

Tris-(2,2,6,6-tetra­methyl­benzo[1,2-d;4,5-d]bis­[1,3]di­thiol-4-yl)methanol 2 was obtained following the procedure of Jassoy et al. (2017[Jassoy, J. J., Berndhäuser, A., Duthie, F., Kühn, S. P., Hagelueken, G. & Schiemann, O. (2017). Angew. Chem. Int. Ed. 56, 177-181.]). The synthesis of the title compound 1 was reported in the literature (Karlson et al., 2014[Karlson, M., Napolitano, R., Visigalli, M., Lerche, M. H., Jensen, P. & Tedoldi, F. (2014). Triarylmethyl radicals, Patent WO2014009240.]). However, the procedure was changed slightly, resulting in a more convenient work-up and increased yield.

Tris-(2,2,6,6-tetra­methyl­benzo[1,2-d;4,5-d]bis­[1,3]di­thiol-4-yl)methanol 2 (4.00 g, 4.52 mmol) was dissolved in 200 mL of dry diethyl ether under argon. Dry tetra­methyl­ethylendi­amine (6.80 mL, 5.24 g, 45.1 mmol, 10 eq.) was added and the solution was cooled to 273 K. Subsequently, n-butyl lithium (2.5 M in hexa­nes, 18.08 mL, 45.2 mmol, 10 eq.) was added dropwise. The reaction mixture was allowed to warm up to room temperature while stirring for 3 h. Afterwards, the reaction mixture was cooled down to 195 K and tri­methyl­silyl chloride (6.30 mL, 5.40 g, 49.7 mmol, 11.0 eq.) was added dropwise. Then, the cooling bath was removed and the mixture was stirred for 16 h at room temperature. The reaction was then quenched with 10 mL 1 M NaOH and the organic solvents were removed under reduced pressure. The dark-greenish residue was taken up in methyl­ene chloride (200 mL) and washed with water (200 mL) twice. The organic phase was separated and dried over sodium sulfate. After removal of the solvents under reduced pressure, the crude product was purified by washing with acetone. For that, the residue was suspended in acetone (50 mL) and treated with ultrasound for 3 min. Then, the mixture was centrifuged at 3200 g (Eppendorf Centrifuge 5810 R) for 5 min, whereupon a colorless solid separated. This procedure was repeated with the precipitated solid three times, until the supernatant was clear and almost colorless. The pure product was obtained as a colorless solid after drying the precipitate under vacuum with a yield of 3.32g (3.01 mmol, 67%). The pure product was then crystallized in the following way: compound 1 was dissolved in diethyl ether, the clear solution placed in an open tube at 278 K and the solvent was slowly evaporated over three days. This yielded light-yellow plates of 1 suitable for X-ray diffraction.

1H NMR (500 MHz, CD2Cl2, 298 K, δ in ppm): 6.50 (s, 1H), 1.77 (s, 18H), 1.65 (s, 9H), 1.61 (s, 9H), 0.46 (s, 27H). 13C NMR (126 MHz, CD2Cl2, 298 K, δ in ppm): 144.92, 144.53, 140.83, 138.79, 133.56, 130.66, 85.11, 62.13, 61.86, 34.92, 32.24, 29.33, 27.20, 2.66. The assignment of NMR signals for trityl alcohols has been discussed by Tormyshev et al. (2012[Tormyshev, V. M., Genaev, A. M., Sal'nikov, G. E., Rogozhnikova, O. Y., Troitskaya, T. I., Trukhin, D. V., Mamatyuk, V. I., Fadeev, D. S. & Halpern, H. J. (2012). Eur. J. Org. Chem. 2012, 623-629.]). ESI(+) (m/z): 1100.089 [M]+, 1123.078 [M + Na]+. HRMS–ESI(+): 1100.0908 (calculated for C46H64OS12Si3: 1100.0908). Elemental analysis [%]: C 49.33, H 5.77, S 33.95 (calculated for C46H64OS12Si3: C 50.14, H 5.85, S 34.91).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically and refined using a riding model as idealized hy­droxy and methyl groups (SHELXL AFIX codes 147 and 137), thus including free rotation around the respective C—O and C—C bonds. Uiso(H) was set to 1.5 times Ueq(C,O). At a first attempt, a diethyl ether solvent mol­ecule was modeled over three partially occupied positions summing up to one mol­ecule. This model still contained a residual of approximately two electrons, which could not be further incorporated into an appropriate model of a fourth orientation of the ether. Therefore, we decided to use the PLATON SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) solvent masking procedure as implemented in OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]). The calculated solvent void in the unit cell has a volume of 580 Å3 and 127 e have been recovered. The previous model of the refined parts of the diethyl ether mol­ecules without the use of solvent masking is added as a part of a SHELXL res file to the refine_special_details section of the CIF file. The C5-bonded tri­methyl­silyl group shows a half-to-half disorder over two positions slightly above and below the plane of the respective phenyl ring. This disorder could be resolved by individual refinement of the respective parts with occupancy factors linked together via a free variable [occupancy ratio 0.504 (4):0.496 (4)]. Additionally two Si—C distance restraints to 1.80 (1) Å were applied for two Si—C bonds, and some Uiso and Uaniso restraints were used. Atom S2 is disordered over two positions in a 0.509 (7):0.491 (7) ratio. The two disordered S atoms were treated with SIMU/ISOR restraints; the bond lengths to neighbouring atoms C4 and C8 were subjected to a SADI restraint.

Table 2
Experimental details

Crystal data
Chemical formula C46H64OS12Si3
Mr 1101.96
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 14.9964 (4), 15.1070 (4), 16.0026 (4)
α, β, γ (°) 91.6815 (13), 117.6083 (11), 99.1383 (12)
V3) 3149.79 (15)
Z 2
Radiation type Cu Kα
μ (mm−1) 4.64
Crystal size (mm) 0.34 × 0.18 × 0.04
 
Data collection
Diffractometer Bruker D8-Venture
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.252, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 74526, 11369, 9723
Rint 0.091
(sin θ/λ)max−1) 0.600
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.183, 1.03
No. of reflections 11369
No. of parameters 632
No. of restraints 214
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.89, −1.34
Computer programs: SMART and SAINT (Bruker, 2015[Bruker (2015). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Tris[2,2,6,6-tetramethyl-8-(trimethylsilyl)benzo[1,2-d;4,5-d']bis(1,3-dithiol)-4-yl]methanol diethyl ether monosolvate top
Crystal data top
C46H64OS12Si3Z = 2
Mr = 1101.96F(000) = 1164
Triclinic, P1Dx = 1.162 Mg m3
a = 14.9964 (4) ÅCu Kα radiation, λ = 1.54178 Å
b = 15.1070 (4) ÅCell parameters from 9511 reflections
c = 16.0026 (4) Åθ = 3.0–72.3°
α = 91.6815 (13)°µ = 4.64 mm1
β = 117.6083 (11)°T = 100 K
γ = 99.1383 (12)°Plate, clear yellowish blue
V = 3149.79 (15) Å30.34 × 0.18 × 0.04 mm
Data collection top
Bruker D8-Venture
diffractometer
11369 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs9723 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.091
Detector resolution: 7.9 pixels mm-1θmax = 67.7°, θmin = 3.0°
fine slicing ω and φ scansh = 1817
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 1818
Tmin = 0.252, Tmax = 0.754l = 1919
74526 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.064 w = 1/[σ2(Fo2) + (0.1335P)2 + 2.6751P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.183(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.89 e Å3
11369 reflectionsΔρmin = 1.34 e Å3
632 parametersExtinction correction: SHELXL2014/7 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
214 restraintsExtinction coefficient: 0.0018 (2)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were positioned geometrically and refined using a riding model as idealised hydroxy- and methyl groups (AFIX codes 147 and 137), thus including free rotation around the respective C-O and C-C bonds. The Uiso(H) was set to 1.5 times Ueq(C/O). At a first attempt a diethyl ether solvent molecule was modeled over three partially occupied positions summing up to one molecule. This model contained still Q-peaks of approx. 2 electrons, which could no be further incorporated into an appropriate model of a forth orientation of the ether. Therefore, we decided to use the solvent masking procedure - as implemented in Olex2 (Dolomanov et al., 2009)). The previous model of the refined parts of diethyl ether molecules is added as a part of a Shelx-RES-file to this section. The C5-bonded trimethylsilyl group shows a half-to-half disorder over two positions slightly above and below the plane of the respective phenyl ring. This disorder could be resolved by individual refinement of the respective parts with occupancy factors linked together via a free variable. Additionally two Si-C distance restraints to 180 (1) pm has been applied for two Si-C bonds, and some Uiso and Uaniso restraints were used.

PART OF THE RES-FILE FOR THE DISORDERED DIETHYL ETHER MOLECULE INCLUDING Q-PEAKS: >>> DFIX 1.48 0.01 O2 C49 O2S C49S DFIX 2.4 0.01 O2 C50 O2 C47 O2S C50S O2S C47S DFIX 1.48 0.01 O2 C48 O2S C48S DFIX 2.4 0.01 O2 C47 O2S C47S DFIX 1.54 0.01 C50 C49 C48 C47 C50S C49S C48S C47S DFIX 1.54 0.01 C50T C49T DFIX 1.54 0.01 C47T C48T DFIX 1.48 0.01 C48T O2T DFIX 1.48 0.01 O2T C49T DFIX 2.48 0.01 C48T C49T DFIX 2.48 0.01 C47T O2T DFIX 2.48 0.01 O2T C50T SIMU 0.01 0.02 2 O2T > C50T SIMU 0.01 0.02 2 O2S > C50S SIMU 0.01 0.02 2 O2 > C50 RIGU 0.01 0.01 O2 > C50S RIGU 0.01 0.01 O2 > C50T ISOR 0.02 0.04 C50S C47T C47S C48S O2S C49S C50T C49T O2T C48T C47 C48 O2 = C49 C50 ISOR 0.01 0.02 C50S C47T ISOR 0.005 0.01 C47T C50S ISOR 0.001 0.002 C50S ISOR 0.005 0.01 C48 C47T ISOR 0.005 0.01 C50 SUMP 1 0.001 1 3 1 4 1 5

FVAR 0.13459 0.50735 0.24003 0.3846 0.3772 PART 1 O2 O 0.79116 0.65541 0.99956 31.00000 0.06543 0.04975 0.04965 = -0.00072 0.04561 0.00256 C47 C 0.68695 0.76136 0.91836 31.00000 0.03672 0.06954 0.04613 = -0.00159 0.02800 0.00548 AFIX 33 H47A H 0.62092 0.77987 0.89833 31.00000 -1.50000 H47B H 0.74274 0.81100 0.95993 31.00000 -1.50000 H47C H 0.69454 0.74611 0.86234 31.00000 -1.50000 AFIX 0 C48 C 0.69114 0.67801 0.97272 31.00000 0.04645 0.04377 0.04303 = 0.00343 0.02874 -0.00366 AFIX 23 H48A H 0.68391 0.69227 1.02980 31.00000 -1.20000 H48B H 0.63544 0.62702 0.93166 31.00000 -1.20000 AFIX 0 C49 C 0.81142 0.57840 1.05476 31.00000 0.07746 0.04791 0.05614 = 0.00453 0.03660 -0.00465 AFIX 23 H49A H 0.76026 0.52318 1.01798 31.00000 -1.20000 H49B H 0.80914 0.59064 1.11479 31.00000 -1.20000 AFIX 0 C50 C 0.92022 0.56745 1.07495 31.00000 0.07775 0.03830 0.02915 = 0.00545 0.03727 0.02086 AFIX 33 H50A H 0.93907 0.51666 1.11200 31.00000 -1.50000 H50B H 0.92097 0.55586 1.01472 31.00000 -1.50000 H50C H 0.96954 0.62290 1.11092 31.00000 -1.50000 AFIX 0 PART 0 PART 2 O2S O 0.80496 0.41812 0.83113 51.00000 0.04242 0.01173 0.02512 = 0.00026 0.02239 0.00148 C47S C 0.63092 0.43229 0.78311 51.00000 0.05496 0.02781 0.10646 = 0.00791 0.05577 0.02148 AFIX 33 H47D H 0.55907 0.40093 0.74948 51.00000 -1.50000 H47E H 0.64970 0.45113 0.84923 51.00000 -1.50000 H47F H 0.63991 0.48557 0.75225 51.00000 -1.50000 AFIX 0 C48S C 0.69956 0.36881 0.78057 51.00000 0.04342 0.01560 0.04336 = 0.00295 0.02662 0.01208 AFIX 23 H48C H 0.69101 0.31461 0.81144 51.00000 -1.20000 H48D H 0.68117 0.34919 0.71407 51.00000 -1.20000 AFIX 0 C49S C 0.87446 0.36079 0.83049 51.00000 0.03885 0.00950 0.01506 = 0.00470 0.01092 -0.00216 AFIX 23 H49C H 0.85738 0.34134 0.76431 51.00000 -1.20000 H49D H 0.86760 0.30627 0.86155 51.00000 -1.20000 AFIX 0 C50S C 0.98333 0.41458 0.88367 51.00000 0.02572 0.02320 0.01865 = 0.00666 0.01154 0.00333 AFIX 33 H50D H 1.03110 0.37707 0.88395 51.00000 -1.50000 H50E H 0.98952 0.46819 0.85226 51.00000 -1.50000 H50F H 0.99971 0.43324 0.94917 51.00000 -1.50000 AFIX 0 PART 0 PART 3 O2T O 0.68349 0.55785 0.87942 41.00000 0.08189 0.06899 0.08683 = 0.01661 0.05060 0.01595 C47T C 0.69930 0.70010 0.96924 41.00000 0.03297 0.06769 0.07028 = -0.01037 0.03848 -0.00697 AFIX 33 H47G H 0.73596 0.73543 1.03204 41.00000 -1.50000 H47H H 0.71121 0.73487 0.92339 41.00000 -1.50000 H47I H 0.62566 0.68654 0.94920 41.00000 -1.50000 AFIX 0 C48T C 0.73819 0.61238 0.97402 41.00000 0.06026 0.06820 0.08184 = 0.01147 0.04640 -0.00876 AFIX 23 H48E H 0.81276 0.62594 0.99507 41.00000 -1.20000 H48F H 0.72706 0.57752 1.02093 41.00000 -1.20000 AFIX 0 C49T C 0.72052 0.47357 0.87752 41.00000 0.08416 0.05573 0.09867 = 0.03191 0.04896 0.01075 AFIX 23 H49E H 0.72175 0.44039 0.93037 41.00000 -1.20000 H49F H 0.79146 0.48813 0.88675 41.00000 -1.20000 AFIX 0 C50T C 0.65152 0.41355 0.78303 41.00000 0.10387 0.04811 0.11528 = 0.03104 0.06179 0.01396 AFIX 33 H50G H 0.67780 0.35804 0.78363 41.00000 -1.50000 H50H H 0.58152 0.39827 0.77432 41.00000 -1.50000 H50I H 0.65115 0.44596 0.73075 41.00000 -1.50000 AFIX 0 PART 0 Q1 Q 0.87840 0.64330 1.06050 11.00000 0.05000 2.190 Q2 Q 0.94500 0.37550 0.85740 11.00000 0.05000 1.270 <<<

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.69743 (6)0.71217 (5)0.52986 (6)0.01790 (19)
S2S0.5696 (2)0.81471 (17)0.5664 (3)0.0154 (5)0.509 (7)
S30.89076 (6)1.11185 (6)0.72696 (6)0.0236 (2)
S41.00639 (5)1.02542 (5)0.65703 (5)0.01273 (18)
S50.93657 (6)0.81063 (6)0.77883 (5)0.0213 (2)
S61.13719 (7)0.82128 (7)0.93714 (6)0.0282 (2)
S71.30244 (6)0.79203 (5)0.69151 (6)0.01820 (19)
S81.10059 (5)0.77389 (5)0.53140 (5)0.01330 (18)
S90.95695 (6)0.61647 (5)0.61759 (5)0.01480 (19)
S100.84595 (6)0.47280 (5)0.46182 (5)0.01626 (19)
S110.65178 (6)0.71730 (5)0.21722 (5)0.01615 (19)
S120.77538 (5)0.86504 (5)0.36777 (5)0.01236 (18)
Si10.69340 (15)0.99991 (13)0.74868 (15)0.0252 (7)0.504 (4)
Si1S0.63902 (16)1.02339 (14)0.67283 (16)0.0270 (7)0.496 (4)
Si21.34975 (7)0.82358 (6)0.92788 (6)0.0223 (2)
Si30.66839 (6)0.49178 (6)0.24913 (6)0.0150 (2)
O10.95362 (15)0.89480 (13)0.52132 (14)0.0102 (4)
H10.99790.88070.50800.015*
C10.9234 (2)0.82424 (19)0.5669 (2)0.0106 (4)
C20.8534 (2)0.86769 (19)0.5959 (2)0.0107 (5)
C30.7569 (2)0.8247 (2)0.5815 (2)0.0145 (6)
C40.7001 (3)0.8704 (2)0.6112 (3)0.0233 (7)
C50.7365 (3)0.9575 (3)0.6598 (3)0.0323 (9)
C60.8325 (3)0.9997 (2)0.6714 (2)0.0213 (7)
C70.8895 (2)0.9575 (2)0.6391 (2)0.0124 (6)
C80.6076 (3)0.6992 (3)0.5781 (3)0.0299 (8)
C90.6567 (4)0.6697 (4)0.6763 (4)0.0552 (12)
H9A0.67710.61170.67300.083*
H9B0.60750.66310.70100.083*
H9C0.71740.71510.71850.083*
C100.5117 (3)0.6320 (3)0.5099 (3)0.0356 (9)
H10A0.48050.65450.44780.053*
H10B0.46270.62420.53480.053*
H10C0.53000.57380.50290.053*
C110.5648 (8)0.9405 (7)0.7318 (8)0.035 (3)0.504 (4)
H11A0.51280.93940.66560.053*0.504 (4)
H11B0.54620.97270.77360.053*0.504 (4)
H11C0.56860.87850.74740.053*0.504 (4)
C11S0.6114 (11)0.9658 (9)0.7616 (9)0.048 (3)0.496 (4)
H11D0.58780.90090.74040.072*0.496 (4)
H11E0.55800.99030.76810.072*0.496 (4)
H11F0.67400.97580.82300.072*0.496 (4)
C120.6858 (10)1.1186 (6)0.7389 (9)0.050 (3)0.504 (4)
H12A0.75471.15460.76120.075*0.504 (4)
H12B0.65631.13850.77780.075*0.504 (4)
H12C0.64221.12640.67240.075*0.504 (4)
C12S0.6782 (9)1.1423 (8)0.7090 (8)0.042 (3)0.496 (4)
H12D0.73221.15360.77530.063*0.496 (4)
H12E0.61931.16740.70280.063*0.496 (4)
H12F0.70451.17120.66870.063*0.496 (4)
C130.7901 (7)0.9908 (8)0.8727 (6)0.053 (3)0.504 (4)
H13A0.78000.92830.88650.080*0.504 (4)
H13B0.78191.03070.91700.080*0.504 (4)
H13C0.85921.00860.87980.080*0.504 (4)
C13S0.5219 (5)1.0181 (6)0.5587 (5)0.037 (2)0.496 (4)
H13D0.54091.03360.50930.056*0.496 (4)
H13E0.48201.06090.56470.056*0.496 (4)
H13F0.48060.95680.54140.056*0.496 (4)
C141.0211 (3)1.1019 (2)0.7552 (2)0.0200 (7)
C151.0781 (3)1.1956 (2)0.7551 (3)0.0259 (8)
H15A1.04511.21450.69140.039*
H15B1.14961.19310.77320.039*
H15C1.07611.23900.80060.039*
C161.0746 (3)1.0643 (3)0.8492 (2)0.0279 (8)
H16A1.08201.10650.90070.042*
H16B1.14251.05600.86030.042*
H16C1.03371.00600.84720.042*
C171.0223 (2)0.80852 (19)0.6547 (2)0.0122 (5)
C181.0354 (2)0.8110 (2)0.7474 (2)0.0145 (6)
C191.1330 (3)0.8122 (2)0.8245 (2)0.0189 (7)
C201.2209 (2)0.8106 (2)0.8155 (2)0.0180 (7)
C211.2046 (2)0.8029 (2)0.7213 (2)0.0142 (6)
C221.1077 (2)0.79875 (19)0.6436 (2)0.0125 (6)
C231.0042 (3)0.7670 (3)0.8926 (2)0.0288 (8)
C240.9651 (3)0.7987 (3)0.9588 (3)0.0409 (11)
H24A0.97630.86480.96600.061*
H24B1.00230.77801.02100.061*
H24C0.89160.77380.93180.061*
C250.9910 (4)0.6646 (3)0.8790 (3)0.0429 (11)
H25A0.91860.63700.85520.064*
H25B1.03260.64340.93990.064*
H25C1.01330.64750.83310.064*
C261.3716 (3)0.9374 (3)0.9911 (3)0.0285 (8)
H26A1.37680.98410.95150.043*
H26B1.43540.94661.05140.043*
H26C1.31400.94121.00340.043*
C271.3473 (4)0.7314 (3)1.0037 (3)0.0403 (11)
H27A1.29100.68090.96500.060*
H27B1.33710.75481.05580.060*
H27C1.41260.71041.03000.060*
C281.4621 (3)0.8195 (3)0.9072 (3)0.0347 (9)
H28A1.45040.76200.87020.052*
H28B1.52430.82480.96840.052*
H28C1.47040.86950.87210.052*
C291.2354 (2)0.8224 (2)0.5714 (2)0.0154 (6)
C301.2719 (3)0.7776 (2)0.5092 (3)0.0228 (7)
H30A1.34450.80290.53130.034*
H30B1.23140.78860.44320.034*
H30C1.26310.71240.51320.034*
C311.2502 (3)0.9242 (2)0.5710 (3)0.0214 (7)
H31A1.22710.95030.61260.032*
H31B1.21000.93850.50610.032*
H31C1.32300.94950.59390.032*
C320.8655 (2)0.74079 (19)0.4918 (2)0.0109 (4)
C330.8767 (2)0.6516 (2)0.5076 (2)0.0115 (4)
C340.8192 (2)0.5809 (2)0.4325 (2)0.0120 (5)
C350.7463 (2)0.5947 (2)0.3412 (2)0.0141 (6)
C360.7371 (2)0.6845 (2)0.3271 (2)0.0119 (5)
C370.7959 (2)0.7566 (2)0.3995 (2)0.0111 (4)
C380.8890 (2)0.4986 (2)0.5879 (2)0.0166 (7)
C390.9658 (3)0.4392 (2)0.6430 (2)0.0203 (7)
H39A1.02000.44570.62440.030*
H39B0.93030.37600.62850.030*
H39C0.99610.45780.71120.030*
C400.7995 (3)0.4882 (2)0.6093 (2)0.0215 (7)
H40A0.82510.50540.67720.032*
H40B0.76310.42510.59210.032*
H40C0.75240.52720.57240.032*
C410.5858 (3)0.4220 (2)0.2915 (3)0.0235 (7)
H41A0.62920.40440.35400.035*
H41B0.54620.36770.24630.035*
H41C0.53860.45730.29650.035*
C420.7586 (3)0.4307 (2)0.2315 (2)0.0222 (7)
H42A0.79830.47080.20840.033*
H42B0.71940.37730.18480.033*
H42C0.80540.41180.29200.033*
C430.5797 (3)0.5163 (2)0.1276 (2)0.0269 (8)
H43A0.52790.54660.13040.040*
H43B0.54580.45960.08510.040*
H43C0.61890.55550.10340.040*
C440.6490 (2)0.8268 (2)0.2665 (2)0.0177 (7)
C450.5651 (3)0.8175 (3)0.2959 (3)0.0254 (8)
H45A0.49840.79430.24030.038*
H45B0.56470.87660.32240.038*
H45C0.57820.77540.34390.038*
C460.6336 (3)0.8933 (2)0.1934 (2)0.0250 (8)
H46A0.68830.89720.17560.038*
H46B0.63560.95300.22060.038*
H46C0.56700.87260.13690.038*
S20.5825 (2)0.80229 (18)0.5960 (3)0.0152 (5)0.491 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0118 (4)0.0104 (4)0.0299 (4)0.0058 (3)0.0113 (3)0.0037 (3)
S2S0.0108 (6)0.0183 (7)0.0175 (8)0.0042 (5)0.0095 (6)0.0011 (6)
S30.0157 (4)0.0176 (4)0.0356 (4)0.0051 (3)0.0142 (3)0.0159 (3)
S40.0086 (3)0.0088 (3)0.0184 (4)0.0047 (3)0.0069 (3)0.0069 (3)
S50.0151 (4)0.0295 (5)0.0164 (4)0.0050 (3)0.0080 (3)0.0001 (3)
S60.0222 (5)0.0387 (5)0.0134 (4)0.0039 (4)0.0032 (3)0.0009 (3)
S70.0081 (3)0.0157 (4)0.0254 (4)0.0018 (3)0.0038 (3)0.0004 (3)
S80.0071 (3)0.0111 (4)0.0178 (4)0.0021 (3)0.0043 (3)0.0056 (3)
S90.0125 (4)0.0075 (3)0.0162 (3)0.0028 (3)0.0017 (3)0.0010 (3)
S100.0159 (4)0.0058 (4)0.0190 (4)0.0024 (3)0.0033 (3)0.0034 (3)
S110.0121 (4)0.0112 (4)0.0154 (4)0.0008 (3)0.0003 (3)0.0036 (3)
S120.0080 (3)0.0065 (3)0.0163 (4)0.0018 (3)0.0018 (3)0.0026 (3)
Si10.0163 (10)0.0207 (11)0.0404 (14)0.0054 (8)0.0189 (10)0.0148 (8)
Si1S0.0232 (12)0.0224 (11)0.0444 (15)0.0027 (8)0.0246 (11)0.0049 (9)
Si20.0154 (5)0.0156 (5)0.0202 (5)0.0001 (3)0.0033 (4)0.0038 (3)
Si30.0111 (4)0.0091 (4)0.0173 (4)0.0048 (3)0.0032 (3)0.0061 (3)
O10.0076 (8)0.0078 (8)0.0149 (8)0.0022 (7)0.0065 (7)0.0021 (7)
C10.0079 (7)0.0064 (7)0.0148 (7)0.0021 (6)0.0043 (6)0.0016 (6)
C20.0079 (9)0.0072 (9)0.0144 (9)0.0016 (8)0.0043 (8)0.0020 (8)
C30.0073 (14)0.0165 (16)0.0173 (15)0.0024 (12)0.0058 (12)0.0052 (12)
C40.0159 (13)0.0236 (14)0.0304 (14)0.0040 (11)0.0139 (11)0.0077 (11)
C50.0251 (15)0.0315 (16)0.0441 (16)0.0016 (12)0.0218 (13)0.0136 (12)
C60.0137 (16)0.0179 (17)0.0291 (18)0.0061 (13)0.0112 (14)0.0142 (13)
C70.0087 (12)0.0122 (12)0.0143 (12)0.0032 (10)0.0057 (10)0.0014 (10)
C80.0224 (13)0.0324 (14)0.0371 (14)0.0026 (11)0.0183 (11)0.0054 (11)
C90.0381 (19)0.072 (2)0.052 (2)0.0080 (18)0.0231 (17)0.0236 (18)
C100.0232 (16)0.0264 (17)0.0545 (19)0.0067 (14)0.0204 (15)0.0026 (15)
C110.031 (6)0.029 (5)0.052 (7)0.010 (4)0.031 (5)0.022 (4)
C11S0.056 (9)0.056 (8)0.048 (7)0.002 (6)0.043 (7)0.006 (6)
C120.047 (4)0.051 (5)0.059 (4)0.017 (3)0.029 (3)0.004 (3)
C12S0.040 (4)0.051 (4)0.049 (4)0.023 (3)0.027 (3)0.004 (3)
C130.040 (5)0.083 (8)0.034 (5)0.009 (5)0.024 (4)0.027 (5)
C13S0.027 (4)0.027 (4)0.064 (6)0.015 (3)0.024 (4)0.009 (4)
C140.0133 (16)0.0178 (17)0.0255 (17)0.0057 (13)0.0100 (14)0.0141 (13)
C150.0188 (16)0.0171 (16)0.0373 (18)0.0083 (13)0.0144 (14)0.0158 (13)
C160.0200 (18)0.035 (2)0.0206 (17)0.0062 (15)0.0075 (15)0.0136 (15)
C170.0095 (9)0.0066 (9)0.0152 (9)0.0028 (7)0.0028 (7)0.0013 (7)
C180.0121 (12)0.0114 (12)0.0161 (12)0.0030 (10)0.0052 (10)0.0019 (10)
C190.0173 (16)0.0148 (16)0.0173 (15)0.0035 (13)0.0045 (13)0.0015 (12)
C200.0127 (15)0.0094 (15)0.0206 (16)0.0024 (12)0.0001 (13)0.0020 (12)
C210.0106 (12)0.0087 (12)0.0191 (12)0.0012 (10)0.0047 (10)0.0013 (10)
C220.0112 (12)0.0068 (12)0.0151 (12)0.0029 (10)0.0044 (10)0.0027 (9)
C230.027 (2)0.036 (2)0.0178 (17)0.0071 (16)0.0092 (15)0.0050 (15)
C240.035 (2)0.063 (3)0.0242 (19)0.004 (2)0.0181 (18)0.0033 (18)
C250.051 (3)0.039 (3)0.031 (2)0.008 (2)0.018 (2)0.0089 (18)
C260.0201 (18)0.0244 (19)0.0277 (18)0.0022 (15)0.0029 (15)0.0068 (14)
C270.041 (2)0.025 (2)0.030 (2)0.0001 (18)0.0026 (18)0.0044 (16)
C280.0200 (17)0.039 (2)0.0280 (18)0.0076 (15)0.0027 (14)0.0098 (15)
C290.0084 (12)0.0133 (13)0.0215 (13)0.0003 (10)0.0057 (10)0.0026 (10)
C300.0139 (16)0.0190 (17)0.0358 (19)0.0009 (13)0.0132 (15)0.0058 (14)
C310.0152 (16)0.0127 (16)0.0319 (18)0.0037 (13)0.0096 (14)0.0009 (13)
C320.0071 (7)0.0073 (7)0.0153 (7)0.0024 (6)0.0042 (6)0.0020 (6)
C330.0070 (8)0.0079 (9)0.0163 (8)0.0017 (7)0.0039 (7)0.0021 (7)
C340.0077 (10)0.0078 (10)0.0175 (10)0.0011 (8)0.0044 (8)0.0016 (8)
C350.0089 (14)0.0123 (15)0.0175 (15)0.0050 (12)0.0057 (12)0.0034 (12)
C360.0071 (10)0.0096 (10)0.0154 (10)0.0022 (8)0.0037 (8)0.0021 (8)
C370.0066 (8)0.0081 (9)0.0159 (8)0.0016 (7)0.0042 (7)0.0027 (7)
C380.0148 (16)0.0083 (14)0.0163 (15)0.0054 (12)0.0015 (13)0.0032 (11)
C390.0189 (17)0.0125 (16)0.0234 (16)0.0011 (13)0.0054 (14)0.0037 (12)
C400.0221 (18)0.0134 (16)0.0249 (17)0.0038 (13)0.0103 (14)0.0002 (13)
C410.0149 (17)0.0154 (17)0.0346 (19)0.0054 (13)0.0101 (15)0.0048 (14)
C420.0212 (17)0.0158 (17)0.0239 (17)0.0035 (13)0.0086 (14)0.0075 (13)
C430.0258 (19)0.0184 (18)0.0204 (17)0.0023 (14)0.0002 (15)0.0063 (13)
C440.0139 (16)0.0103 (15)0.0210 (16)0.0011 (12)0.0022 (13)0.0031 (12)
C450.0091 (15)0.0265 (19)0.0325 (19)0.0022 (14)0.0042 (14)0.0083 (15)
C460.0234 (18)0.0144 (17)0.0249 (18)0.0062 (14)0.0005 (15)0.0006 (13)
S20.0110 (6)0.0170 (7)0.0170 (9)0.0038 (5)0.0084 (6)0.0010 (6)
Geometric parameters (Å, º) top
S1—C31.767 (3)C13—H13C0.9800
S1—C81.827 (4)C13S—H13D0.9800
S2S—C41.786 (4)C13S—H13E0.9800
S2S—C81.908 (5)C13S—H13F0.9800
S3—C61.774 (3)C14—C151.533 (5)
S3—C141.823 (3)C14—C161.519 (5)
S4—C71.776 (3)C15—H15A0.9800
S4—C141.828 (3)C15—H15B0.9800
S5—C181.771 (3)C15—H15C0.9800
S5—C231.829 (4)C16—H16A0.9800
S6—C191.775 (3)C16—H16B0.9800
S6—C231.813 (4)C16—H16C0.9800
S7—C211.768 (3)C17—C181.401 (4)
S7—C291.823 (3)C17—C221.401 (4)
S8—C221.773 (3)C18—C191.407 (5)
S8—C291.827 (3)C19—C201.396 (5)
S9—C331.766 (3)C20—C211.409 (5)
S9—C381.832 (3)C21—C221.397 (4)
S10—C341.768 (3)C23—C241.527 (6)
S10—C381.819 (3)C23—C251.524 (6)
S11—C361.773 (3)C24—H24A0.9800
S11—C441.827 (3)C24—H24B0.9800
S12—C371.761 (3)C24—H24C0.9800
S12—C441.817 (3)C25—H25A0.9800
Si1—C51.945 (4)C25—H25B0.9800
Si1—C111.884 (10)C25—H25C0.9800
Si1—C121.821 (8)C26—H26A0.9800
Si1—C131.863 (10)C26—H26B0.9800
Si1S—C51.976 (4)C26—H26C0.9800
Si1S—C11S1.857 (11)C27—H27A0.9800
Si1S—C12S1.788 (12)C27—H27B0.9800
Si1S—C13S1.844 (7)C27—H27C0.9800
Si2—C201.909 (3)C28—H28A0.9800
Si2—C261.871 (4)C28—H28B0.9800
Si2—C271.881 (4)C28—H28C0.9800
Si2—C281.871 (4)C29—C301.526 (4)
Si3—C351.910 (3)C29—C311.519 (4)
Si3—C411.875 (4)C30—H30A0.9800
Si3—C421.871 (4)C30—H30B0.9800
Si3—C431.868 (4)C30—H30C0.9800
O1—H10.8400C31—H31A0.9800
O1—C11.439 (3)C31—H31B0.9800
C1—C21.550 (4)C31—H31C0.9800
C1—C171.559 (4)C32—C331.401 (4)
C1—C321.544 (4)C32—C371.413 (4)
C2—C31.397 (4)C33—C341.414 (4)
C2—C71.407 (4)C34—C351.408 (4)
C3—C41.404 (5)C35—C361.400 (4)
C4—C51.397 (5)C36—C371.407 (4)
C4—S21.799 (4)C38—C391.530 (4)
C5—C61.404 (5)C38—C401.518 (5)
C6—C71.400 (5)C39—H39A0.9800
C8—C91.511 (6)C39—H39B0.9800
C8—C101.520 (5)C39—H39C0.9800
C8—S21.705 (5)C40—H40A0.9800
C9—H9A0.9800C40—H40B0.9800
C9—H9B0.9800C40—H40C0.9800
C9—H9C0.9800C41—H41A0.9800
C10—H10A0.9800C41—H41B0.9800
C10—H10B0.9800C41—H41C0.9800
C10—H10C0.9800C42—H42A0.9800
C11—H11A0.9800C42—H42B0.9800
C11—H11B0.9800C42—H42C0.9800
C11—H11C0.9800C43—H43A0.9800
C11S—H11D0.9800C43—H43B0.9800
C11S—H11E0.9800C43—H43C0.9800
C11S—H11F0.9800C44—C451.523 (5)
C12—H12A0.9800C44—C461.525 (5)
C12—H12B0.9800C45—H45A0.9800
C12—H12C0.9800C45—H45B0.9800
C12S—H12D0.9800C45—H45C0.9800
C12S—H12E0.9800C46—H46A0.9800
C12S—H12F0.9800C46—H46B0.9800
C13—H13A0.9800C46—H46C0.9800
C13—H13B0.9800
C3—S1—C896.06 (16)C17—C18—S5125.4 (2)
C4—S2S—C891.3 (2)C17—C18—C19120.0 (3)
C6—S3—C1496.06 (15)C19—C18—S5114.6 (2)
C7—S4—C1495.31 (14)C18—C19—S6114.1 (3)
C18—S5—C2395.05 (16)C20—C19—S6121.8 (2)
C19—S6—C2394.64 (16)C20—C19—C18124.0 (3)
C21—S7—C2995.61 (14)C19—C20—Si2118.8 (2)
C22—S8—C2994.48 (14)C19—C20—C21114.8 (3)
C33—S9—C3895.63 (14)C21—C20—Si2126.4 (3)
C34—S10—C3895.11 (14)C20—C21—S7123.1 (2)
C36—S11—C4495.94 (14)C22—C21—S7114.8 (2)
C37—S12—C4495.72 (14)C22—C21—C20122.1 (3)
C11—Si1—C5116.3 (3)C17—C22—S8123.2 (2)
C12—Si1—C5109.0 (5)C21—C22—S8114.7 (2)
C12—Si1—C11106.2 (6)C21—C22—C17122.0 (3)
C12—Si1—C13107.7 (6)S6—C23—S5104.15 (18)
C13—Si1—C5110.1 (3)C24—C23—S5108.2 (3)
C13—Si1—C11107.2 (5)C24—C23—S6109.3 (3)
C11S—Si1S—C5103.6 (5)C25—C23—S5111.0 (3)
C12S—Si1S—C5118.5 (4)C25—C23—S6111.2 (3)
C12S—Si1S—C11S109.7 (6)C25—C23—C24112.6 (3)
C12S—Si1S—C13S101.5 (5)C23—C24—H24A109.5
C13S—Si1S—C5111.8 (3)C23—C24—H24B109.5
C13S—Si1S—C11S112.0 (5)C23—C24—H24C109.5
C26—Si2—C20105.85 (16)H24A—C24—H24B109.5
C26—Si2—C27111.40 (19)H24A—C24—H24C109.5
C26—Si2—C28107.75 (18)H24B—C24—H24C109.5
C27—Si2—C20110.87 (17)C23—C25—H25A109.5
C28—Si2—C20115.02 (16)C23—C25—H25B109.5
C28—Si2—C27106.0 (2)C23—C25—H25C109.5
C41—Si3—C35107.76 (14)H25A—C25—H25B109.5
C42—Si3—C35108.79 (14)H25A—C25—H25C109.5
C42—Si3—C41114.03 (16)H25B—C25—H25C109.5
C43—Si3—C35115.80 (15)Si2—C26—H26A109.5
C43—Si3—C41106.23 (17)Si2—C26—H26B109.5
C43—Si3—C42104.41 (17)Si2—C26—H26C109.5
C1—O1—H1109.5H26A—C26—H26B109.5
O1—C1—C2101.3 (2)H26A—C26—H26C109.5
O1—C1—C17107.7 (2)H26B—C26—H26C109.5
O1—C1—C32107.1 (2)Si2—C27—H27A109.5
C2—C1—C17112.2 (2)Si2—C27—H27B109.5
C32—C1—C2113.5 (2)Si2—C27—H27C109.5
C32—C1—C17114.0 (2)H27A—C27—H27B109.5
C3—C2—C1125.0 (3)H27A—C27—H27C109.5
C3—C2—C7117.6 (3)H27B—C27—H27C109.5
C7—C2—C1117.4 (3)Si2—C28—H28A109.5
C2—C3—S1125.3 (2)Si2—C28—H28B109.5
C2—C3—C4120.3 (3)Si2—C28—H28C109.5
C4—C3—S1114.5 (2)H28A—C28—H28B109.5
C3—C4—S2S114.0 (3)H28A—C28—H28C109.5
C3—C4—S2114.4 (3)H28B—C28—H28C109.5
C5—C4—S2S121.9 (3)S7—C29—S8104.30 (16)
C5—C4—C3123.5 (3)C30—C29—S7108.9 (2)
C5—C4—S2121.6 (3)C30—C29—S8109.5 (2)
C4—C5—Si1123.0 (3)C31—C29—S7111.3 (2)
C4—C5—Si1S119.0 (3)C31—C29—S8110.3 (2)
C4—C5—C6114.9 (3)C31—C29—C30112.2 (3)
C6—C5—Si1117.6 (3)C29—C30—H30A109.5
C6—C5—Si1S123.6 (3)C29—C30—H30B109.5
C5—C6—S3122.3 (3)C29—C30—H30C109.5
C7—C6—S3114.6 (2)H30A—C30—H30B109.5
C7—C6—C5123.1 (3)H30A—C30—H30C109.5
C2—C7—S4124.3 (2)H30B—C30—H30C109.5
C6—C7—S4115.3 (2)C29—C31—H31A109.5
C6—C7—C2120.5 (3)C29—C31—H31B109.5
S1—C8—S2S101.3 (2)C29—C31—H31C109.5
C9—C8—S1110.6 (3)H31A—C31—H31B109.5
C9—C8—S2S117.7 (4)H31A—C31—H31C109.5
C9—C8—C10111.8 (4)H31B—C31—H31C109.5
C9—C8—S2104.0 (4)C33—C32—C1125.4 (3)
C10—C8—S1108.5 (3)C33—C32—C37117.8 (3)
C10—C8—S2S106.1 (3)C37—C32—C1116.8 (3)
C10—C8—S2112.7 (3)C32—C33—S9125.3 (2)
S2—C8—S1109.2 (2)C32—C33—C34119.9 (3)
C8—C9—H9A109.5C34—C33—S9114.7 (2)
C8—C9—H9B109.5C33—C34—S10114.7 (2)
C8—C9—H9C109.5C35—C34—S10122.1 (2)
H9A—C9—H9B109.5C35—C34—C33123.2 (3)
H9A—C9—H9C109.5C34—C35—Si3118.5 (2)
H9B—C9—H9C109.5C36—C35—Si3125.8 (2)
C8—C10—H10A109.5C36—C35—C34115.7 (3)
C8—C10—H10B109.5C35—C36—S11123.3 (2)
C8—C10—H10C109.5C35—C36—C37122.4 (3)
H10A—C10—H10B109.5C37—C36—S11114.4 (2)
H10A—C10—H10C109.5C32—C37—S12123.2 (2)
H10B—C10—H10C109.5C36—C37—S12115.9 (2)
Si1—C11—H11A109.5C36—C37—C32120.9 (3)
Si1—C11—H11B109.5S10—C38—S9104.94 (16)
Si1—C11—H11C109.5C39—C38—S9108.5 (2)
H11A—C11—H11B109.5C39—C38—S10108.7 (2)
H11A—C11—H11C109.5C40—C38—S9110.3 (2)
H11B—C11—H11C109.5C40—C38—S10111.6 (2)
Si1S—C11S—H11D109.5C40—C38—C39112.4 (3)
Si1S—C11S—H11E109.5C38—C39—H39A109.5
Si1S—C11S—H11F109.5C38—C39—H39B109.5
H11D—C11S—H11E109.5C38—C39—H39C109.5
H11D—C11S—H11F109.5H39A—C39—H39B109.5
H11E—C11S—H11F109.5H39A—C39—H39C109.5
Si1—C12—H12A109.5H39B—C39—H39C109.5
Si1—C12—H12B109.5C38—C40—H40A109.5
Si1—C12—H12C109.5C38—C40—H40B109.5
H12A—C12—H12B109.5C38—C40—H40C109.5
H12A—C12—H12C109.5H40A—C40—H40B109.5
H12B—C12—H12C109.5H40A—C40—H40C109.5
Si1S—C12S—H12D109.5H40B—C40—H40C109.5
Si1S—C12S—H12E109.5Si3—C41—H41A109.5
Si1S—C12S—H12F109.5Si3—C41—H41B109.5
H12D—C12S—H12E109.5Si3—C41—H41C109.5
H12D—C12S—H12F109.5H41A—C41—H41B109.5
H12E—C12S—H12F109.5H41A—C41—H41C109.5
Si1—C13—H13A109.5H41B—C41—H41C109.5
Si1—C13—H13B109.5Si3—C42—H42A109.5
Si1—C13—H13C109.5Si3—C42—H42B109.5
H13A—C13—H13B109.5Si3—C42—H42C109.5
H13A—C13—H13C109.5H42A—C42—H42B109.5
H13B—C13—H13C109.5H42A—C42—H42C109.5
Si1S—C13S—H13D109.5H42B—C42—H42C109.5
Si1S—C13S—H13E109.5Si3—C43—H43A109.5
Si1S—C13S—H13F109.5Si3—C43—H43B109.5
H13D—C13S—H13E109.5Si3—C43—H43C109.5
H13D—C13S—H13F109.5H43A—C43—H43B109.5
H13E—C13S—H13F109.5H43A—C43—H43C109.5
S3—C14—S4105.04 (16)H43B—C43—H43C109.5
C15—C14—S3107.6 (2)S12—C44—S11105.83 (16)
C15—C14—S4109.3 (2)C45—C44—S11110.4 (2)
C16—C14—S3111.4 (2)C45—C44—S12111.5 (2)
C16—C14—S4110.9 (2)C45—C44—C46111.7 (3)
C16—C14—C15112.2 (3)C46—C44—S11109.1 (2)
C14—C15—H15A109.5C46—C44—S12108.1 (2)
C14—C15—H15B109.5C44—C45—H45A109.5
C14—C15—H15C109.5C44—C45—H45B109.5
H15A—C15—H15B109.5C44—C45—H45C109.5
H15A—C15—H15C109.5H45A—C45—H45B109.5
H15B—C15—H15C109.5H45A—C45—H45C109.5
C14—C16—H16A109.5H45B—C45—H45C109.5
C14—C16—H16B109.5C44—C46—H46A109.5
C14—C16—H16C109.5C44—C46—H46B109.5
H16A—C16—H16B109.5C44—C46—H46C109.5
H16A—C16—H16C109.5H46A—C46—H46B109.5
H16B—C16—H16C109.5H46A—C46—H46C109.5
C18—C17—C1124.2 (3)H46B—C46—H46C109.5
C22—C17—C1119.0 (3)C8—S2—C497.9 (2)
C22—C17—C18116.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···S80.842.323.031 (2)142
C9—H9C···S50.983.053.926 (5)150
C12—H12A···S30.982.513.184 (16)126
C13—H13B···S6i0.982.853.734 (10)150
C15—H15B···S11ii0.983.003.866 (4)148
C16—H16C···S50.983.003.912 (4)155
C26—H26C···S60.982.683.364 (5)127
C31—H31A···S12ii0.982.813.435 (3)123
C41—H41A···S100.982.873.508 (5)123
C42—H42C···S100.982.603.291 (3)128
C45—H45C···S10.982.963.867 (4)155
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+2, y+2, z+1.
 

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. CRC813, project A6 to O. Schiemann).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1.  Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2015). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDecroos, C., Prangé, T., Mansuy, D., Boucher, J. & Li, Y. (2011). Chem. Commun. 47, 4805–4807.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDriesschaert, B., Robiette, R., Le Duff, C., Collard, L., Robeyns, K., Gallez, B. & Marchand-Brynaert, J. (2012). Eur. J. Org. Chem. 33, 6517–6525.  Google Scholar
First citationFrank, J., Elewa, M., Said, M., El Shihawy, H. A., El-Sadek, M., Müller, D., Meister, A., Hause, G., Drescher, S., Metz, H., Imming, P. & Mäder, K. (2015). J. Org. Chem. 80, 6754–6766.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJähnig, F., Kwiatkowski, G., Däpp, A., Hunkeler, A., Meier, B. H., Kozerke, S. & Ernst, M. (2017). Phys. Chem. Chem. Phys. 19, 19196–19204.  Google Scholar
First citationJassoy, J. J., Berndhäuser, A., Duthie, F., Kühn, S. P., Hagelueken, G. & Schiemann, O. (2017). Angew. Chem. Int. Ed. 56, 177–181.  CrossRef CAS Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. New York: Oxford University Press.  Google Scholar
First citationKarlson, M., Napolitano, R., Visigalli, M., Lerche, M. H., Jensen, P. & Tedoldi, F. (2014). Triarylmethyl radicals, Patent WO2014009240.  Google Scholar
First citationKunjir, N. C., Reginsson, G. W., Schiemann, O. & Sigurdsson, S. T. (2013). Phys. Chem. Chem. Phys. 15, 19673–19685.  CrossRef CAS Google Scholar
First citationLiu, Y., Villamena, J., Sun, Y., Xu, I., Dhimitruka, I. & Zweier, J. (2008). J. Org. Chem. 73, 1490–1497.  CrossRef CAS Google Scholar
First citationReginsson, G. W., Kunjir, N. C., Sigurdsson, S. T. & Schiemann, O. (2012). Chem. Eur. J. 18, 13580–13584.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShevelev, G. Y., Krumkacheva, O., Lomzov, A. A., Kuzhelev, A., Trukhin, D. V., Rogozhnikova, O. Y., Tormyshev, V. M., Pyshnyi, D. V., Fedin, M. V. & Bagryanskaya, E. G. (2015). J. Phys. Chem. B, 119, 13641–13648.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTormyshev, V. M., Genaev, A. M., Sal'nikov, G. E., Rogozhnikova, O. Y., Troitskaya, T. I., Trukhin, D. V., Mamatyuk, V. I., Fadeev, D. S. & Halpern, H. J. (2012). Eur. J. Org. Chem. 2012, 623–629.  CrossRef CAS Google Scholar
First citationYang, Z., Liu, Y., Borbat, P., Zweier, J. L., Freed, J. H. & Hubbell, W. L. (2012). J. Am. Chem. Soc. 134, 9950–9952.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds