research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a mononuclear copper(II) complex with 2-meth­oxy-N,N-bis­­(quinolin-2-yl­meth­yl)­ethyl­amine (DQMEA)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Skidmore College, 815 North Broadway, Saratoga Springs, NY 12866, USA, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: sfrey@skidmore.edu

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 9 July 2018; accepted 17 July 2018; online 24 July 2018)

Structural characterization of the compound [Cu(C2H3N)(C23H23N3O)](ClO4)2] or [Cu(C2H3N)(DQMEA)](ClO4)2] [DQMEA = 2-methoxy-N,N-bis­(quinolin-2-ylmeth­yl)ethyl­amine] {systematic name: (aceto­nitrile)[2-methoxy-N,N-bis(quinolin-2-ylmeth­yl)ethyl­amine]­copper(II) diperchlorate} by single-crystal X-ray diffraction reveals a complex cation with a tetra­dentate coordination of the DQMEA ligand along with monodentate coordination of a CH3CN ligand to a single CuII center, with two perchlorate anions providing charge balance. The CuII center has a distorted square-pyramidal geometry in which the nitro­gen atoms of the DQMEA and CH3CN ligands occupy the equatorial positions, while the oxygen atom of the DQMEA ligand resides in the axial position with an elongated Cu—O bond. The quinoline ring systems are nearly co-planar in the structure, while the linear CH3CN ligand is tilted significantly below this plane, and the central nitro­gen of DQMEA is above it. Within the complex, weak C—H⋯N hydrogen bonding takes place between the nitro­gen of CH3CN and a neighboring quinolyl group. The perchlorate ions are disordered within the structure, but undergo a number of weak inter­molecular C—H⋯O hydrogen-bonding inter­actions. Additional weak π-stacking inter­actions between the quinolyl groups of neighboring complexes further stabilize the crystal packing.

1. Chemical context

Copper proteins are numerous in living systems, owing largely to their ability to bind and process di­oxy­gen (Karlin & Tyeklár, 1993[Karlin, K. D. & Tyeklár, Z. (1993). Bioinorganic Chemistry of Copper. New York: Chapman & Hall.]; Karlin, 1993[Karlin, K. D. (1993). Science, 261, 701-708.]; Kopf & Karlin, 1999[Kopf, M.-A. & Karlin, K. D. (1999). Biomimetic Oxidations Catalyzed by Transition Metal Complexes, edited by B. Meunier, pp. 309-362. London: Imperial College Press.]). Much of what is known about these proteins comes from modeling studies that involve the synthesis of low mol­ecular weight copper complexes with organic-based ligands (Mirica et al., 2004[Mirica, L. M., Ottenwaelder, X. & Stack, T. D. P. (2004). Chem. Rev. 104, 1013-1046.]; Lewis & Tolman, 2004[Lewis, E. A. & Tolman, W. B. (2004). Chem. Rev. 104, 1047-1076.]; Hatcher & Karlin, 2004[Hatcher, L. Q. & Karlin, K. D. (2004). J. Biol. Inorg. Chem. 9, 669-683.]; Peterson et al., 2013[Peterson, R. L., Kim, S. & Karlin, K. D. (2013). Comprehensive Inorganic Chemistry II, 2nd ed., edited by J. Reedijk & K. R. Poeppelmeier, pp. 149-177. Amsterdam: Elsevier.]). Many of these involve N-centered, tripodal, tetra­dentate ligands containing pyridine or quinoline moieties (Wei et al., 1994[Wei, N., Murthy, N. N. & Karlin, K. D. (1994). Inorg. Chem. 33, 6093-6100.]; Young et al., 1995[Young, M. J., Wahnon, D., Hynes, R. C. & Chin, J. (1995). J. Am. Chem. Soc. 117, 9441-9447.]; Kim et al., 2015[Kim, S., Lee, J. Y., Cowley, R. E., Ginsbach, J. W., Siegler, M. A., Solomon, E. I. & Karlin, K. D. (2015). J. Am. Chem. Soc. 137, 2796-2799.]). These ligands give stable complexes that provide access to both the CuI and CuII oxidation states, and leave open or solvent-bound coordination sites for the binding of di­oxy­gen species (Wei et al., 1994[Wei, N., Murthy, N. N. & Karlin, K. D. (1994). Inorg. Chem. 33, 6093-6100.]).

More recently, copper(II) complexes have been targeted as potential anti­cancer agents (Santini et al., 2014[Santini, C., Pellei, M., Gandin, V., Porchia, M., Tisato, F. & Marzano, C. (2014). Chem. Rev. 114, 815-862.]). Indeed, copper(II) has been shown to promote tumor cell death through a variety of mechanisms while remaining less toxic systematically than platinum-based drugs (Angel et al., 2017[Angel, N. R., Khatib, R. M., Jenkins, J., Smith, M., Rubalcava, J. M., Khoa Le, B., Lussier, D., Chen, Z. (G.), Tham, F. S., Wilson, E. H. & Eichler, J. F. (2017). J. Inorg. Biochem. 166, 12-25.]). A number of the compounds that have been studied employ pyridyl, quinolyl, and other aromatic amine-containing ligands because of their ability to form stable complexes with copper(II) ions that display promising anti­cancer activity (Angel et al., 2017[Angel, N. R., Khatib, R. M., Jenkins, J., Smith, M., Rubalcava, J. M., Khoa Le, B., Lussier, D., Chen, Z. (G.), Tham, F. S., Wilson, E. H. & Eichler, J. F. (2017). J. Inorg. Biochem. 166, 12-25.]; Santini et al., 2014[Santini, C., Pellei, M., Gandin, V., Porchia, M., Tisato, F. & Marzano, C. (2014). Chem. Rev. 114, 815-862.]). Given the rich variety of ligands of this type, copper(II) complexes with a range of coordination numbers, geometries, redox potentials, biological compatibility, and cytotoxicity are possible.

[Scheme 1]

Based on their relevance to biology, we have begun to explore copper(II) complexes with novel N-tripodal ligands containing either pyridine or quinoline moieties. We report here the synthesis and structural characterization of [Cu(DQMEA)(CH3CN)](ClO4)2] [DQMEA = 2-methoxy-N,N-bis­(quinolin-2-ylmeth­yl)­ethyl­amine]. This compound is formed by the reaction of copper(II) perchlorate with DQMEA in aceto­nitrile, followed by the addition of diethyl ether (see reaction scheme) to afford dark-blue crystals suitable for X-ray diffraction studies.

2. Structural commentary

The title compound (Fig. 1[link]) crystallizes in the monoclinic P21/n space group. The structure reveals a monomeric cation of [Cu(DQMEA)(CH3CN)]2+ with two disordered perchlorate counter-anions. The copper(II) center is penta­coordinate with a distorted square-pyramidal geometry as indicated by the trigonality index, τ = 0.03 defined as τ = |θ − φ|/60, where θ and φ are the two largest angles in the coordination sphere (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). These angles are 164.97 (8) and 163.04 (9)° (Table 1[link]). According to this index, τ values of five-coordinate complexes range from 0 for perfectly square-planar to 1 for perfectly trigonal–bipyramidal geometries. The DQMEA ligand is tetra­dentate with its central (N1) nitro­gen and two quinolyl nitro­gen atoms (N2 and N3) lying in the equatorial plane, and the meth­oxy oxygen atom (O1) taking up the axial position. The fourth position in the equatorial plane is occupied by the nitro­gen atom (N4) of a coordinated aceto­nitrile mol­ecule. The two quinoline ring systems of DQMEA are nearly co-planar with each other [dihedral angle = 14.58 (7)°], which results in a steric inter­action between hydrogen atoms H11 and H21 and the coordinated aceto­nitrile mol­ecule. This causes the linear aceto­nitrile mol­ecule to drop below the quinolyl plane, such that the bond angle that its nitro­gen atom makes with the copper ion and the axial oxygen of DQMEA, O1—Cu1—N4, is 115.14 (8)°. The bite angles imposed by the tetra­dentate chelation of the DQMEA ligand cause further constraints leading to some distortion of the structure. For example, the central nitro­gen and meth­oxy oxygen atoms, spanning the equatorial and axial positions, form a five-membered metallocycle with an N1—Cu1—O1 bond angle of 81.40 (8)°. This moves N1 slightly above the quinolyl plane, and causes the non-linearity of N2—Cu1—N3 [164.97 (8)°]. The equatorial bond angles N1—Cu1—N2 [84.06 (8)°] and N1—Cu1—N3 [80.92 (8)°] are also significantly reduced from 90° because of the constraints of the DQMEA coordination. The equatorial Cu—N bond lengths fall in the narrow range of 1.968 (2) to 2.0311 (19) Å, consistent with values reported previously (Wei et al., 1994[Wei, N., Murthy, N. N. & Karlin, K. D. (1994). Inorg. Chem. 33, 6093-6100.]), while the axial Cu—O bond is significantly longer at 2.3570 (19) Å. The latter is consistent with a weak axial inter­action due to Jahn–Teller distortion as noted previously for square-pyramidal copper(II) complexes (Chavez et al., 1996[Chavez, F. A., Olmstead, M. M. & Mascharak, P. K. (1996). Inorg. Chem. 35, 1410-1412.]; Warda, 1998[Warda, S. A. (1998). Acta Cryst. C54, 916-918.]; Rowland et al., 2002[Rowland, J. M., Olmstead, M. M. & Mascharak, P. K. (2002). Inorg. Chim. Acta, 332, 37-40.]; Roy et al., 2011[Roy, S., Mitra, P. & Patra, A. K. (2011). Inorg. Chim. Acta, 370, 247-253.]). Finally, a weak intra­molecular C—H⋯N hydrogen-bonding inter­action takes place between a quinolyl hydrogen (H11) and the nitro­gen atom of the aceto­nitrile ligand (N4), which may help stabilize the coordin­ation of this monodentate ligand.

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 2.3570 (19) Cu1—N3 2.0251 (18)
Cu1—N1 2.001 (2) Cu1—N4 1.968 (2)
Cu1—N2 2.0311 (19)    
       
N1—Cu1—O1 81.40 (8) N3—Cu1—O1 90.45 (7)
N1—Cu1—N2 84.06 (8) N3—Cu1—N2 164.97 (8)
N1—Cu1—N3 80.92 (8) N4—Cu1—O1 115.14 (8)
N2—Cu1—O1 87.91 (7) N4—Cu1—N1 163.04 (9)
[Figure 1]
Figure 1
Structure of the title compound, [Cu(DQMEA)(CH3CN)](ClO4)2, with atom labels, shown with displacement ellipsoids drawn at the 30% probability level. Both perclorate anions are disordered, with oxygen occupancy ratios of 0.900 (10):0 l.100 (10) and 0.779 (16):0.319 (7).

3. Supra­molecular features

Within the crystal, a network of weak C—H⋯O hydrogen-bonding inter­actions (Table 2[link]) takes place between the hydrogen atoms of the DQMEA ligand and the oxygen atoms of the perchlorate anions (Fig. 2[link]). In addition, weak ππ stacking inter­actions between nearby pyridine rings (Cg5⋯Cg5) of a quinoline group and between the pyridine and phenyl rings (Cg5⋯Cg7) of other nearby quinoline groups (where Cg5 and Cg7 are the centroids of the N3/C14–C17/C22 and C17–C22 rings, respectively) serve to further stabilize the crystal packing.

Table 2
Hydrogen-bond geometry and ππ stacking interactions (Å, °)

Cg4, Cg5, Cg6 and Cg7 are the centroids of the N2/C4–C7/C12, N3/C14–C17/C22, C7–C12 and C17–C22 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O3i 0.97 2.68 3.402 (4) 132
C1—H1B⋯O9ii 0.97 2.57 3.397 (4) 143
C3—H3B⋯O8iii 0.97 2.58 3.446 (6) 148
C5—H5⋯O5iv 0.93 2.87 3.441 (6) 121
C6—H6⋯O5iv 0.93 2.70 3.366 (6) 129
C9—H9⋯O5Aii 0.93 2.65 3.29 (4) 127
C10—H10⋯O2ii 0.93 2.77 3.427 (5) 128
C10—H10⋯O8Av 0.93 2.64 3.329 (13) 131
C11—H11⋯N4 0.93 2.43 3.074 (3) 126
C11—H11⋯O8v 0.93 2.85 3.443 (6) 123
C13—H13A⋯O4 0.97 2.59 3.220 (3) 123
C13—H13A⋯O8iii 0.97 2.70 3.378 (7) 128
C15—H15⋯O2i 0.93 2.65 3.440 (5) 143
C15—H15⋯O2Ai 0.93 2.57 3.24 (3) 129
C18—H18⋯O4v 0.93 2.55 3.417 (3) 156
C20—H20⋯O6v 0.93 2.63 3.248 (8) 125
C21—H21⋯O6v 0.93 2.64 3.252 (8) 124
C23—H23B⋯O2vi 0.96 2.47 3.347 (6) 152
C8—H8⋯Cg7vii 0.93 2.75 3.511 (3) 139
C19—H19⋯Cg6viii 0.93 2.76 3.377 (3) 125
Cl1—O3⋯Cg4   3.43 (1) 4.2079 (13) 114 (1)
Cl1—O2ACg4   3.90 (5) 4.2079 (13) 89 (2)
Cg5⋯Cg5v     4.0264 (14)  
Cg5⋯Cg7v     3.7767 (14)  
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+1, -y+1, -z+1; (vi) x+1, y, z; (vii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (viii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing of the title compound viewed along the a axis. The inter­molecular C—H⋯O hydrogen bonds (Table 2[link]) are shown as dashed lines. ππ stacking of the quinoline rings along the a axis can be seen in the center of the diagram.

In addition, weak slipped parallel C—H⋯π-ring [C8—H8⋯Cg7, X—H, π = 50°; C19—H19⋯Cg6, X—H, π = 47°] and YXCg [Cl1—O3⋯Cg4, X—H, π = 27.35° and Cl1—O2ACg4, X—-H, π = 3.33°, where Cg4 = N2/C4/C5/C6/C7/C12 and Cg6 = C7–C12] inter­molecular inter­actions (Table 2[link]) are also present and contibute additionally to the crystal packing.

4. Database survey

To the best of our knowledge, a structure of the title compound has not been published previously. However, analogous structures of copper(II) complexes with tripodal ligands formed by tethering two quinolyl groups to either a chiral amino alcohol or amino acid have been reported (Holmes et al., 2005[Holmes, A. E., Simpson, S. A. & Canary, J. W. (2005). Monatsh. Chem. 136, 461-475.]; Zahn et al., 2006[Zahn, S., Das, D. & Canary, J. W. (2006). Inorg. Chem. 45, 6056-6063.]). Within these chiral structures, the quinolyl groups are not coplanar, but are instead twisted relative to each other in a propeller-like fashion.

5. Synthesis and crystallization

All chemicals were obtained from commercial sources and used without further preparation. Deionized water was used throughout. The 1H NMR spectrum was recorded with a JEOL ECX-300 NMR spectrometer and referenced against the 1H peak of the chloro­form solvent. IR spectra were recorded with a Perkin Elmer Spectrum 100 FT–IR.

2-Methoxy-N,N-bis(quinolin-2-ylmeth­yl)­ethyl­amine (DQMEA). In a 250 mL round-bottom flask, 5 g (23 mmol) of 2-chloro­methyl­quinoline hydro­chloride was dissolved in 10 mL H2O and cooled to 273 K in an ice bath. A solution of 1.9 g (47 mmol) of NaOH in 10 mL H2O was added dropwise under stirring. Following this, a solution of 0.9 g (12 mmol) of 2-meth­oxo­ethyl­amine in 10 mL CH2Cl2 was added. The reaction mixture was then removed from the ice bath, and brought to reflux. After seven days, the mixture was cooled to room temperature and the CH2Cl2 layer was separated, washed twice with brine, and dried over anhydrous sodium sulfate. The solution was then filtered, and the filtrate was chromatographed on alumina (chromatographic grade, 80–200 mesh) eluting with 20:1 CH2Cl2/methanol. Fractions were collected that produced a single spot by TLC on alumina plates (eluting with 100:1, CH2Cl2/methanol) with an RF value of 0.33. Rotary evaporation of these fractions gave 2.4 g (58%) of a light-yellow solid. 1H NMR (CDCl3, 300 MHz) δ 2.87 (t, 2H), 3.25 (s, 3H), 3.54 (t, 2H), 4.09 (s, 4H), 7.45 (t, 2H), 7.66 (t, 2H), 7.75 (m, 4H), 8.01 (d, 2H), 8.10 (d, 2H).

[Cu(DQMEA)(CH3CN)](ClO4)2]. In a 50 mL round-bottom flask, 0.100 g (0.28 mmol) of copper(II) perchlorate hexa­hydrate and 0.104 g (0.28 mmol) of DQMEA were dissolved in 10 mL of aceto­nitrile. The reaction mixture was capped and allowed to stir for 30 minutes. Approximately 10 mL of anhydrous diethyl ether was added until crystals began to form on the side of the flask, and the mixture was capped and placed in a refrigerator. After seven days, 0.15 g (84%) of dark-blue crystals suitable for X-ray diffraction were collected by filtration and washed with diethyl ether. IR (ATR, cm−1) 2800–3200 (aromatic C—H, w), 1604, 1516, and 1436 (aromatic C—C, m), 1064 (ClO4, s, br), 781, 843 (aromatic C—H, s).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.97 Å, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl). Both perchlorate ions were disordered [occupancy ratios of 0.900 (10):0.100 (10) and 0.656 (7):0.348 (7)].

Table 3
Experimental details

Crystal data
Chemical formula [Cu(C2H3N)(C23H23N3O)](ClO4)2
Mr 660.94
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 11.3597 (3), 16.9611 (4), 14.5514 (3)
β (°) 95.622 (2)
V3) 2790.18 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.03
Crystal size (mm) 0.26 × 0.16 × 0.12
 
Data collection
Diffractometer Rigaku Oxford Diffraction Gemini Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO, Rigaku Americas, The Woodlands, Texas, USA.])
Tmin, Tmax 0.883, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 21447, 9280, 6238
Rint 0.028
(sin θ/λ)max−1) 0.762
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.141, 1.02
No. of reflections 9280
No. of parameters 392
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.63, −0.62
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO, Rigaku Americas, The Woodlands, Texas, USA.]), SHELXT (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXL (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: ShelXT (Sheldrick, 2015b); program(s) used to refine structure: SHELXL (Sheldrick, 2015a); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(Acetonitrile)[2-methoxy-N,N-bis(quinolin-2-ylmethyl)ethylamine]copper(II) bis(perchlorate) top
Crystal data top
[Cu(C2H3N)(C23H23N3O)](ClO4)2F(000) = 1356
Mr = 660.94Dx = 1.573 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.3597 (3) ÅCell parameters from 4574 reflections
b = 16.9611 (4) Åθ = 3.4–30.8°
c = 14.5514 (3) ŵ = 1.03 mm1
β = 95.622 (2)°T = 293 K
V = 2790.18 (11) Å3Prism, blue
Z = 40.26 × 0.16 × 0.12 mm
Data collection top
Rigaku Oxford Diffraction Gemini Eos
diffractometer
9280 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source6238 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 16.0416 pixels mm-1θmax = 32.8°, θmin = 3.2°
ω scansh = 1717
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
k = 2516
Tmin = 0.883, Tmax = 1.000l = 2220
21447 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0599P)2 + 1.6959P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
9280 reflectionsΔρmax = 0.63 e Å3
392 parametersΔρmin = 0.62 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.55099 (2)0.71839 (2)0.33686 (2)0.03253 (9)
O10.75176 (16)0.75392 (12)0.33841 (14)0.0470 (4)
N10.55979 (18)0.79512 (12)0.44173 (14)0.0367 (4)
N20.51058 (16)0.81527 (11)0.25797 (13)0.0336 (4)
N30.59144 (16)0.64254 (11)0.44274 (13)0.0322 (4)
N40.49754 (19)0.63548 (13)0.24774 (14)0.0415 (5)
C10.6863 (2)0.81542 (16)0.4695 (2)0.0463 (6)
H1A0.7219590.7739080.5088020.056*
H1B0.6897530.8638210.5052070.056*
C20.7563 (2)0.82575 (17)0.3879 (2)0.0507 (7)
H2A0.7228270.8679860.3486800.061*
H2B0.8376250.8390650.4085360.061*
C30.4872 (3)0.86476 (15)0.41151 (19)0.0466 (6)
H3A0.5218760.9116290.4412840.056*
H3B0.4082610.8585020.4304670.056*
C40.4795 (2)0.87510 (14)0.30860 (18)0.0389 (5)
C50.4372 (2)0.94704 (16)0.2706 (2)0.0483 (6)
H50.4192620.9884440.3087240.058*
C60.4228 (2)0.95522 (16)0.1773 (2)0.0488 (6)
H60.3922581.0018240.1510540.059*
C70.4541 (2)0.89326 (15)0.12037 (19)0.0397 (5)
C80.4441 (2)0.89886 (18)0.0231 (2)0.0497 (7)
H80.4112050.9439000.0053890.060*
C90.4815 (3)0.83981 (18)0.0292 (2)0.0512 (7)
H90.4726850.8439260.0931880.061*
C100.5335 (2)0.77235 (17)0.01305 (19)0.0458 (6)
H100.5611920.7326420.0233010.055*
C110.5441 (2)0.76417 (15)0.10707 (18)0.0390 (5)
H110.5792670.7192090.1341120.047*
C120.50211 (19)0.82345 (13)0.16290 (16)0.0332 (4)
C130.5108 (2)0.75237 (16)0.51870 (17)0.0426 (5)
H13A0.4251540.7513740.5089900.051*
H13B0.5338150.7788120.5768110.051*
C140.5585 (2)0.67007 (15)0.52143 (16)0.0366 (5)
C150.5679 (2)0.62524 (17)0.60341 (17)0.0451 (6)
H150.5457840.6466210.6580170.054*
C160.6095 (2)0.55061 (17)0.60134 (18)0.0461 (6)
H160.6127130.5194950.6541500.055*
C170.6478 (2)0.52007 (14)0.52018 (17)0.0385 (5)
C180.6968 (2)0.44325 (16)0.5147 (2)0.0486 (7)
H180.6995250.4097850.5654880.058*
C190.7394 (3)0.41860 (17)0.4359 (2)0.0539 (7)
H190.7696980.3678590.4326060.065*
C200.7383 (2)0.46862 (16)0.3597 (2)0.0478 (6)
H200.7708000.4515180.3069340.057*
C210.6902 (2)0.54223 (15)0.36142 (17)0.0386 (5)
H210.6897270.5748280.3099960.046*
C220.64130 (19)0.56881 (13)0.44086 (16)0.0332 (4)
C230.8218 (3)0.7556 (3)0.2623 (2)0.0666 (9)
H23A0.8249980.7037170.2362890.100*
H23B0.9003570.7728680.2830650.100*
H23C0.7870330.7913790.2161790.100*
C240.4563 (3)0.58873 (19)0.2001 (2)0.0513 (7)
C250.4030 (5)0.5283 (3)0.1392 (3)0.1066 (17)
H25A0.4031030.5452120.0762210.160*
H25B0.3231200.5192990.1527650.160*
H25C0.4475370.4803280.1481390.160*
Cl10.21788 (6)0.71417 (6)0.27686 (5)0.0607 (2)
O20.1175 (4)0.7570 (4)0.2958 (3)0.131 (2)0.900 (10)
O2A0.176 (4)0.804 (4)0.301 (3)0.131 (2)0.100 (10)
O30.2582 (2)0.73903 (19)0.19302 (15)0.0759 (8)
O40.31026 (19)0.72130 (14)0.35046 (14)0.0593 (6)
O50.1964 (8)0.6280 (5)0.2656 (5)0.120 (3)0.779 (16)
O5A0.144 (3)0.6625 (17)0.2953 (18)0.120 (3)0.221 (16)
Cl20.23843 (8)0.43937 (5)0.92382 (6)0.0615 (2)
O60.2005 (11)0.4593 (6)0.8369 (4)0.199 (4)0.681 (7)
O6A0.132 (2)0.4040 (13)0.8829 (9)0.199 (4)0.319 (7)
O70.3251 (8)0.4841 (5)0.8889 (7)0.164 (3)0.652 (7)
O7A0.3697 (14)0.4290 (10)0.9530 (13)0.164 (3)0.348 (7)
O80.2279 (7)0.3596 (3)0.9373 (5)0.130 (3)0.700 (7)
O8A0.3117 (19)0.3946 (7)0.9791 (12)0.130 (3)0.300 (7)
O90.1885 (3)0.48505 (17)0.9896 (2)0.0946 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.04023 (16)0.02837 (14)0.02880 (14)0.00429 (11)0.00239 (10)0.00066 (11)
O10.0397 (9)0.0505 (10)0.0513 (11)0.0031 (8)0.0075 (8)0.0029 (9)
N10.0433 (11)0.0329 (10)0.0334 (10)0.0046 (8)0.0011 (8)0.0026 (8)
N20.0336 (9)0.0309 (9)0.0360 (10)0.0039 (7)0.0019 (7)0.0020 (8)
N30.0352 (9)0.0329 (9)0.0279 (8)0.0001 (7)0.0009 (7)0.0015 (7)
N40.0485 (12)0.0384 (10)0.0363 (10)0.0044 (9)0.0021 (9)0.0012 (9)
C10.0501 (14)0.0392 (13)0.0479 (14)0.0032 (11)0.0042 (11)0.0070 (12)
C20.0440 (14)0.0449 (14)0.0618 (18)0.0057 (12)0.0021 (12)0.0057 (13)
C30.0605 (16)0.0357 (12)0.0436 (14)0.0153 (12)0.0050 (12)0.0049 (11)
C40.0360 (11)0.0347 (11)0.0456 (13)0.0077 (9)0.0018 (10)0.0000 (10)
C50.0489 (14)0.0372 (12)0.0583 (17)0.0158 (11)0.0036 (12)0.0011 (12)
C60.0442 (14)0.0376 (13)0.0631 (17)0.0127 (11)0.0026 (12)0.0099 (12)
C70.0285 (10)0.0396 (12)0.0497 (14)0.0015 (9)0.0033 (9)0.0095 (11)
C80.0444 (14)0.0549 (16)0.0470 (14)0.0005 (12)0.0094 (11)0.0176 (13)
C90.0503 (15)0.0609 (17)0.0404 (14)0.0093 (13)0.0053 (11)0.0104 (13)
C100.0488 (14)0.0499 (15)0.0387 (13)0.0065 (12)0.0046 (11)0.0004 (12)
C110.0426 (12)0.0356 (11)0.0388 (12)0.0006 (10)0.0047 (10)0.0040 (10)
C120.0281 (10)0.0339 (11)0.0373 (11)0.0016 (8)0.0017 (8)0.0034 (9)
C130.0505 (14)0.0468 (13)0.0310 (11)0.0038 (12)0.0063 (10)0.0066 (11)
C140.0361 (11)0.0415 (12)0.0317 (11)0.0038 (9)0.0011 (9)0.0006 (10)
C150.0513 (14)0.0561 (15)0.0273 (11)0.0071 (12)0.0015 (10)0.0016 (11)
C160.0504 (14)0.0526 (15)0.0333 (12)0.0120 (12)0.0055 (10)0.0145 (11)
C170.0362 (11)0.0364 (11)0.0404 (12)0.0066 (9)0.0090 (9)0.0075 (10)
C180.0454 (14)0.0374 (12)0.0590 (17)0.0055 (11)0.0156 (12)0.0149 (12)
C190.0480 (15)0.0367 (13)0.073 (2)0.0064 (11)0.0151 (14)0.0009 (14)
C200.0427 (13)0.0437 (14)0.0554 (16)0.0095 (11)0.0040 (11)0.0063 (12)
C210.0363 (11)0.0381 (12)0.0403 (12)0.0030 (10)0.0020 (9)0.0007 (10)
C220.0313 (10)0.0317 (10)0.0352 (11)0.0021 (8)0.0038 (8)0.0031 (9)
C230.0497 (17)0.090 (2)0.062 (2)0.0048 (17)0.0169 (14)0.0101 (19)
C240.0553 (16)0.0592 (17)0.0383 (13)0.0059 (14)0.0014 (11)0.0038 (13)
C250.121 (4)0.123 (4)0.073 (3)0.044 (3)0.001 (3)0.048 (3)
Cl10.0402 (3)0.0946 (6)0.0459 (4)0.0098 (4)0.0030 (3)0.0243 (4)
O20.053 (2)0.254 (6)0.091 (2)0.053 (3)0.0304 (18)0.067 (3)
O2A0.053 (2)0.254 (6)0.091 (2)0.053 (3)0.0304 (18)0.067 (3)
O30.0582 (13)0.126 (2)0.0432 (12)0.0025 (14)0.0045 (10)0.0245 (14)
O40.0571 (12)0.0754 (15)0.0433 (11)0.0029 (10)0.0054 (9)0.0094 (10)
O50.154 (6)0.092 (4)0.105 (4)0.068 (4)0.031 (4)0.007 (3)
O5A0.154 (6)0.092 (4)0.105 (4)0.068 (4)0.031 (4)0.007 (3)
Cl20.0803 (5)0.0500 (4)0.0570 (4)0.0022 (4)0.0211 (4)0.0034 (4)
O60.324 (12)0.213 (8)0.058 (3)0.033 (8)0.004 (4)0.030 (4)
O6A0.324 (12)0.213 (8)0.058 (3)0.033 (8)0.004 (4)0.030 (4)
O70.162 (6)0.138 (6)0.213 (9)0.031 (5)0.126 (7)0.003 (5)
O7A0.162 (6)0.138 (6)0.213 (9)0.031 (5)0.126 (7)0.003 (5)
O80.202 (7)0.047 (2)0.154 (5)0.018 (3)0.078 (5)0.004 (3)
O8A0.202 (7)0.047 (2)0.154 (5)0.018 (3)0.078 (5)0.004 (3)
O90.109 (2)0.0719 (17)0.110 (2)0.0034 (16)0.0437 (18)0.0223 (17)
Geometric parameters (Å, º) top
Cu1—O12.3570 (19)C13—H13B0.9700
Cu1—N12.001 (2)C13—C141.496 (4)
Cu1—N22.0311 (19)C14—C151.410 (3)
Cu1—N32.0251 (18)C15—H150.9300
Cu1—N41.968 (2)C15—C161.353 (4)
O1—C21.414 (4)C16—H160.9300
O1—C231.426 (4)C16—C171.397 (4)
N1—C11.494 (3)C17—C181.422 (4)
N1—C31.482 (3)C17—C221.416 (3)
N1—C131.487 (3)C18—H180.9300
N2—C41.322 (3)C18—C191.353 (5)
N2—C121.384 (3)C19—H190.9300
N3—C141.324 (3)C19—C201.396 (4)
N3—C221.374 (3)C20—H200.9300
N4—C241.124 (3)C20—C211.364 (4)
C1—H1A0.9700C21—H210.9300
C1—H1B0.9700C21—C221.405 (3)
C1—C21.503 (4)C23—H23A0.9600
C2—H2A0.9700C23—H23B0.9600
C2—H2B0.9700C23—H23C0.9600
C3—H3A0.9700C24—C251.449 (5)
C3—H3B0.9700C25—H25A0.9600
C3—C41.502 (4)C25—H25B0.9600
C4—C51.405 (3)C25—H25C0.9600
C5—H50.9300Cl1—O21.402 (4)
C5—C61.359 (4)Cl1—O2A1.65 (6)
C6—H60.9300Cl1—O31.409 (2)
C6—C71.405 (4)Cl1—O41.429 (2)
C7—C81.412 (4)Cl1—O51.489 (8)
C7—C121.420 (3)Cl1—O5A1.26 (2)
C8—H80.9300Cl2—O61.339 (6)
C8—C91.351 (4)Cl2—O6A1.43 (2)
C9—H90.9300Cl2—O71.379 (6)
C9—C101.402 (4)Cl2—O7A1.520 (18)
C10—H100.9300Cl2—O81.375 (5)
C10—C111.369 (4)Cl2—O8A1.336 (17)
C11—H110.9300Cl2—O91.394 (3)
C11—C121.405 (3)O6—O71.595 (12)
C13—H13A0.9700O7A—O8A0.984 (17)
N1—Cu1—O181.40 (8)N1—C13—H13B110.0
N1—Cu1—N284.06 (8)N1—C13—C14108.3 (2)
N1—Cu1—N380.92 (8)H13A—C13—H13B108.4
N2—Cu1—O187.91 (7)C14—C13—H13A110.0
N3—Cu1—O190.45 (7)C14—C13—H13B110.0
N3—Cu1—N2164.97 (8)N3—C14—C13116.0 (2)
N4—Cu1—O1115.14 (8)N3—C14—C15122.5 (2)
N4—Cu1—N1163.04 (9)C15—C14—C13121.5 (2)
N4—Cu1—N299.65 (8)C14—C15—H15120.5
N4—Cu1—N394.57 (8)C16—C15—C14118.9 (2)
C2—O1—Cu1102.24 (15)C16—C15—H15120.5
C2—O1—C23112.5 (3)C15—C16—H16119.9
C23—O1—Cu1127.62 (19)C15—C16—C17120.3 (2)
C1—N1—Cu1109.34 (15)C17—C16—H16119.9
C3—N1—Cu1107.90 (15)C16—C17—C18122.9 (2)
C3—N1—C1112.9 (2)C16—C17—C22118.5 (2)
C3—N1—C13112.0 (2)C22—C17—C18118.6 (3)
C13—N1—Cu1105.24 (15)C17—C18—H18119.8
C13—N1—C1109.2 (2)C19—C18—C17120.3 (3)
C4—N2—Cu1111.34 (16)C19—C18—H18119.8
C4—N2—C12118.9 (2)C18—C19—H19119.7
C12—N2—Cu1129.47 (16)C18—C19—C20120.6 (3)
C14—N3—Cu1111.82 (16)C20—C19—H19119.7
C14—N3—C22119.3 (2)C19—C20—H20119.5
C22—N3—Cu1128.77 (15)C21—C20—C19120.9 (3)
C24—N4—Cu1173.1 (2)C21—C20—H20119.5
N1—C1—H1A109.1C20—C21—H21120.0
N1—C1—H1B109.1C20—C21—C22120.0 (2)
N1—C1—C2112.5 (2)C22—C21—H21120.0
H1A—C1—H1B107.8N3—C22—C17120.2 (2)
C2—C1—H1A109.1N3—C22—C21120.4 (2)
C2—C1—H1B109.1C21—C22—C17119.4 (2)
O1—C2—C1107.9 (2)O1—C23—H23A109.5
O1—C2—H2A110.1O1—C23—H23B109.5
O1—C2—H2B110.1O1—C23—H23C109.5
C1—C2—H2A110.1H23A—C23—H23B109.5
C1—C2—H2B110.1H23A—C23—H23C109.5
H2A—C2—H2B108.4H23B—C23—H23C109.5
N1—C3—H3A109.3N4—C24—C25179.7 (4)
N1—C3—H3B109.3C24—C25—H25A109.5
N1—C3—C4111.4 (2)C24—C25—H25B109.5
H3A—C3—H3B108.0C24—C25—H25C109.5
C4—C3—H3A109.3H25A—C25—H25B109.5
C4—C3—H3B109.3H25A—C25—H25C109.5
N2—C4—C3118.3 (2)H25B—C25—H25C109.5
N2—C4—C5123.2 (2)O2—Cl1—O3110.8 (2)
C5—C4—C3118.6 (2)O2—Cl1—O4111.1 (2)
C4—C5—H5120.5O2—Cl1—O5113.7 (5)
C6—C5—C4119.0 (3)O3—Cl1—O2A91.7 (14)
C6—C5—H5120.5O3—Cl1—O4110.24 (14)
C5—C6—H6120.0O3—Cl1—O5105.2 (4)
C5—C6—C7120.0 (2)O4—Cl1—O2A88.1 (16)
C7—C6—H6120.0O4—Cl1—O5105.4 (3)
C6—C7—C8122.7 (2)O5A—Cl1—O2A113 (3)
C6—C7—C12118.4 (2)O5A—Cl1—O3132.2 (12)
C8—C7—C12118.9 (2)O5A—Cl1—O4110.9 (11)
C7—C8—H8119.5O6—Cl2—O771.9 (6)
C9—C8—C7121.0 (3)O6—Cl2—O8111.1 (6)
C9—C8—H8119.5O6—Cl2—O9113.1 (4)
C8—C9—H9120.0O6A—Cl2—O7A146.7 (10)
C8—C9—C10120.0 (3)O7—Cl2—O9107.5 (4)
C10—C9—H9120.0O8—Cl2—O7132.0 (4)
C9—C10—H10119.6O8—Cl2—O9113.7 (3)
C11—C10—C9120.9 (3)O8A—Cl2—O6A117.7 (11)
C11—C10—H10119.6O8A—Cl2—O7A39.6 (8)
C10—C11—H11119.9O8A—Cl2—O9100.0 (6)
C10—C11—C12120.2 (2)O9—Cl2—O6A97.7 (8)
C12—C11—H11119.9O9—Cl2—O7A109.1 (6)
N2—C12—C7120.4 (2)Cl2—O6—O755.2 (4)
N2—C12—C11120.8 (2)Cl2—O7—O652.9 (4)
C11—C12—C7118.8 (2)O8A—O7A—Cl260.1 (15)
N1—C13—H13A110.0O7A—O8A—Cl280.3 (16)
Cu1—O1—C2—C143.6 (2)C9—C10—C11—C120.4 (4)
Cu1—N1—C1—C240.5 (3)C10—C11—C12—N2178.9 (2)
Cu1—N1—C3—C426.8 (3)C10—C11—C12—C73.1 (3)
Cu1—N1—C13—C1442.2 (2)C12—N2—C4—C3179.0 (2)
Cu1—N2—C4—C34.3 (3)C12—N2—C4—C50.5 (4)
Cu1—N2—C4—C5174.2 (2)C12—C7—C8—C91.3 (4)
Cu1—N2—C12—C7169.80 (16)C13—N1—C1—C2155.2 (2)
Cu1—N2—C12—C1112.2 (3)C13—N1—C3—C4142.2 (2)
Cu1—N3—C14—C135.9 (3)C13—C14—C15—C16178.8 (2)
Cu1—N3—C14—C15174.49 (19)C14—N3—C22—C175.5 (3)
Cu1—N3—C22—C17171.17 (16)C14—N3—C22—C21172.1 (2)
Cu1—N3—C22—C2111.2 (3)C14—C15—C16—C173.0 (4)
N1—C1—C2—O160.0 (3)C15—C16—C17—C18177.4 (2)
N1—C3—C4—N215.5 (3)C15—C16—C17—C220.3 (4)
N1—C3—C4—C5166.0 (2)C16—C17—C18—C19175.7 (2)
N1—C13—C14—N324.7 (3)C16—C17—C22—N34.0 (3)
N1—C13—C14—C15154.9 (2)C16—C17—C22—C21173.6 (2)
N2—C4—C5—C62.6 (4)C17—C18—C19—C201.4 (4)
N3—C14—C15—C161.6 (4)C18—C17—C22—N3178.1 (2)
C1—N1—C3—C494.1 (3)C18—C17—C22—C214.2 (3)
C1—N1—C13—C1475.1 (2)C18—C19—C20—C212.6 (4)
C3—N1—C1—C279.6 (3)C19—C20—C21—C220.3 (4)
C3—N1—C13—C14159.2 (2)C20—C21—C22—N3179.2 (2)
C3—C4—C5—C6175.9 (3)C20—C21—C22—C173.1 (3)
C4—N2—C12—C73.8 (3)C22—N3—C14—C13176.9 (2)
C4—N2—C12—C11174.2 (2)C22—N3—C14—C152.7 (3)
C4—C5—C6—C72.2 (4)C22—C17—C18—C192.0 (4)
C5—C6—C7—C8178.4 (3)C23—O1—C2—C1176.4 (2)
C5—C6—C7—C120.9 (4)O6A—Cl2—O7A—O8A59 (2)
C6—C7—C8—C9176.1 (3)O6A—Cl2—O8A—O7A147.8 (14)
C6—C7—C12—N24.0 (3)O8—Cl2—O6—O7129.0 (5)
C6—C7—C12—C11174.0 (2)O8—Cl2—O7—O6102.4 (7)
C7—C8—C9—C101.4 (4)O9—Cl2—O6—O7101.7 (5)
C8—C7—C12—N2178.4 (2)O9—Cl2—O7—O6109.3 (5)
C8—C7—C12—C113.5 (3)O9—Cl2—O7A—O8A82.6 (13)
C8—C9—C10—C111.9 (4)O9—Cl2—O8A—O7A107.9 (12)
Hydrogen-bond geometry (Å, º) top
Cg4, Cg5, Cg6 and Cg7 are the centroids of the N2/C4–C7/C12, N3/C14–C17/C22, C7–C12 and C17–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1A···O3i0.972.683.402 (4)132
C1—H1B···O9ii0.972.573.397 (4)143
C3—H3B···O8iii0.972.583.446 (6)148
C5—H5···O5iv0.932.873.441 (6)121
C6—H6···O5iv0.932.703.366 (6)129
C9—H9···O5Aii0.932.653.29 (4)127
C10—H10···O2ii0.932.773.427 (5)128
C10—H10···O8Av0.932.643.329 (13)131
C11—H11···N40.932.433.074 (3)126
C11—H11···O8v0.932.853.443 (6)123
C13—H13A···O40.972.593.220 (3)123
C13—H13A···O8iii0.972.703.378 (7)128
C15—H15···O2i0.932.653.440 (5)143
C15—H15···O2Ai0.932.573.24 (3)129
C18—H18···O4v0.932.553.417 (3)156
C20—H20···O6v0.932.633.248 (8)125
C21—H21···O6v0.932.643.252 (8)124
C23—H23B···O2vi0.962.473.347 (6)152
C8—H8···Cg7vii0.932.753.511 (3)139
C19—H19···Cg6viii0.932.763.377 (3)125
Cl1—O3···Cg43.43 (1)4.2079 (13)114 (1)
Cl1—O2A···Cg43.90 (5)4.2079 (13)89 (2)
Cg5···Cg5v4.0264 (14)
Cg5···Cg7v3.7767 (14)
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1/2, y+3/2, z1/2; (iii) x+1/2, y+1/2, z+3/2; (iv) x+1/2, y+1/2, z+1/2; (v) x+1, y+1, z+1; (vi) x+1, y, z; (vii) x1/2, y+3/2, z1/2; (viii) x+3/2, y1/2, z+1/2.
 

Funding information

Funding for this research was provided by: NSF–MRI (grant No. CHE-1039027 to Jerry P. Jasinski).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAngel, N. R., Khatib, R. M., Jenkins, J., Smith, M., Rubalcava, J. M., Khoa Le, B., Lussier, D., Chen, Z. (G.), Tham, F. S., Wilson, E. H. & Eichler, J. F. (2017). J. Inorg. Biochem. 166, 12–25.  Google Scholar
First citationChavez, F. A., Olmstead, M. M. & Mascharak, P. K. (1996). Inorg. Chem. 35, 1410–1412.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHatcher, L. Q. & Karlin, K. D. (2004). J. Biol. Inorg. Chem. 9, 669–683.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHolmes, A. E., Simpson, S. A. & Canary, J. W. (2005). Monatsh. Chem. 136, 461–475.  CrossRef Google Scholar
First citationKarlin, K. D. (1993). Science, 261, 701–708.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKarlin, K. D. & Tyeklár, Z. (1993). Bioinorganic Chemistry of Copper. New York: Chapman & Hall.  Google Scholar
First citationKim, S., Lee, J. Y., Cowley, R. E., Ginsbach, J. W., Siegler, M. A., Solomon, E. I. & Karlin, K. D. (2015). J. Am. Chem. Soc. 137, 2796–2799.  CrossRef Google Scholar
First citationKopf, M.-A. & Karlin, K. D. (1999). Biomimetic Oxidations Catalyzed by Transition Metal Complexes, edited by B. Meunier, pp. 309–362. London: Imperial College Press.  Google Scholar
First citationLewis, E. A. & Tolman, W. B. (2004). Chem. Rev. 104, 1047–1076.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMirica, L. M., Ottenwaelder, X. & Stack, T. D. P. (2004). Chem. Rev. 104, 1013–1046.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPeterson, R. L., Kim, S. & Karlin, K. D. (2013). Comprehensive Inorganic Chemistry II, 2nd ed., edited by J. Reedijk & K. R. Poeppelmeier, pp. 149–177. Amsterdam: Elsevier.  Google Scholar
First citationRigaku OD (2015). CrysAlis PRO, Rigaku Americas, The Woodlands, Texas, USA.  Google Scholar
First citationRowland, J. M., Olmstead, M. M. & Mascharak, P. K. (2002). Inorg. Chim. Acta, 332, 37–40.  CrossRef Google Scholar
First citationRoy, S., Mitra, P. & Patra, A. K. (2011). Inorg. Chim. Acta, 370, 247–253.  CrossRef Google Scholar
First citationSantini, C., Pellei, M., Gandin, V., Porchia, M., Tisato, F. & Marzano, C. (2014). Chem. Rev. 114, 815–862.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWarda, S. A. (1998). Acta Cryst. C54, 916–918.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWei, N., Murthy, N. N. & Karlin, K. D. (1994). Inorg. Chem. 33, 6093–6100.  CrossRef CAS Web of Science Google Scholar
First citationYoung, M. J., Wahnon, D., Hynes, R. C. & Chin, J. (1995). J. Am. Chem. Soc. 117, 9441–9447.  CSD CrossRef CAS Web of Science Google Scholar
First citationZahn, S., Das, D. & Canary, J. W. (2006). Inorg. Chem. 45, 6056–6063.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds