research communications
N,N-bis(quinolin-2-ylmethyl)ethylamine (DQMEA)
of a mononuclear copper(II) complex with 2-methoxy-aDepartment of Chemistry, Skidmore College, 815 North Broadway, Saratoga Springs, NY 12866, USA, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: sfrey@skidmore.edu
Structural characterization of the compound [Cu(C2H3N)(C23H23N3O)](ClO4)2] or [Cu(C2H3N)(DQMEA)](ClO4)2] [DQMEA = 2-methoxy-N,N-bis(quinolin-2-ylmethyl)ethylamine] {systematic name: (acetonitrile)[2-methoxy-N,N-bis(quinolin-2-ylmethyl)ethylamine]copper(II) diperchlorate} by single-crystal X-ray diffraction reveals a complex cation with a tetradentate coordination of the DQMEA ligand along with monodentate coordination of a CH3CN ligand to a single CuII center, with two perchlorate anions providing charge balance. The CuII center has a distorted square-pyramidal geometry in which the nitrogen atoms of the DQMEA and CH3CN ligands occupy the equatorial positions, while the oxygen atom of the DQMEA ligand resides in the axial position with an elongated Cu—O bond. The quinoline ring systems are nearly co-planar in the structure, while the linear CH3CN ligand is tilted significantly below this plane, and the central nitrogen of DQMEA is above it. Within the complex, weak C—H⋯N hydrogen bonding takes place between the nitrogen of CH3CN and a neighboring quinolyl group. The perchlorate ions are disordered within the structure, but undergo a number of weak intermolecular C—H⋯O hydrogen-bonding interactions. Additional weak π-stacking interactions between the quinolyl groups of neighboring complexes further stabilize the crystal packing.
Keywords: crystal structure; copper(II); tripodal ligand; Jahn–Teller distortion.
CCDC reference: 1856400
1. Chemical context
Copper proteins are numerous in living systems, owing largely to their ability to bind and process dioxygen (Karlin & Tyeklár, 1993; Karlin, 1993; Kopf & Karlin, 1999). Much of what is known about these proteins comes from modeling studies that involve the synthesis of low molecular weight copper complexes with organic-based ligands (Mirica et al., 2004; Lewis & Tolman, 2004; Hatcher & Karlin, 2004; Peterson et al., 2013). Many of these involve N-centered, tripodal, tetradentate ligands containing pyridine or quinoline moieties (Wei et al., 1994; Young et al., 1995; Kim et al., 2015). These ligands give stable complexes that provide access to both the CuI and CuII oxidation states, and leave open or solvent-bound coordination sites for the binding of dioxygen species (Wei et al., 1994).
More recently, copper(II) complexes have been targeted as potential anticancer agents (Santini et al., 2014). Indeed, copper(II) has been shown to promote tumor cell death through a variety of mechanisms while remaining less toxic systematically than platinum-based drugs (Angel et al., 2017). A number of the compounds that have been studied employ pyridyl, quinolyl, and other aromatic amine-containing ligands because of their ability to form stable complexes with copper(II) ions that display promising anticancer activity (Angel et al., 2017; Santini et al., 2014). Given the rich variety of ligands of this type, copper(II) complexes with a range of coordination numbers, geometries, redox potentials, biological compatibility, and cytotoxicity are possible.
Based on their relevance to biology, we have begun to explore copper(II) complexes with novel N-tripodal ligands containing either pyridine or quinoline moieties. We report here the synthesis and structural characterization of [Cu(DQMEA)(CH3CN)](ClO4)2] [DQMEA = 2-methoxy-N,N-bis(quinolin-2-ylmethyl)ethylamine]. This compound is formed by the reaction of copper(II) perchlorate with DQMEA in acetonitrile, followed by the addition of diethyl ether (see reaction scheme) to afford dark-blue crystals suitable for X-ray diffraction studies.
2. Structural commentary
The title compound (Fig. 1) crystallizes in the monoclinic P21/n The structure reveals a monomeric cation of [Cu(DQMEA)(CH3CN)]2+ with two disordered perchlorate counter-anions. The copper(II) center is pentacoordinate with a distorted square-pyramidal geometry as indicated by the trigonality index, τ = 0.03 defined as τ = |θ − φ|/60, where θ and φ are the two largest angles in the coordination sphere (Addison et al., 1984). These angles are 164.97 (8) and 163.04 (9)° (Table 1). According to this index, τ values of five-coordinate complexes range from 0 for perfectly square-planar to 1 for perfectly trigonal–bipyramidal geometries. The DQMEA ligand is tetradentate with its central (N1) nitrogen and two quinolyl nitrogen atoms (N2 and N3) lying in the equatorial plane, and the methoxy oxygen atom (O1) taking up the axial position. The fourth position in the equatorial plane is occupied by the nitrogen atom (N4) of a coordinated acetonitrile molecule. The two quinoline ring systems of DQMEA are nearly co-planar with each other [dihedral angle = 14.58 (7)°], which results in a steric interaction between hydrogen atoms H11 and H21 and the coordinated acetonitrile molecule. This causes the linear acetonitrile molecule to drop below the quinolyl plane, such that the bond angle that its nitrogen atom makes with the copper ion and the axial oxygen of DQMEA, O1—Cu1—N4, is 115.14 (8)°. The bite angles imposed by the tetradentate of the DQMEA ligand cause further constraints leading to some distortion of the structure. For example, the central nitrogen and methoxy oxygen atoms, spanning the equatorial and axial positions, form a five-membered metallocycle with an N1—Cu1—O1 bond angle of 81.40 (8)°. This moves N1 slightly above the quinolyl plane, and causes the non-linearity of N2—Cu1—N3 [164.97 (8)°]. The equatorial bond angles N1—Cu1—N2 [84.06 (8)°] and N1—Cu1—N3 [80.92 (8)°] are also significantly reduced from 90° because of the constraints of the DQMEA coordination. The equatorial Cu—N bond lengths fall in the narrow range of 1.968 (2) to 2.0311 (19) Å, consistent with values reported previously (Wei et al., 1994), while the axial Cu—O bond is significantly longer at 2.3570 (19) Å. The latter is consistent with a weak axial interaction due to Jahn–Teller distortion as noted previously for square-pyramidal copper(II) complexes (Chavez et al., 1996; Warda, 1998; Rowland et al., 2002; Roy et al., 2011). Finally, a weak intramolecular C—H⋯N hydrogen-bonding interaction takes place between a quinolyl hydrogen (H11) and the nitrogen atom of the acetonitrile ligand (N4), which may help stabilize the coordination of this monodentate ligand.
|
3. Supramolecular features
Within the crystal, a network of weak C—H⋯O hydrogen-bonding interactions (Table 2) takes place between the hydrogen atoms of the DQMEA ligand and the oxygen atoms of the perchlorate anions (Fig. 2). In addition, weak π–π stacking interactions between nearby pyridine rings (Cg5⋯Cg5) of a quinoline group and between the pyridine and phenyl rings (Cg5⋯Cg7) of other nearby quinoline groups (where Cg5 and Cg7 are the centroids of the N3/C14–C17/C22 and C17–C22 rings, respectively) serve to further stabilize the crystal packing.
In addition, weak slipped parallel C—H⋯π-ring [C8—H8⋯Cg7, X—H, π = 50°; C19—H19⋯Cg6, X—H, π = 47°] and Y—X⋯Cg [Cl1—O3⋯Cg4, X—H, π = 27.35° and Cl1—O2A⋯Cg4, X—-H, π = 3.33°, where Cg4 = N2/C4/C5/C6/C7/C12 and Cg6 = C7–C12] intermolecular interactions (Table 2) are also present and contibute additionally to the crystal packing.
4. Database survey
To the best of our knowledge, a structure of the title compound has not been published previously. However, analogous structures of copper(II) complexes with tripodal ligands formed by tethering two quinolyl groups to either a chiral amino alcohol or amino acid have been reported (Holmes et al., 2005; Zahn et al., 2006). Within these chiral structures, the quinolyl groups are not coplanar, but are instead twisted relative to each other in a propeller-like fashion.
5. Synthesis and crystallization
All chemicals were obtained from commercial sources and used without further preparation. Deionized water was used throughout. The 1H NMR spectrum was recorded with a JEOL ECX-300 NMR spectrometer and referenced against the 1H peak of the chloroform solvent. IR spectra were recorded with a Perkin Elmer Spectrum 100 FT–IR.
2-Methoxy-N,N-bis(quinolin-2-ylmethyl)ethylamine (DQMEA). In a 250 mL round-bottom flask, 5 g (23 mmol) of 2-chloromethylquinoline hydrochloride was dissolved in 10 mL H2O and cooled to 273 K in an ice bath. A solution of 1.9 g (47 mmol) of NaOH in 10 mL H2O was added dropwise under stirring. Following this, a solution of 0.9 g (12 mmol) of 2-methoxoethylamine in 10 mL CH2Cl2 was added. The reaction mixture was then removed from the ice bath, and brought to reflux. After seven days, the mixture was cooled to room temperature and the CH2Cl2 layer was separated, washed twice with brine, and dried over anhydrous sodium sulfate. The solution was then filtered, and the filtrate was chromatographed on alumina (chromatographic grade, 80–200 mesh) eluting with 20:1 CH2Cl2/methanol. Fractions were collected that produced a single spot by TLC on alumina plates (eluting with 100:1, CH2Cl2/methanol) with an RF value of 0.33. Rotary evaporation of these fractions gave 2.4 g (58%) of a light-yellow solid. 1H NMR (CDCl3, 300 MHz) δ 2.87 (t, 2H), 3.25 (s, 3H), 3.54 (t, 2H), 4.09 (s, 4H), 7.45 (t, 2H), 7.66 (t, 2H), 7.75 (m, 4H), 8.01 (d, 2H), 8.10 (d, 2H).
[Cu(DQMEA)(CH3CN)](ClO4)2]. In a 50 mL round-bottom flask, 0.100 g (0.28 mmol) of copper(II) perchlorate hexahydrate and 0.104 g (0.28 mmol) of DQMEA were dissolved in 10 mL of acetonitrile. The reaction mixture was capped and allowed to stir for 30 minutes. Approximately 10 mL of anhydrous diethyl ether was added until crystals began to form on the side of the flask, and the mixture was capped and placed in a refrigerator. After seven days, 0.15 g (84%) of dark-blue crystals suitable for X-ray diffraction were collected by filtration and washed with diethyl ether. IR (ATR, cm−1) 2800–3200 (aromatic C—H, w), 1604, 1516, and 1436 (aromatic C—C, m), 1064 (ClO4−, s, br), 781, 843 (aromatic C—H, s).
6. Refinement
Crystal data, data collection and structure . All H atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.97 Å, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl). Both perchlorate ions were disordered [occupancy ratios of 0.900 (10):0.100 (10) and 0.656 (7):0.348 (7)].
details are summarized in Table 3
|
Supporting information
CCDC reference: 1856400
https://doi.org/10.1107/S2056989018010319/tx2007sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018010319/tx2007Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: ShelXT (Sheldrick, 2015b); program(s) used to refine structure: SHELXL (Sheldrick, 2015a); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Cu(C2H3N)(C23H23N3O)](ClO4)2 | F(000) = 1356 |
Mr = 660.94 | Dx = 1.573 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 11.3597 (3) Å | Cell parameters from 4574 reflections |
b = 16.9611 (4) Å | θ = 3.4–30.8° |
c = 14.5514 (3) Å | µ = 1.03 mm−1 |
β = 95.622 (2)° | T = 293 K |
V = 2790.18 (11) Å3 | Prism, blue |
Z = 4 | 0.26 × 0.16 × 0.12 mm |
Rigaku Oxford Diffraction Gemini Eos diffractometer | 9280 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 6238 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
Detector resolution: 16.0416 pixels mm-1 | θmax = 32.8°, θmin = 3.2° |
ω scans | h = −17→17 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) | k = −25→16 |
Tmin = 0.883, Tmax = 1.000 | l = −22→20 |
21447 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.050 | H-atom parameters constrained |
wR(F2) = 0.141 | w = 1/[σ2(Fo2) + (0.0599P)2 + 1.6959P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.002 |
9280 reflections | Δρmax = 0.63 e Å−3 |
392 parameters | Δρmin = −0.62 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.55099 (2) | 0.71839 (2) | 0.33686 (2) | 0.03253 (9) | |
O1 | 0.75176 (16) | 0.75392 (12) | 0.33841 (14) | 0.0470 (4) | |
N1 | 0.55979 (18) | 0.79512 (12) | 0.44173 (14) | 0.0367 (4) | |
N2 | 0.51058 (16) | 0.81527 (11) | 0.25797 (13) | 0.0336 (4) | |
N3 | 0.59144 (16) | 0.64254 (11) | 0.44274 (13) | 0.0322 (4) | |
N4 | 0.49754 (19) | 0.63548 (13) | 0.24774 (14) | 0.0415 (5) | |
C1 | 0.6863 (2) | 0.81542 (16) | 0.4695 (2) | 0.0463 (6) | |
H1A | 0.721959 | 0.773908 | 0.508802 | 0.056* | |
H1B | 0.689753 | 0.863821 | 0.505207 | 0.056* | |
C2 | 0.7563 (2) | 0.82575 (17) | 0.3879 (2) | 0.0507 (7) | |
H2A | 0.722827 | 0.867986 | 0.348680 | 0.061* | |
H2B | 0.837625 | 0.839065 | 0.408536 | 0.061* | |
C3 | 0.4872 (3) | 0.86476 (15) | 0.41151 (19) | 0.0466 (6) | |
H3A | 0.521876 | 0.911629 | 0.441284 | 0.056* | |
H3B | 0.408261 | 0.858502 | 0.430467 | 0.056* | |
C4 | 0.4795 (2) | 0.87510 (14) | 0.30860 (18) | 0.0389 (5) | |
C5 | 0.4372 (2) | 0.94704 (16) | 0.2706 (2) | 0.0483 (6) | |
H5 | 0.419262 | 0.988444 | 0.308724 | 0.058* | |
C6 | 0.4228 (2) | 0.95522 (16) | 0.1773 (2) | 0.0488 (6) | |
H6 | 0.392258 | 1.001824 | 0.151054 | 0.059* | |
C7 | 0.4541 (2) | 0.89326 (15) | 0.12037 (19) | 0.0397 (5) | |
C8 | 0.4441 (2) | 0.89886 (18) | 0.0231 (2) | 0.0497 (7) | |
H8 | 0.411205 | 0.943900 | −0.005389 | 0.060* | |
C9 | 0.4815 (3) | 0.83981 (18) | −0.0292 (2) | 0.0512 (7) | |
H9 | 0.472685 | 0.843926 | −0.093188 | 0.061* | |
C10 | 0.5335 (2) | 0.77235 (17) | 0.01305 (19) | 0.0458 (6) | |
H10 | 0.561192 | 0.732642 | −0.023301 | 0.055* | |
C11 | 0.5441 (2) | 0.76417 (15) | 0.10707 (18) | 0.0390 (5) | |
H11 | 0.579267 | 0.719209 | 0.134112 | 0.047* | |
C12 | 0.50211 (19) | 0.82345 (13) | 0.16290 (16) | 0.0332 (4) | |
C13 | 0.5108 (2) | 0.75237 (16) | 0.51870 (17) | 0.0426 (5) | |
H13A | 0.425154 | 0.751374 | 0.508990 | 0.051* | |
H13B | 0.533815 | 0.778812 | 0.576811 | 0.051* | |
C14 | 0.5585 (2) | 0.67007 (15) | 0.52143 (16) | 0.0366 (5) | |
C15 | 0.5679 (2) | 0.62524 (17) | 0.60341 (17) | 0.0451 (6) | |
H15 | 0.545784 | 0.646621 | 0.658017 | 0.054* | |
C16 | 0.6095 (2) | 0.55061 (17) | 0.60134 (18) | 0.0461 (6) | |
H16 | 0.612713 | 0.519495 | 0.654150 | 0.055* | |
C17 | 0.6478 (2) | 0.52007 (14) | 0.52018 (17) | 0.0385 (5) | |
C18 | 0.6968 (2) | 0.44325 (16) | 0.5147 (2) | 0.0486 (7) | |
H18 | 0.699525 | 0.409785 | 0.565488 | 0.058* | |
C19 | 0.7394 (3) | 0.41860 (17) | 0.4359 (2) | 0.0539 (7) | |
H19 | 0.769698 | 0.367859 | 0.432606 | 0.065* | |
C20 | 0.7383 (2) | 0.46862 (16) | 0.3597 (2) | 0.0478 (6) | |
H20 | 0.770800 | 0.451518 | 0.306934 | 0.057* | |
C21 | 0.6902 (2) | 0.54223 (15) | 0.36142 (17) | 0.0386 (5) | |
H21 | 0.689727 | 0.574828 | 0.309996 | 0.046* | |
C22 | 0.64130 (19) | 0.56881 (13) | 0.44086 (16) | 0.0332 (4) | |
C23 | 0.8218 (3) | 0.7556 (3) | 0.2623 (2) | 0.0666 (9) | |
H23A | 0.824998 | 0.703717 | 0.236289 | 0.100* | |
H23B | 0.900357 | 0.772868 | 0.283065 | 0.100* | |
H23C | 0.787033 | 0.791379 | 0.216179 | 0.100* | |
C24 | 0.4563 (3) | 0.58873 (19) | 0.2001 (2) | 0.0513 (7) | |
C25 | 0.4030 (5) | 0.5283 (3) | 0.1392 (3) | 0.1066 (17) | |
H25A | 0.403103 | 0.545212 | 0.076221 | 0.160* | |
H25B | 0.323120 | 0.519299 | 0.152765 | 0.160* | |
H25C | 0.447537 | 0.480328 | 0.148139 | 0.160* | |
Cl1 | 0.21788 (6) | 0.71417 (6) | 0.27686 (5) | 0.0607 (2) | |
O2 | 0.1175 (4) | 0.7570 (4) | 0.2958 (3) | 0.131 (2) | 0.900 (10) |
O2A | 0.176 (4) | 0.804 (4) | 0.301 (3) | 0.131 (2) | 0.100 (10) |
O3 | 0.2582 (2) | 0.73903 (19) | 0.19302 (15) | 0.0759 (8) | |
O4 | 0.31026 (19) | 0.72130 (14) | 0.35046 (14) | 0.0593 (6) | |
O5 | 0.1964 (8) | 0.6280 (5) | 0.2656 (5) | 0.120 (3) | 0.779 (16) |
O5A | 0.144 (3) | 0.6625 (17) | 0.2953 (18) | 0.120 (3) | 0.221 (16) |
Cl2 | 0.23843 (8) | 0.43937 (5) | 0.92382 (6) | 0.0615 (2) | |
O6 | 0.2005 (11) | 0.4593 (6) | 0.8369 (4) | 0.199 (4) | 0.681 (7) |
O6A | 0.132 (2) | 0.4040 (13) | 0.8829 (9) | 0.199 (4) | 0.319 (7) |
O7 | 0.3251 (8) | 0.4841 (5) | 0.8889 (7) | 0.164 (3) | 0.652 (7) |
O7A | 0.3697 (14) | 0.4290 (10) | 0.9530 (13) | 0.164 (3) | 0.348 (7) |
O8 | 0.2279 (7) | 0.3596 (3) | 0.9373 (5) | 0.130 (3) | 0.700 (7) |
O8A | 0.3117 (19) | 0.3946 (7) | 0.9791 (12) | 0.130 (3) | 0.300 (7) |
O9 | 0.1885 (3) | 0.48505 (17) | 0.9896 (2) | 0.0946 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.04023 (16) | 0.02837 (14) | 0.02880 (14) | 0.00429 (11) | 0.00239 (10) | 0.00066 (11) |
O1 | 0.0397 (9) | 0.0505 (10) | 0.0513 (11) | 0.0031 (8) | 0.0075 (8) | 0.0029 (9) |
N1 | 0.0433 (11) | 0.0329 (10) | 0.0334 (10) | 0.0046 (8) | 0.0011 (8) | −0.0026 (8) |
N2 | 0.0336 (9) | 0.0309 (9) | 0.0360 (10) | 0.0039 (7) | 0.0019 (7) | 0.0020 (8) |
N3 | 0.0352 (9) | 0.0329 (9) | 0.0279 (8) | −0.0001 (7) | 0.0009 (7) | 0.0015 (7) |
N4 | 0.0485 (12) | 0.0384 (10) | 0.0363 (10) | 0.0044 (9) | −0.0021 (9) | 0.0012 (9) |
C1 | 0.0501 (14) | 0.0392 (13) | 0.0479 (14) | −0.0032 (11) | −0.0042 (11) | −0.0070 (12) |
C2 | 0.0440 (14) | 0.0449 (14) | 0.0618 (18) | −0.0057 (12) | −0.0021 (12) | 0.0057 (13) |
C3 | 0.0605 (16) | 0.0357 (12) | 0.0436 (14) | 0.0153 (12) | 0.0050 (12) | −0.0049 (11) |
C4 | 0.0360 (11) | 0.0347 (11) | 0.0456 (13) | 0.0077 (9) | 0.0018 (10) | 0.0000 (10) |
C5 | 0.0489 (14) | 0.0372 (12) | 0.0583 (17) | 0.0158 (11) | 0.0036 (12) | −0.0011 (12) |
C6 | 0.0442 (14) | 0.0376 (13) | 0.0631 (17) | 0.0127 (11) | −0.0026 (12) | 0.0099 (12) |
C7 | 0.0285 (10) | 0.0396 (12) | 0.0497 (14) | 0.0015 (9) | −0.0033 (9) | 0.0095 (11) |
C8 | 0.0444 (14) | 0.0549 (16) | 0.0470 (14) | 0.0005 (12) | −0.0094 (11) | 0.0176 (13) |
C9 | 0.0503 (15) | 0.0609 (17) | 0.0404 (14) | −0.0093 (13) | −0.0053 (11) | 0.0104 (13) |
C10 | 0.0488 (14) | 0.0499 (15) | 0.0387 (13) | −0.0065 (12) | 0.0046 (11) | −0.0004 (12) |
C11 | 0.0426 (12) | 0.0356 (11) | 0.0388 (12) | −0.0006 (10) | 0.0047 (10) | 0.0040 (10) |
C12 | 0.0281 (10) | 0.0339 (11) | 0.0373 (11) | −0.0016 (8) | 0.0017 (8) | 0.0034 (9) |
C13 | 0.0505 (14) | 0.0468 (13) | 0.0310 (11) | 0.0038 (12) | 0.0063 (10) | −0.0066 (11) |
C14 | 0.0361 (11) | 0.0415 (12) | 0.0317 (11) | −0.0038 (9) | 0.0011 (9) | −0.0006 (10) |
C15 | 0.0513 (14) | 0.0561 (15) | 0.0273 (11) | −0.0071 (12) | 0.0015 (10) | 0.0016 (11) |
C16 | 0.0504 (14) | 0.0526 (15) | 0.0333 (12) | −0.0120 (12) | −0.0055 (10) | 0.0145 (11) |
C17 | 0.0362 (11) | 0.0364 (11) | 0.0404 (12) | −0.0066 (9) | −0.0090 (9) | 0.0075 (10) |
C18 | 0.0454 (14) | 0.0374 (12) | 0.0590 (17) | −0.0055 (11) | −0.0156 (12) | 0.0149 (12) |
C19 | 0.0480 (15) | 0.0367 (13) | 0.073 (2) | 0.0064 (11) | −0.0151 (14) | 0.0009 (14) |
C20 | 0.0427 (13) | 0.0437 (14) | 0.0554 (16) | 0.0095 (11) | −0.0040 (11) | −0.0063 (12) |
C21 | 0.0363 (11) | 0.0381 (12) | 0.0403 (12) | 0.0030 (10) | −0.0020 (9) | 0.0007 (10) |
C22 | 0.0313 (10) | 0.0317 (10) | 0.0352 (11) | −0.0021 (8) | −0.0038 (8) | 0.0031 (9) |
C23 | 0.0497 (17) | 0.090 (2) | 0.062 (2) | 0.0048 (17) | 0.0169 (14) | 0.0101 (19) |
C24 | 0.0553 (16) | 0.0592 (17) | 0.0383 (13) | −0.0059 (14) | −0.0014 (11) | −0.0038 (13) |
C25 | 0.121 (4) | 0.123 (4) | 0.073 (3) | −0.044 (3) | 0.001 (3) | −0.048 (3) |
Cl1 | 0.0402 (3) | 0.0946 (6) | 0.0459 (4) | −0.0098 (4) | −0.0030 (3) | 0.0243 (4) |
O2 | 0.053 (2) | 0.254 (6) | 0.091 (2) | 0.053 (3) | 0.0304 (18) | 0.067 (3) |
O2A | 0.053 (2) | 0.254 (6) | 0.091 (2) | 0.053 (3) | 0.0304 (18) | 0.067 (3) |
O3 | 0.0582 (13) | 0.126 (2) | 0.0432 (12) | 0.0025 (14) | 0.0045 (10) | 0.0245 (14) |
O4 | 0.0571 (12) | 0.0754 (15) | 0.0433 (11) | −0.0029 (10) | −0.0054 (9) | 0.0094 (10) |
O5 | 0.154 (6) | 0.092 (4) | 0.105 (4) | −0.068 (4) | −0.031 (4) | 0.007 (3) |
O5A | 0.154 (6) | 0.092 (4) | 0.105 (4) | −0.068 (4) | −0.031 (4) | 0.007 (3) |
Cl2 | 0.0803 (5) | 0.0500 (4) | 0.0570 (4) | −0.0022 (4) | 0.0211 (4) | −0.0034 (4) |
O6 | 0.324 (12) | 0.213 (8) | 0.058 (3) | 0.033 (8) | 0.004 (4) | 0.030 (4) |
O6A | 0.324 (12) | 0.213 (8) | 0.058 (3) | 0.033 (8) | 0.004 (4) | 0.030 (4) |
O7 | 0.162 (6) | 0.138 (6) | 0.213 (9) | −0.031 (5) | 0.126 (7) | −0.003 (5) |
O7A | 0.162 (6) | 0.138 (6) | 0.213 (9) | −0.031 (5) | 0.126 (7) | −0.003 (5) |
O8 | 0.202 (7) | 0.047 (2) | 0.154 (5) | 0.018 (3) | 0.078 (5) | 0.004 (3) |
O8A | 0.202 (7) | 0.047 (2) | 0.154 (5) | 0.018 (3) | 0.078 (5) | 0.004 (3) |
O9 | 0.109 (2) | 0.0719 (17) | 0.110 (2) | −0.0034 (16) | 0.0437 (18) | −0.0223 (17) |
Cu1—O1 | 2.3570 (19) | C13—H13B | 0.9700 |
Cu1—N1 | 2.001 (2) | C13—C14 | 1.496 (4) |
Cu1—N2 | 2.0311 (19) | C14—C15 | 1.410 (3) |
Cu1—N3 | 2.0251 (18) | C15—H15 | 0.9300 |
Cu1—N4 | 1.968 (2) | C15—C16 | 1.353 (4) |
O1—C2 | 1.414 (4) | C16—H16 | 0.9300 |
O1—C23 | 1.426 (4) | C16—C17 | 1.397 (4) |
N1—C1 | 1.494 (3) | C17—C18 | 1.422 (4) |
N1—C3 | 1.482 (3) | C17—C22 | 1.416 (3) |
N1—C13 | 1.487 (3) | C18—H18 | 0.9300 |
N2—C4 | 1.322 (3) | C18—C19 | 1.353 (5) |
N2—C12 | 1.384 (3) | C19—H19 | 0.9300 |
N3—C14 | 1.324 (3) | C19—C20 | 1.396 (4) |
N3—C22 | 1.374 (3) | C20—H20 | 0.9300 |
N4—C24 | 1.124 (3) | C20—C21 | 1.364 (4) |
C1—H1A | 0.9700 | C21—H21 | 0.9300 |
C1—H1B | 0.9700 | C21—C22 | 1.405 (3) |
C1—C2 | 1.503 (4) | C23—H23A | 0.9600 |
C2—H2A | 0.9700 | C23—H23B | 0.9600 |
C2—H2B | 0.9700 | C23—H23C | 0.9600 |
C3—H3A | 0.9700 | C24—C25 | 1.449 (5) |
C3—H3B | 0.9700 | C25—H25A | 0.9600 |
C3—C4 | 1.502 (4) | C25—H25B | 0.9600 |
C4—C5 | 1.405 (3) | C25—H25C | 0.9600 |
C5—H5 | 0.9300 | Cl1—O2 | 1.402 (4) |
C5—C6 | 1.359 (4) | Cl1—O2A | 1.65 (6) |
C6—H6 | 0.9300 | Cl1—O3 | 1.409 (2) |
C6—C7 | 1.405 (4) | Cl1—O4 | 1.429 (2) |
C7—C8 | 1.412 (4) | Cl1—O5 | 1.489 (8) |
C7—C12 | 1.420 (3) | Cl1—O5A | 1.26 (2) |
C8—H8 | 0.9300 | Cl2—O6 | 1.339 (6) |
C8—C9 | 1.351 (4) | Cl2—O6A | 1.43 (2) |
C9—H9 | 0.9300 | Cl2—O7 | 1.379 (6) |
C9—C10 | 1.402 (4) | Cl2—O7A | 1.520 (18) |
C10—H10 | 0.9300 | Cl2—O8 | 1.375 (5) |
C10—C11 | 1.369 (4) | Cl2—O8A | 1.336 (17) |
C11—H11 | 0.9300 | Cl2—O9 | 1.394 (3) |
C11—C12 | 1.405 (3) | O6—O7 | 1.595 (12) |
C13—H13A | 0.9700 | O7A—O8A | 0.984 (17) |
N1—Cu1—O1 | 81.40 (8) | N1—C13—H13B | 110.0 |
N1—Cu1—N2 | 84.06 (8) | N1—C13—C14 | 108.3 (2) |
N1—Cu1—N3 | 80.92 (8) | H13A—C13—H13B | 108.4 |
N2—Cu1—O1 | 87.91 (7) | C14—C13—H13A | 110.0 |
N3—Cu1—O1 | 90.45 (7) | C14—C13—H13B | 110.0 |
N3—Cu1—N2 | 164.97 (8) | N3—C14—C13 | 116.0 (2) |
N4—Cu1—O1 | 115.14 (8) | N3—C14—C15 | 122.5 (2) |
N4—Cu1—N1 | 163.04 (9) | C15—C14—C13 | 121.5 (2) |
N4—Cu1—N2 | 99.65 (8) | C14—C15—H15 | 120.5 |
N4—Cu1—N3 | 94.57 (8) | C16—C15—C14 | 118.9 (2) |
C2—O1—Cu1 | 102.24 (15) | C16—C15—H15 | 120.5 |
C2—O1—C23 | 112.5 (3) | C15—C16—H16 | 119.9 |
C23—O1—Cu1 | 127.62 (19) | C15—C16—C17 | 120.3 (2) |
C1—N1—Cu1 | 109.34 (15) | C17—C16—H16 | 119.9 |
C3—N1—Cu1 | 107.90 (15) | C16—C17—C18 | 122.9 (2) |
C3—N1—C1 | 112.9 (2) | C16—C17—C22 | 118.5 (2) |
C3—N1—C13 | 112.0 (2) | C22—C17—C18 | 118.6 (3) |
C13—N1—Cu1 | 105.24 (15) | C17—C18—H18 | 119.8 |
C13—N1—C1 | 109.2 (2) | C19—C18—C17 | 120.3 (3) |
C4—N2—Cu1 | 111.34 (16) | C19—C18—H18 | 119.8 |
C4—N2—C12 | 118.9 (2) | C18—C19—H19 | 119.7 |
C12—N2—Cu1 | 129.47 (16) | C18—C19—C20 | 120.6 (3) |
C14—N3—Cu1 | 111.82 (16) | C20—C19—H19 | 119.7 |
C14—N3—C22 | 119.3 (2) | C19—C20—H20 | 119.5 |
C22—N3—Cu1 | 128.77 (15) | C21—C20—C19 | 120.9 (3) |
C24—N4—Cu1 | 173.1 (2) | C21—C20—H20 | 119.5 |
N1—C1—H1A | 109.1 | C20—C21—H21 | 120.0 |
N1—C1—H1B | 109.1 | C20—C21—C22 | 120.0 (2) |
N1—C1—C2 | 112.5 (2) | C22—C21—H21 | 120.0 |
H1A—C1—H1B | 107.8 | N3—C22—C17 | 120.2 (2) |
C2—C1—H1A | 109.1 | N3—C22—C21 | 120.4 (2) |
C2—C1—H1B | 109.1 | C21—C22—C17 | 119.4 (2) |
O1—C2—C1 | 107.9 (2) | O1—C23—H23A | 109.5 |
O1—C2—H2A | 110.1 | O1—C23—H23B | 109.5 |
O1—C2—H2B | 110.1 | O1—C23—H23C | 109.5 |
C1—C2—H2A | 110.1 | H23A—C23—H23B | 109.5 |
C1—C2—H2B | 110.1 | H23A—C23—H23C | 109.5 |
H2A—C2—H2B | 108.4 | H23B—C23—H23C | 109.5 |
N1—C3—H3A | 109.3 | N4—C24—C25 | 179.7 (4) |
N1—C3—H3B | 109.3 | C24—C25—H25A | 109.5 |
N1—C3—C4 | 111.4 (2) | C24—C25—H25B | 109.5 |
H3A—C3—H3B | 108.0 | C24—C25—H25C | 109.5 |
C4—C3—H3A | 109.3 | H25A—C25—H25B | 109.5 |
C4—C3—H3B | 109.3 | H25A—C25—H25C | 109.5 |
N2—C4—C3 | 118.3 (2) | H25B—C25—H25C | 109.5 |
N2—C4—C5 | 123.2 (2) | O2—Cl1—O3 | 110.8 (2) |
C5—C4—C3 | 118.6 (2) | O2—Cl1—O4 | 111.1 (2) |
C4—C5—H5 | 120.5 | O2—Cl1—O5 | 113.7 (5) |
C6—C5—C4 | 119.0 (3) | O3—Cl1—O2A | 91.7 (14) |
C6—C5—H5 | 120.5 | O3—Cl1—O4 | 110.24 (14) |
C5—C6—H6 | 120.0 | O3—Cl1—O5 | 105.2 (4) |
C5—C6—C7 | 120.0 (2) | O4—Cl1—O2A | 88.1 (16) |
C7—C6—H6 | 120.0 | O4—Cl1—O5 | 105.4 (3) |
C6—C7—C8 | 122.7 (2) | O5A—Cl1—O2A | 113 (3) |
C6—C7—C12 | 118.4 (2) | O5A—Cl1—O3 | 132.2 (12) |
C8—C7—C12 | 118.9 (2) | O5A—Cl1—O4 | 110.9 (11) |
C7—C8—H8 | 119.5 | O6—Cl2—O7 | 71.9 (6) |
C9—C8—C7 | 121.0 (3) | O6—Cl2—O8 | 111.1 (6) |
C9—C8—H8 | 119.5 | O6—Cl2—O9 | 113.1 (4) |
C8—C9—H9 | 120.0 | O6A—Cl2—O7A | 146.7 (10) |
C8—C9—C10 | 120.0 (3) | O7—Cl2—O9 | 107.5 (4) |
C10—C9—H9 | 120.0 | O8—Cl2—O7 | 132.0 (4) |
C9—C10—H10 | 119.6 | O8—Cl2—O9 | 113.7 (3) |
C11—C10—C9 | 120.9 (3) | O8A—Cl2—O6A | 117.7 (11) |
C11—C10—H10 | 119.6 | O8A—Cl2—O7A | 39.6 (8) |
C10—C11—H11 | 119.9 | O8A—Cl2—O9 | 100.0 (6) |
C10—C11—C12 | 120.2 (2) | O9—Cl2—O6A | 97.7 (8) |
C12—C11—H11 | 119.9 | O9—Cl2—O7A | 109.1 (6) |
N2—C12—C7 | 120.4 (2) | Cl2—O6—O7 | 55.2 (4) |
N2—C12—C11 | 120.8 (2) | Cl2—O7—O6 | 52.9 (4) |
C11—C12—C7 | 118.8 (2) | O8A—O7A—Cl2 | 60.1 (15) |
N1—C13—H13A | 110.0 | O7A—O8A—Cl2 | 80.3 (16) |
Cu1—O1—C2—C1 | 43.6 (2) | C9—C10—C11—C12 | 0.4 (4) |
Cu1—N1—C1—C2 | 40.5 (3) | C10—C11—C12—N2 | 178.9 (2) |
Cu1—N1—C3—C4 | −26.8 (3) | C10—C11—C12—C7 | −3.1 (3) |
Cu1—N1—C13—C14 | 42.2 (2) | C12—N2—C4—C3 | 179.0 (2) |
Cu1—N2—C4—C3 | 4.3 (3) | C12—N2—C4—C5 | 0.5 (4) |
Cu1—N2—C4—C5 | −174.2 (2) | C12—C7—C8—C9 | −1.3 (4) |
Cu1—N2—C12—C7 | 169.80 (16) | C13—N1—C1—C2 | 155.2 (2) |
Cu1—N2—C12—C11 | −12.2 (3) | C13—N1—C3—C4 | −142.2 (2) |
Cu1—N3—C14—C13 | −5.9 (3) | C13—C14—C15—C16 | 178.8 (2) |
Cu1—N3—C14—C15 | 174.49 (19) | C14—N3—C22—C17 | 5.5 (3) |
Cu1—N3—C22—C17 | −171.17 (16) | C14—N3—C22—C21 | −172.1 (2) |
Cu1—N3—C22—C21 | 11.2 (3) | C14—C15—C16—C17 | 3.0 (4) |
N1—C1—C2—O1 | −60.0 (3) | C15—C16—C17—C18 | 177.4 (2) |
N1—C3—C4—N2 | 15.5 (3) | C15—C16—C17—C22 | −0.3 (4) |
N1—C3—C4—C5 | −166.0 (2) | C16—C17—C18—C19 | −175.7 (2) |
N1—C13—C14—N3 | −24.7 (3) | C16—C17—C22—N3 | −4.0 (3) |
N1—C13—C14—C15 | 154.9 (2) | C16—C17—C22—C21 | 173.6 (2) |
N2—C4—C5—C6 | 2.6 (4) | C17—C18—C19—C20 | 1.4 (4) |
N3—C14—C15—C16 | −1.6 (4) | C18—C17—C22—N3 | 178.1 (2) |
C1—N1—C3—C4 | 94.1 (3) | C18—C17—C22—C21 | −4.2 (3) |
C1—N1—C13—C14 | −75.1 (2) | C18—C19—C20—C21 | −2.6 (4) |
C3—N1—C1—C2 | −79.6 (3) | C19—C20—C21—C22 | 0.3 (4) |
C3—N1—C13—C14 | 159.2 (2) | C20—C21—C22—N3 | −179.2 (2) |
C3—C4—C5—C6 | −175.9 (3) | C20—C21—C22—C17 | 3.1 (3) |
C4—N2—C12—C7 | −3.8 (3) | C22—N3—C14—C13 | 176.9 (2) |
C4—N2—C12—C11 | 174.2 (2) | C22—N3—C14—C15 | −2.7 (3) |
C4—C5—C6—C7 | −2.2 (4) | C22—C17—C18—C19 | 2.0 (4) |
C5—C6—C7—C8 | −178.4 (3) | C23—O1—C2—C1 | −176.4 (2) |
C5—C6—C7—C12 | −0.9 (4) | O6A—Cl2—O7A—O8A | −59 (2) |
C6—C7—C8—C9 | 176.1 (3) | O6A—Cl2—O8A—O7A | 147.8 (14) |
C6—C7—C12—N2 | 4.0 (3) | O8—Cl2—O6—O7 | −129.0 (5) |
C6—C7—C12—C11 | −174.0 (2) | O8—Cl2—O7—O6 | 102.4 (7) |
C7—C8—C9—C10 | −1.4 (4) | O9—Cl2—O6—O7 | 101.7 (5) |
C8—C7—C12—N2 | −178.4 (2) | O9—Cl2—O7—O6 | −109.3 (5) |
C8—C7—C12—C11 | 3.5 (3) | O9—Cl2—O7A—O8A | 82.6 (13) |
C8—C9—C10—C11 | 1.9 (4) | O9—Cl2—O8A—O7A | −107.9 (12) |
Cg4, Cg5, Cg6 and Cg7 are the centroids of the N2/C4–C7/C12, N3/C14–C17/C22, C7–C12 and C17–C22 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···O3i | 0.97 | 2.68 | 3.402 (4) | 132 |
C1—H1B···O9ii | 0.97 | 2.57 | 3.397 (4) | 143 |
C3—H3B···O8iii | 0.97 | 2.58 | 3.446 (6) | 148 |
C5—H5···O5iv | 0.93 | 2.87 | 3.441 (6) | 121 |
C6—H6···O5iv | 0.93 | 2.70 | 3.366 (6) | 129 |
C9—H9···O5Aii | 0.93 | 2.65 | 3.29 (4) | 127 |
C10—H10···O2ii | 0.93 | 2.77 | 3.427 (5) | 128 |
C10—H10···O8Av | 0.93 | 2.64 | 3.329 (13) | 131 |
C11—H11···N4 | 0.93 | 2.43 | 3.074 (3) | 126 |
C11—H11···O8v | 0.93 | 2.85 | 3.443 (6) | 123 |
C13—H13A···O4 | 0.97 | 2.59 | 3.220 (3) | 123 |
C13—H13A···O8iii | 0.97 | 2.70 | 3.378 (7) | 128 |
C15—H15···O2i | 0.93 | 2.65 | 3.440 (5) | 143 |
C15—H15···O2Ai | 0.93 | 2.57 | 3.24 (3) | 129 |
C18—H18···O4v | 0.93 | 2.55 | 3.417 (3) | 156 |
C20—H20···O6v | 0.93 | 2.63 | 3.248 (8) | 125 |
C21—H21···O6v | 0.93 | 2.64 | 3.252 (8) | 124 |
C23—H23B···O2vi | 0.96 | 2.47 | 3.347 (6) | 152 |
C8—H8···Cg7vii | 0.93 | 2.75 | 3.511 (3) | 139 |
C19—H19···Cg6viii | 0.93 | 2.76 | 3.377 (3) | 125 |
Cl1—O3···Cg4 | 3.43 (1) | 4.2079 (13) | 114 (1) | |
Cl1—O2A···Cg4 | 3.90 (5) | 4.2079 (13) | 89 (2) | |
Cg5···Cg5v | 4.0264 (14) | |||
Cg5···Cg7v | 3.7767 (14) |
Symmetry codes: (i) x+1/2, −y+3/2, z+1/2; (ii) x+1/2, −y+3/2, z−1/2; (iii) −x+1/2, y+1/2, −z+3/2; (iv) −x+1/2, y+1/2, −z+1/2; (v) −x+1, −y+1, −z+1; (vi) x+1, y, z; (vii) x−1/2, −y+3/2, z−1/2; (viii) −x+3/2, y−1/2, −z+1/2. |
Funding information
Funding for this research was provided by: NSF–MRI (grant No. CHE-1039027 to Jerry P. Jasinski).
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Angel, N. R., Khatib, R. M., Jenkins, J., Smith, M., Rubalcava, J. M., Khoa Le, B., Lussier, D., Chen, Z. (G.), Tham, F. S., Wilson, E. H. & Eichler, J. F. (2017). J. Inorg. Biochem. 166, 12–25. Google Scholar
Chavez, F. A., Olmstead, M. M. & Mascharak, P. K. (1996). Inorg. Chem. 35, 1410–1412. CSD CrossRef PubMed CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hatcher, L. Q. & Karlin, K. D. (2004). J. Biol. Inorg. Chem. 9, 669–683. Web of Science CrossRef PubMed CAS Google Scholar
Holmes, A. E., Simpson, S. A. & Canary, J. W. (2005). Monatsh. Chem. 136, 461–475. CrossRef Google Scholar
Karlin, K. D. (1993). Science, 261, 701–708. CrossRef CAS PubMed Web of Science Google Scholar
Karlin, K. D. & Tyeklár, Z. (1993). Bioinorganic Chemistry of Copper. New York: Chapman & Hall. Google Scholar
Kim, S., Lee, J. Y., Cowley, R. E., Ginsbach, J. W., Siegler, M. A., Solomon, E. I. & Karlin, K. D. (2015). J. Am. Chem. Soc. 137, 2796–2799. CrossRef Google Scholar
Kopf, M.-A. & Karlin, K. D. (1999). Biomimetic Oxidations Catalyzed by Transition Metal Complexes, edited by B. Meunier, pp. 309–362. London: Imperial College Press. Google Scholar
Lewis, E. A. & Tolman, W. B. (2004). Chem. Rev. 104, 1047–1076. Web of Science CrossRef PubMed CAS Google Scholar
Mirica, L. M., Ottenwaelder, X. & Stack, T. D. P. (2004). Chem. Rev. 104, 1013–1046. Web of Science CrossRef PubMed CAS Google Scholar
Peterson, R. L., Kim, S. & Karlin, K. D. (2013). Comprehensive Inorganic Chemistry II, 2nd ed., edited by J. Reedijk & K. R. Poeppelmeier, pp. 149–177. Amsterdam: Elsevier. Google Scholar
Rigaku OD (2015). CrysAlis PRO, Rigaku Americas, The Woodlands, Texas, USA. Google Scholar
Rowland, J. M., Olmstead, M. M. & Mascharak, P. K. (2002). Inorg. Chim. Acta, 332, 37–40. CrossRef Google Scholar
Roy, S., Mitra, P. & Patra, A. K. (2011). Inorg. Chim. Acta, 370, 247–253. CrossRef Google Scholar
Santini, C., Pellei, M., Gandin, V., Porchia, M., Tisato, F. & Marzano, C. (2014). Chem. Rev. 114, 815–862. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Warda, S. A. (1998). Acta Cryst. C54, 916–918. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Wei, N., Murthy, N. N. & Karlin, K. D. (1994). Inorg. Chem. 33, 6093–6100. CrossRef CAS Web of Science Google Scholar
Young, M. J., Wahnon, D., Hynes, R. C. & Chin, J. (1995). J. Am. Chem. Soc. 117, 9441–9447. CSD CrossRef CAS Web of Science Google Scholar
Zahn, S., Das, D. & Canary, J. W. (2006). Inorg. Chem. 45, 6056–6063. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.