research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a homoleptic zinc(II) complex based on bis­­(3,5-diiso­propyl­pyrazol-1-yl)acetate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, ID 83725, USA
*Correspondence e-mail: ericbrown3@boisestate.edu

Edited by J. Jasinsk, Keene State College, USA (Received 13 July 2018; accepted 6 August 2018; online 16 August 2018)

Deprotonation of the methyl­ene group in bis­(3,5-diiso­propyl­pyrazol-1-yl)methane with nBuLi and reaction with carbon dioxide yields lithium bis­(3,5-diiso­propyl­pyrazol-1-yl)acetate (1). Treatment of 1 with ZnCl2 results in the com­pound bis­[bis­(3,5-diiso­propyl­pyrazol-1-yl)acetato]­zinc(II), [Zn(C20H31N4O2)2] (2), whose structure has monoclinic (P21/c) symmetry. The ZnII ion resides on an inversion center and is coordinated by two bis­(3,5-diiso­propyl­pyrazol-1-yl)acetate (bdippza) ligands. Each ligand facially coordinates the zinc center via κ3N,N′,O coordination modes to form a distorted octa­hedral complex with four pyrazole N atoms in the basal plane and two carboxyl­ate O atoms in the axial sites.

1. Chemical context

The closely related zinc-containing enzymes thermolysin (Holland et al., 1995[Holland, D. R., Hausrath, A. C., Juers, D. & Matthews, B. W. (1995). Protein Sci. 4, 1955-1965.]) and carb­oxy­peptidase A (Rees et al., 1983[Rees, D. C., Lewis, M. & Lipscomb, W. N. (1983). J. Mol. Biol. 168, 367-387.]) each contain an active site where a distorted tetra­hedral zinc ion is coordinated to two histidine residues, a glutamate residue, and a water mol­ecule. These enzymes catalyze the hydrolysis of peptide bonds containing hydro­phobic residues with thermolysin selective for the amide bonds located on the N-terminal side of the polypeptide (Heinrikson, 1977[Heinrikson, R. L. (1977). Methods Enzymol. 47, 175-189.]), while carb­oxy­peptidase A prefers the amide bonds on the C-terminal side (Lipscomb, 1970[Lipscomb, W. N. (1970). Acc. Chem. Res. 3, 81-89.]). However, questions remain concerning the mechanism of amide-bond hydrolysis by thermolysin and carb­oxy­peptidase A. As such, the synthesis and study of model complexes that mimic the active-site structure and reactivity of these biological compounds is necessary to their further understanding.

In an attempt to model the two histidine and glutamate binding motifs present in thermolysin and carb­oxy­peptidase A, the coordination chemistry of bis­(3,5-diiso­propyl­pyrazol-1-yl)acetate (bdippza) with zinc chloride was explored to determine if the steric demands of the anionic heteroscorpionate ligand were suitable to form a zinc complex of the form [(bdippza)ZnCl]. However, structural determination of the title compound identified the product not as the target compound but instead as the homoleptic zinc compound [(bdippza)2Zn] (2). Formation of 2 occurs regardless of the stoichiometric ratio and indicates that the steric environment of the bdippza ligand is too small to prevent complexation of two ligands per zinc ion. Spectroscopic characterization of 2 is consistent with the solid-state structure. For instance, identification of the acetate group is evident by a strong IR absorption at 1687 cm−1 and a 13C NMR signal at 165.8 ppm (the carbon peak of the carboxyl­ate was identified by an HMBC experiment that showed a two-bond correlation between the proton of the bridging C atom and the C atom of the carboxyl­ate). Furthermore, the positive-ion ESI–MS spectrum of 2 shows the presence of the [M + Na]+ ion, whose isotope pattern is in good agreement with the theoretical isotope pattern of the compound (see supporting information for ESI–MS spectra and 1D and 2D NMR spectra).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title complex is shown in Fig. 1[link]. Selected bond lengths and angles are given in Table 1[link]. The ZnII ion resides on an inversion center and is coordinated by two bdippza ligands to form a six-coordinate complex. The two ligands facially bind the ZnII ion in a tridentate fashion, with four N atoms making up the basal plane of the distorted octa­hedron and the two carboxyl­ate oxygens binding the ZnII at the remaining apical positions in a trans manner (O—Zn—O angle of 180.0°). The Zn—Npyrazole bond lengths range from 2.1674 (11) to 2.1942 (12) Å and the N—Zn—N angles of the basal plane range from 82.91 (4) to 97.09 (4)°. The apical O atoms are positioned approximately perpendicular to the basal plane, with angles that deviate slightly from 90° [O1—Zn1—N1 = 86.51 (4), O1—Zn1—N1i = 93.49 (4), O1—Zn1—N4 = 86.40 (4) and O1—Zn1—N4i = 93.60 (4)°]. The Zn—O bond length is 2.0471 (10) Å. The carbonyl oxygen of the carboxyl­ate donor is tilted away from the zinc carboxyl­ate plane, as indicated by the Zn1—O1—C8—C4 torsion angle of 20.61 (16)°. Complexation of the two bdippza ligands to the ZnII ion results in the formation of six six-membered metallocycles [Zn1–O1–C8–C4–N2–N1 (A), Zn1–O1–C8–C4–N3–N4 (B), Zn1–N1–N2–C4–N3–N4 (C), Zn1–O1i–C8i–C4i–N2i–N1i (D), Zn1–O1i–C8i–C4i–N3i–N4i (E), and Zn1–N1i–N2i–C4i–N3i–N4i (F)] that are all nonplanar. A ring-puckering analysis [puckering parameters are: Q = 0.9102 (12), θ = 85.76 (8)°, ψ = 346.77 (8)° for A, Q = 0.8809 (11), θ = 96.27 (8)°, ψ = 190.62 (8)° for B, Q = 0.9932 (11), θ = 80.32 (7)°, ψ = 350.91 (7)° for C, Q = 0.9102 (12), θ = 94.24 (8)°, ψ = 166.77 (8)° for D, Q = 0.8809 (11), θ = 83.73 (8)°, ψ = 10.62 (8)° for E, and Q = 0.9932 (11), θ = 99.68 (7)°, ψ = 170.91 (7)° for F] is consistent with each of the metallocycles being described as having a twist-boat conformation (Cremer et al., 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). The dihedral angle between the mean planes of the two five-membered pyrazole rings found on the same bdippza ligand (Cg1 and Cg2) is 118.36°, while the dihedral angle between the mean planes of the imidazole rings Cg1 and Cg2i, which are on different bdippza ligands, is 61.64°.

Table 1
Selected geometric parameters (Å, °)

Zn1—O1 2.0472 (10) Zn1—N1 2.1941 (12)
Zn1—N4 2.1674 (11)    
       
O1—Zn1—N4 86.40 (4) N4—Zn1—N1 82.91 (4)
O1—Zn1—N4i 93.60 (4) O1—Zn1—N1i 93.49 (4)
O1—Zn1—N1 86.51 (4) N4—Zn1—N1i 97.09 (4)
Symmetry code: (i) -x, -y, -z+1.
[Figure 1]
Figure 1
A view of the structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code for generating equivalent atoms: (i) −x, −y, −z + 1.

3. Supra­molecular features

Within the crystal, close inter­molecular C—H⋯O contacts are present between mol­ecules, which result in the mol­ecules being packed in columns along the a axis. The weak C—H⋯O inter­molecular contacts consist of the carboxyl­ate oxygen (O2) at (x, y, z) acting as a hydrogen-bond acceptor to three C—H bonds (C4—H4, C12—H12, and C15—H15) on an adjacent complex at (−1 − x, −y, 1 − z), as shown in Fig. 2[link]. Within each complex, weak π-stacking inter­actions between the imidazole rings (Cg1⋯Cg2) on the same bdippza ligand are observed. Furthermore, a weak slipped-parallel C—H⋯π (C9—H9⋯Cg2, X—H, π = 60°) inter­action is present. Full details of the hydrogen-bonding geometries and ππ inter­actions are provided in Table 2[link].

Table 2
Hydrogen-bonding geometry and π–π inter­actions (Å, °)

Cg1 and Cg2 are the centroids of the N1/N2/C3/C2/C1 and N3/N4/C7/C6/C5 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.95 2.44 3.3883 (18) 172
C12—H12⋯O2i 0.94 2.34 3.223 (2) 156
C15—H15⋯O2i 0.94 2.44 3.229 (2) 141
Cg1⋯Cg2     4.2001 (9)  
C9—H9⋯Cg2 0.99 2.97 3.9410 (18) 168
Symmetry code: (i) −x − 1, −y, −z + 1.
[Figure 2]
Figure 2
A partial unit-cell packing diagram, showing the weak C—H⋯O inter­molecular inter­actions (dashed lines). For clarity, only H atoms involved in the C—H⋯O inter­actions between adjacent mol­ecules have been included.

4. Database survey

Three related homoleptic ZnII compounds containing dif­ferent substituted bis­(3,5-di­alkyl­pyrazol-1-yl)acetate sup­porting ligands [bdmpza = bis­(3,5-di­methyl­pyrazol-1-yl)acetate and bpatBu2,Me2 = 3,5-di-tert-butyl-1-(3,5-dimethyl-1H-pyrazol-1-yl)acetate] have been characterized crystallographically (Pockaj et al., 2015[Pockaj, M., Kozlevcar, B. & Kitanovski, N. (2015). Acta Chim. Slov. 62, 272-280.]; Hegelmann et al., 2003[Hegelmann, I., Beck, A., Eichhorn, C., Weibert, B. & Burzlaff, N. (2003). Eur. J. Inorg. Chem. pp. 339-347.]; Beck et al., 2001[Beck, A., Weibert, B. & Burzlaff, N. (2001). Eur. J. Inorg. Chem. pp. 521-527.]). The Zn—O bond length in 2 [2.0472 (10) Å] is shorter compared to [(bdmpza)2Zn]·3H2O (Beck et al., 2001[Beck, A., Weibert, B. & Burzlaff, N. (2001). Eur. J. Inorg. Chem. pp. 521-527.]) and [(bdmpza)2Zn]·2H2O (Pockaj et al., 2015[Pockaj, M., Kozlevcar, B. & Kitanovski, N. (2015). Acta Chim. Slov. 62, 272-280.]), which reported Zn—O bond lengths of 2.119 (3) and 2.100 (2) Å, respectively. The longer Zn—O bond lengths in the hydrated [(bdmpza)2Zn]·xH2O complexes are a consequence of O—H⋯H hydrogen-bonding inter­actions between the carboxyl­ate carbonyl O atoms and cocrystallized water mol­ecules that link adjacent coordination mol­ecules to form infinite chains. Compound 2 does not contain cocrystallized water or solvent. Conversely, the Zn—O distance in 2 is longer by 0.04 Å compared to [(bpatBu2,Me2)2Zn] (Hegelmann et al., 2003[Hegelmann, I., Beck, A., Eichhorn, C., Weibert, B. & Burzlaff, N. (2003). Eur. J. Inorg. Chem. pp. 339-347.]), which has a Zn—O bond length of 2.006 (3) Å. The difference in bond lengths arises from [(bpatBu2,Me2)2Zn] having a distorted square-pyramidal environment instead of a distorted octa­hedral coordination due to one of the 3,5-di-tert-butyl­pyrazol-1-yl groups having a weak inter­action with the zinc ion.

5. Synthesis and crystallization

5.1. General

All reactions were performed using standard Schlenk techniques under a nitro­gen atmosphere. The tetra­hydro­furan (THF) solvent was distilled from sodium/benzo­phenone ketyl, while methanol was distilled from CaH2. NMR spectra were recorded on a Bruker AVANCE III 600 NMR. Chemical shifts are expressed in parts per million (ppm) and referenced to residual solvent as the inter­nal reference for 1H (CDCl3; δ = 7.24 ppm) and 13C (CDCl3; δ = 77.16 ppm). IR spectra were measured using a PerkinElmer Spectrum 100 spectrometer. Electrospray mass spectra were recorded on a Bruker HCTultra ETD II mass spectrometer. Bis­(3,5-diiso­propyl­pyrazol-1-yl)methane was prepared according to a previously reported procedure (Spiro­pulos et al., 2011[Spiropulos, N. G., Chingas, G. C., Sullivan, M., York, J. T. & Brown, E. C. (2011). Inorg. Chim. Acta, 376, 562-573.]).

5.2. Preparation of lithium bis­(3,5-diiso­propyl­pyrazol-1-yl)acetate, [Li(bdippza)] (1)

To a solution of bis­(3,5-diiso­propyl­pyrazol-1-yl)methane (0.5 g, 1.6 mmol) dissolved in dry THF (40 ml) was added nBuLi (1.6 M, 1.5 ml, 2.4 mmol) in hexane at 195 K. After 1 h of stirring, carbon dioxide was bubbled through the solution at 233 K for 30 min. The solution then was allowed to reach ambient temperature and stirred for 2 h before the volume was reduced to 3 ml under reduced pressure. Addition of hexane (10 ml) resulted in the formation of a white solid, which was filtered off, washed with hexane (2 × 5 ml) and dried under reduced pressure (0.27 g, 47%). 1H NMR (CDCl3): δ 6.59 (s, 1H), 5.80 (s, 2H), 3.06 (heptet, J = 6.8 Hz, 2H), 2.83 (heptet, J = 6.9 Hz, 2H), 1.31 (d, J = 6.8 Hz, 6H), 1.23 (d, J = 6.8 Hz, 6H), 1.05 (d, J = 6.9 Hz, 6H), 0.98 (d, J = 6.9 Hz, 6H). FT–IR (ATR, cm−1): 2966 (m), 2930 (m), 2870 (m), 1676 (m), 1643 (s), 1551 (m), 1458 (m), 1408 (m), 1373 (m), 1310 (m), 1284 (m), 1226 (m), 1181 (m), 1104 (m), 1073 (m), 1060 (m), 1012 (m), 912 (m), 861 (m), 792 (s), 771 (m), 738 (m), 723 (m), 686 (m). MS (ESI, neg): m/z found for [C20H31N4O2 −Li], 359; [C19H31N4 − Li − CO2], 315.

5.3. Preparation of [(bdippza)2Zn]

ZnCl2 (0.015 g, 0.11 mmol) was added to [Li(bdippza)] (1) (0.083 g, 0.23 mmol) in dry MeOH (15 ml). The reaction was stirred for 24 h, during which time a white solid formed. The solvent was removed under reduced pressure, di­chloro­methane (15 ml) was added, and the solution filtered through celite. The volume was reduced (∼3 ml) and addition of hexane (10 ml) caused the formation of a white solid. The solid was collected, washed with hexane (2 × 5 ml), and dried under vacuum (0.069 g, 78%). Colorless crystals suitable for crystallographic characterization were obtained by hexane diffusion into THF at room temperature. 1H NMR (CDCl3): δ 6.56 (s, 2H, CH), 6.00 (s, 4H, Hpz), 3.59–3.47 (m, 4H, CH-iPr), 3.02 (heptet, J = 6.8 Hz, 4H, CH-iPr), 1.37 (d, J = 6.8 Hz, 12H, CH3-iPr), 1.30 (d, J = 6.8 Hz, 12H, CH3-iPr), 1.19 (d, J = 6.9 Hz, 12H, CH3-iPr), 1.02 (d, J = 6.9 Hz, 12H, CH3-iPr). 13C NMR (CDCl3): δ 165.8 (CO2), 163.9 (Cpz), 154.6 (Cpz), 99.6 (Cpz), 67.0 (CH), 27.2 (CH-iPr), 25.9 (CH-iPr), 23.3(CH3-iPr), 22.8 (CH3-iPr), 22.4 (CH3-iPr), 22.1 (CH3-iPr). FT–IR (ATR, cm−1): 2966 (m), 2932 (m), 2871 (m), 1687 (s, CO2), 1552 (m, C=N), 1475 (m), 1460 (m), 1409 (m), 1356 (s), 1315 (m), 1292 (m), 1252 (m), 1184 (m), 1088 (m), 1059 (m), 1024 (m), 910 (m), 854 (m), 798 (s), 778 (s), 724 (m), 692 (s). MS (ESI, pos): m/z found for [C40H62N8O4Zn + Na]+, 805.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Zn(C20H31N4O2)2]
Mr 784.35
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 10.1806 (1), 16.9578 (3), 12.4534 (2)
β (°) 96.9735 (10)
V3) 2134.06 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.62
Crystal size (mm) 0.25 × 0.18 × 0.13
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Multi-scan (DENZO-SMN; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.860, 0.923
No. of measured, independent and observed [I > 2σ(I)] reflections 9825, 5072, 3881
Rint 0.033
(sin θ/λ)max−1) 0.658
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.075, 1.03
No. of reflections 5072
No. of parameters 365
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.28, −0.41
Computer programs: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and WinGX and ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 2012) and ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Bis[bis(3,5-diisopropylpyrazol-1-yl)acetato]zinc(II) top
Crystal data top
[Zn(C20H31N4O2)2]F(000) = 840
Mr = 784.35Dx = 1.221 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8352 reflections
a = 10.1806 (1) Åθ = 1.0–20.4°
b = 16.9578 (3) ŵ = 0.62 mm1
c = 12.4534 (2) ÅT = 150 K
β = 96.9735 (10)°Prism, colorless
V = 2134.06 (6) Å30.25 × 0.18 × 0.13 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
5072 independent reflections
Radiation source: fine-focus sealed tube3881 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Phi and ω scanθmax = 27.9°, θmin = 2.4°
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
h = 1313
Tmin = 0.860, Tmax = 0.923k = 2222
9825 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0287P)2 + 0.6212P]
where P = (Fo2 + 2Fc2)/3
5072 reflections(Δ/σ)max < 0.001
365 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.41 e Å3
Special details top

Experimental. The program Denzo-SMN (Otwinowski & Minor, 1997) uses a scaling algorithm (Fox & Holmes, 1966) which effectively corrects for absorption effects. High redundancy data were used in the scaling program hence the 'multi-scan' code word was used. No transmission coefficients are available from the program (only scale factors for each frame). The scale factors in the experimental table are calculated from the 'size' command in the SHELXL-97 input file.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.00000.50000.01725 (8)
O10.17165 (10)0.05936 (6)0.44996 (8)0.0209 (2)
O20.39140 (10)0.04825 (7)0.41634 (9)0.0265 (3)
N10.11682 (11)0.10849 (7)0.47319 (9)0.0176 (3)
N20.23516 (11)0.10762 (7)0.51632 (9)0.0163 (3)
N30.20337 (11)0.00927 (7)0.65508 (9)0.0173 (3)
N40.06882 (11)0.00496 (7)0.65787 (9)0.0182 (3)
C10.10013 (14)0.18293 (9)0.44361 (12)0.0202 (3)
C20.20742 (15)0.22944 (9)0.46651 (13)0.0230 (3)
C30.29170 (14)0.18053 (9)0.51367 (12)0.0184 (3)
C40.28291 (14)0.03319 (9)0.55466 (11)0.0163 (3)
C50.24317 (15)0.01243 (9)0.75104 (11)0.0201 (3)
C60.12943 (16)0.02940 (10)0.81833 (12)0.0243 (3)
C70.02332 (15)0.01781 (9)0.75795 (12)0.0201 (3)
C80.28289 (14)0.03104 (9)0.46471 (11)0.0168 (3)
C90.02168 (16)0.20845 (10)0.39572 (14)0.0283 (4)
C100.0141 (2)0.26302 (13)0.29895 (17)0.0421 (5)
C110.11899 (19)0.24866 (13)0.48170 (18)0.0388 (5)
C120.41863 (15)0.19758 (10)0.55931 (13)0.0243 (3)
C130.48545 (18)0.27096 (11)0.50744 (18)0.0360 (4)
C140.3943 (2)0.20583 (13)0.68232 (15)0.0377 (4)
C150.38671 (16)0.02061 (11)0.76703 (13)0.0267 (4)
C160.4041 (2)0.01540 (17)0.88672 (15)0.0437 (6)
C170.4420 (2)0.09813 (14)0.71835 (18)0.0435 (5)
C180.12297 (15)0.02653 (10)0.79192 (13)0.0245 (3)
C190.18716 (18)0.05324 (12)0.81940 (16)0.0328 (4)
C200.1505 (2)0.08334 (12)0.88676 (16)0.0361 (4)
H20.2196 (16)0.2832 (10)0.4523 (13)0.024 (4)*
H40.3720 (16)0.0402 (9)0.5694 (12)0.018 (4)*
H60.1259 (16)0.0462 (10)0.8923 (14)0.027 (4)*
H90.0639 (17)0.1606 (11)0.3703 (14)0.031 (5)*
H10A0.079 (2)0.2389 (13)0.2427 (18)0.055 (6)*
H10B0.064 (2)0.2722 (12)0.2667 (17)0.052 (6)*
H10C0.0515 (19)0.3126 (12)0.3223 (16)0.043 (6)*
H11A0.1456 (19)0.2147 (12)0.5427 (16)0.041 (5)*
H11B0.197 (2)0.2639 (12)0.4482 (16)0.046 (6)*
H11C0.0797 (19)0.2952 (11)0.5102 (15)0.036 (5)*
H120.4765 (16)0.1549 (10)0.5438 (13)0.019 (4)*
H13A0.568 (2)0.2786 (11)0.5388 (15)0.044 (6)*
H13B0.504 (2)0.2641 (13)0.4277 (18)0.052 (6)*
H13C0.429 (2)0.3190 (12)0.5261 (15)0.044 (5)*
H14A0.479 (2)0.2095 (13)0.7118 (17)0.059 (6)*
H14B0.344 (2)0.1589 (12)0.7184 (15)0.043 (5)*
H14C0.342 (2)0.2497 (12)0.7026 (15)0.039 (5)*
H150.4339 (17)0.0219 (10)0.7318 (14)0.024 (4)*
H16A0.498 (2)0.0199 (13)0.8966 (17)0.054 (6)*
H16C0.3739 (19)0.0372 (12)0.9114 (15)0.036 (5)*
H16B0.358 (2)0.0561 (13)0.9265 (17)0.052 (6)*
H17A0.432 (2)0.0998 (12)0.6390 (17)0.051 (6)*
H17B0.392 (2)0.1428 (12)0.7557 (16)0.047 (6)*
H17C0.536 (2)0.1047 (13)0.7273 (17)0.055 (6)*
H180.1625 (16)0.0474 (10)0.7325 (13)0.023 (4)*
H19A0.1506 (17)0.0783 (10)0.8825 (15)0.032 (5)*
H19B0.285 (2)0.0461 (12)0.8343 (16)0.050 (6)*
H19C0.1748 (18)0.0875 (11)0.7587 (16)0.036 (5)*
H20A0.107 (2)0.1343 (13)0.8722 (16)0.046 (6)*
H20B0.117 (2)0.0619 (12)0.9539 (17)0.049 (6)*
H20C0.240 (2)0.0920 (12)0.9050 (16)0.048 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01007 (11)0.02354 (14)0.01834 (12)0.00096 (10)0.00251 (9)0.00057 (10)
O10.0121 (5)0.0256 (6)0.0249 (5)0.0003 (4)0.0022 (4)0.0045 (4)
O20.0128 (5)0.0374 (7)0.0286 (6)0.0035 (5)0.0005 (5)0.0088 (5)
N10.0097 (6)0.0228 (7)0.0211 (6)0.0002 (5)0.0050 (5)0.0009 (5)
N20.0094 (5)0.0213 (6)0.0185 (6)0.0001 (5)0.0031 (5)0.0006 (5)
N30.0120 (5)0.0257 (7)0.0143 (6)0.0006 (5)0.0026 (5)0.0012 (5)
N40.0116 (5)0.0247 (7)0.0181 (6)0.0016 (5)0.0007 (5)0.0001 (5)
C10.0169 (7)0.0218 (8)0.0220 (8)0.0037 (6)0.0027 (6)0.0032 (6)
C20.0221 (8)0.0167 (8)0.0305 (9)0.0017 (6)0.0045 (7)0.0029 (6)
C30.0141 (7)0.0205 (8)0.0198 (7)0.0004 (6)0.0005 (6)0.0051 (6)
C40.0098 (6)0.0223 (8)0.0171 (7)0.0004 (6)0.0027 (6)0.0023 (6)
C50.0194 (7)0.0265 (9)0.0148 (7)0.0006 (6)0.0041 (6)0.0014 (6)
C60.0248 (8)0.0330 (9)0.0149 (7)0.0014 (7)0.0011 (6)0.0006 (6)
C70.0193 (7)0.0221 (8)0.0182 (7)0.0035 (6)0.0005 (6)0.0021 (6)
C80.0143 (7)0.0201 (7)0.0166 (7)0.0018 (6)0.0042 (6)0.0038 (6)
C90.0226 (8)0.0247 (9)0.0400 (10)0.0060 (7)0.0139 (8)0.0004 (7)
C100.0447 (12)0.0462 (13)0.0372 (11)0.0198 (10)0.0127 (10)0.0036 (9)
C110.0227 (9)0.0415 (12)0.0518 (13)0.0100 (9)0.0031 (9)0.0056 (10)
C120.0159 (7)0.0238 (8)0.0341 (9)0.0004 (7)0.0064 (7)0.0072 (7)
C130.0219 (9)0.0324 (10)0.0535 (13)0.0079 (8)0.0041 (9)0.0048 (9)
C140.0342 (10)0.0455 (12)0.0352 (10)0.0055 (10)0.0110 (9)0.0117 (9)
C150.0202 (8)0.0436 (11)0.0174 (7)0.0039 (7)0.0064 (7)0.0024 (7)
C160.0268 (9)0.0835 (19)0.0223 (9)0.0041 (11)0.0093 (8)0.0009 (10)
C170.0381 (11)0.0528 (14)0.0402 (12)0.0201 (10)0.0079 (10)0.0006 (10)
C180.0205 (8)0.0310 (9)0.0206 (8)0.0072 (7)0.0031 (7)0.0043 (6)
C190.0247 (9)0.0362 (10)0.0350 (10)0.0004 (8)0.0066 (8)0.0023 (8)
C200.0341 (10)0.0375 (11)0.0330 (10)0.0086 (9)0.0110 (9)0.0033 (8)
Geometric parameters (Å, º) top
Zn1—O1i2.0471 (10)C10—H10B0.94 (2)
Zn1—O12.0472 (10)C10—H10C0.98 (2)
Zn1—N42.1674 (11)C11—H11A0.96 (2)
Zn1—N4i2.1675 (11)C11—H11B0.98 (2)
Zn1—N12.1941 (12)C11—H11C0.971 (19)
Zn1—N1i2.1942 (12)C12—C131.524 (2)
O1—C81.2640 (17)C12—C141.528 (2)
O2—C81.2275 (17)C12—H120.938 (17)
N1—C11.3317 (19)C13—H13A0.98 (2)
N1—N21.3774 (15)C13—H13B0.99 (2)
N2—C31.3625 (19)C13—H13C1.01 (2)
N2—C41.4539 (18)C14—H14A0.98 (2)
N3—C51.3583 (19)C14—H14B1.02 (2)
N3—N41.3680 (15)C14—H14C0.93 (2)
N3—C41.4623 (18)C15—C161.525 (2)
N4—C71.3330 (19)C15—C171.526 (3)
C1—C21.404 (2)C15—H150.945 (18)
C1—C91.503 (2)C16—H16A0.98 (2)
C2—C31.375 (2)C16—H16C0.98 (2)
C2—H20.933 (17)C16—H16B0.94 (2)
C3—C121.5016 (19)C17—H17A1.01 (2)
C4—C81.562 (2)C17—H17B1.00 (2)
C4—H40.954 (16)C17—H17C0.98 (2)
C5—C61.375 (2)C18—C191.523 (2)
C5—C151.505 (2)C18—C201.524 (2)
C6—C71.403 (2)C18—H180.953 (16)
C6—H60.960 (17)C19—H19A1.004 (18)
C7—C181.505 (2)C19—H19B1.00 (2)
C9—C101.528 (3)C19—H19C0.949 (19)
C9—C111.528 (3)C20—H20A0.98 (2)
C9—H90.988 (18)C20—H20B1.01 (2)
C10—H10A0.99 (2)C20—H20C0.93 (2)
O1i—Zn1—O1180.0C9—C10—H10C110.5 (12)
O1i—Zn1—N493.60 (4)H10A—C10—H10C108.5 (18)
O1—Zn1—N486.40 (4)H10B—C10—H10C111.1 (17)
O1i—Zn1—N4i86.40 (4)C9—C11—H11A112.4 (12)
O1—Zn1—N4i93.60 (4)C9—C11—H11B108.1 (12)
N4—Zn1—N4i180.0H11A—C11—H11B109.2 (16)
O1i—Zn1—N193.49 (4)C9—C11—H11C111.0 (12)
O1—Zn1—N186.51 (4)H11A—C11—H11C106.6 (16)
N4—Zn1—N182.91 (4)H11B—C11—H11C109.5 (16)
N4i—Zn1—N197.09 (4)C3—C12—C13110.93 (14)
O1i—Zn1—N1i86.51 (4)C3—C12—C14110.77 (14)
O1—Zn1—N1i93.49 (4)C13—C12—C14111.10 (15)
N4—Zn1—N1i97.09 (4)C3—C12—H12108.8 (9)
N4i—Zn1—N1i82.91 (4)C13—C12—H12107.8 (10)
N1—Zn1—N1i180.00 (3)C14—C12—H12107.4 (10)
C8—O1—Zn1121.05 (9)C12—C13—H13A107.5 (12)
C1—N1—N2105.37 (11)C12—C13—H13B110.4 (12)
C1—N1—Zn1138.76 (10)H13A—C13—H13B110.0 (17)
N2—N1—Zn1114.54 (9)C12—C13—H13C110.5 (12)
C3—N2—N1111.58 (11)H13A—C13—H13C107.2 (15)
C3—N2—C4129.68 (11)H13B—C13—H13C111.1 (16)
N1—N2—C4118.72 (11)C12—C14—H14A109.7 (13)
C5—N3—N4111.59 (11)C12—C14—H14B112.4 (11)
C5—N3—C4129.36 (12)H14A—C14—H14B107.7 (16)
N4—N3—C4119.03 (11)C12—C14—H14C111.3 (12)
C7—N4—N3105.81 (11)H14A—C14—H14C110.2 (17)
C7—N4—Zn1136.30 (10)H14B—C14—H14C105.3 (16)
N3—N4—Zn1114.33 (8)C5—C15—C16110.73 (14)
N1—C1—C2110.35 (13)C5—C15—C17110.12 (15)
N1—C1—C9121.44 (13)C16—C15—C17110.92 (16)
C2—C1—C9128.20 (14)C5—C15—H15108.4 (10)
C3—C2—C1106.80 (14)C16—C15—H15107.3 (10)
C3—C2—H2126.4 (10)C17—C15—H15109.3 (10)
C1—C2—H2126.8 (10)C15—C16—H16A110.4 (13)
N2—C3—C2105.90 (12)C15—C16—H16C106.8 (11)
N2—C3—C12123.10 (13)H16A—C16—H16C107.8 (16)
C2—C3—C12130.97 (14)C15—C16—H16B111.2 (13)
N2—C4—N3110.44 (11)H16A—C16—H16B108.0 (18)
N2—C4—C8109.91 (11)H16C—C16—H16B112.5 (18)
N3—C4—C8111.81 (12)C15—C17—H17A109.8 (12)
N2—C4—H4108.6 (10)C15—C17—H17B108.9 (12)
N3—C4—H4108.1 (9)H17A—C17—H17B109.3 (16)
C8—C4—H4107.9 (10)C15—C17—H17C111.7 (13)
N3—C5—C6105.89 (13)H17A—C17—H17C108.7 (17)
N3—C5—C15122.65 (13)H17B—C17—H17C108.4 (17)
C6—C5—C15131.26 (14)C7—C18—C19111.02 (14)
C5—C6—C7106.87 (13)C7—C18—C20111.26 (14)
C5—C6—H6125.2 (10)C19—C18—C20110.72 (14)
C7—C6—H6127.9 (10)C7—C18—H18108.4 (10)
N4—C7—C6109.81 (13)C19—C18—H18107.1 (10)
N4—C7—C18120.72 (13)C20—C18—H18108.2 (10)
C6—C7—C18129.46 (14)C18—C19—H19A111.2 (10)
O2—C8—O1127.38 (14)C18—C19—H19B109.0 (12)
O2—C8—C4116.06 (12)H19A—C19—H19B111.2 (15)
O1—C8—C4116.56 (12)C18—C19—H19C110.6 (11)
C1—C9—C10110.96 (15)H19A—C19—H19C109.8 (15)
C1—C9—C11110.26 (14)H19B—C19—H19C104.8 (16)
C10—C9—C11110.77 (15)C18—C20—H20A112.2 (12)
C1—C9—H9107.6 (10)C18—C20—H20B111.5 (12)
C10—C9—H9108.5 (10)H20A—C20—H20B106.3 (16)
C11—C9—H9108.7 (10)C18—C20—H20C111.9 (13)
C9—C10—H10A112.5 (13)H20A—C20—H20C108.7 (17)
C9—C10—H10B107.7 (13)H20B—C20—H20C105.9 (17)
H10A—C10—H10B106.6 (17)
O1i—Zn1—O1—C816 (15)C1—C2—C3—C12177.01 (15)
N4—Zn1—O1—C853.53 (11)C3—N2—C4—N3109.26 (15)
N4i—Zn1—O1—C8126.47 (11)N1—N2—C4—N372.21 (15)
N1—Zn1—O1—C829.57 (11)C3—N2—C4—C8126.92 (15)
N1i—Zn1—O1—C8150.43 (11)N1—N2—C4—C851.62 (16)
O1i—Zn1—N1—C131.57 (15)C5—N3—C4—N2128.41 (15)
O1—Zn1—N1—C1148.43 (15)N4—N3—C4—N253.40 (16)
N4—Zn1—N1—C1124.77 (15)C5—N3—C4—C8108.87 (16)
N4i—Zn1—N1—C155.23 (15)N4—N3—C4—C869.32 (15)
N1i—Zn1—N1—C192 (11)N4—N3—C5—C61.46 (17)
O1i—Zn1—N1—N2132.72 (9)C4—N3—C5—C6179.76 (14)
O1—Zn1—N1—N247.28 (9)N4—N3—C5—C15173.97 (13)
N4—Zn1—N1—N239.52 (9)C4—N3—C5—C154.3 (2)
N4i—Zn1—N1—N2140.48 (9)N3—C5—C6—C70.73 (17)
N1i—Zn1—N1—N2104 (11)C15—C5—C6—C7174.15 (16)
C1—N1—N2—C30.03 (15)N3—N4—C7—C61.08 (16)
Zn1—N1—N2—C3169.36 (9)Zn1—N4—C7—C6155.28 (12)
C1—N1—N2—C4178.82 (12)N3—N4—C7—C18178.12 (13)
Zn1—N1—N2—C411.85 (15)Zn1—N4—C7—C1825.5 (2)
C5—N3—N4—C71.60 (16)C5—C6—C7—N40.23 (18)
C4—N3—N4—C7179.91 (12)C5—C6—C7—C18178.88 (15)
C5—N3—N4—Zn1160.70 (10)Zn1—O1—C8—O2159.40 (12)
C4—N3—N4—Zn117.80 (15)Zn1—O1—C8—C420.61 (16)
O1i—Zn1—N4—C757.11 (15)N2—C4—C8—O2104.57 (14)
O1—Zn1—N4—C7122.89 (15)N3—C4—C8—O2132.40 (13)
N4i—Zn1—N4—C7160 (6)N2—C4—C8—O175.44 (16)
N1—Zn1—N4—C7150.19 (15)N3—C4—C8—O147.58 (16)
N1i—Zn1—N4—C729.81 (15)N1—C1—C9—C10136.65 (16)
O1i—Zn1—N4—N3147.94 (9)C2—C1—C9—C1045.1 (2)
O1—Zn1—N4—N332.06 (9)N1—C1—C9—C11100.24 (18)
N4i—Zn1—N4—N345 (6)C2—C1—C9—C1178.0 (2)
N1—Zn1—N4—N354.86 (9)N2—C3—C12—C13157.28 (15)
N1i—Zn1—N4—N3125.13 (9)C2—C3—C12—C1325.2 (2)
N2—N1—C1—C20.58 (16)N2—C3—C12—C1478.85 (19)
Zn1—N1—C1—C2165.78 (11)C2—C3—C12—C1498.7 (2)
N2—N1—C1—C9177.97 (13)N3—C5—C15—C16159.12 (17)
Zn1—N1—C1—C912.8 (2)C6—C5—C15—C1626.7 (3)
N1—C1—C2—C30.91 (18)N3—C5—C15—C1777.8 (2)
C9—C1—C2—C3177.51 (15)C6—C5—C15—C1796.3 (2)
N1—N2—C3—C20.52 (16)N4—C7—C18—C1979.98 (18)
C4—N2—C3—C2178.10 (13)C6—C7—C18—C1999.0 (2)
N1—N2—C3—C12177.54 (13)N4—C7—C18—C20156.22 (15)
C4—N2—C3—C123.8 (2)C6—C7—C18—C2024.8 (2)
C1—C2—C3—N20.84 (16)
Symmetry code: (i) x, y, z+1.
Hydrogen-bonding geometry and ππ interactions (Å, °) top
Cg1 and Cg2 are the centroids of the N1/N2/C3/C2/C1 and N3/N4/C7/C6/C5 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.952.443.3883 (18)172
C12—H12···O2i0.942.343.223 (2)156
C15—H15···O2i0.942.443.229 (2)141
Cg1···Cg24.2001 (9)
C9—H9···Cg20.992.973.9410 (18)168
Symmetry code: (i) -x-1, -y, -z+1.
 

Acknowledgements

We gratefully acknowledge Dr Atta M. Arif at the University of Utah for X-ray structural data collection and refinement. The Boise State University NMR facility instrumentation was purchased through an NSF CRIF-MU/RUI grant and departmental funding.

Funding information

Funding for this research was provided by: NSF CRIF-MU/RUI grant (grant No. 0639251, for the purchase of The Boise State University NMR facility instrumentation); National Science Foundation (grant No. 0923535, for support of mass spectrometry services); Institutional Development Awards (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health (grant Nos. P20GM103408 and P20GM109095).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBeck, A., Weibert, B. & Burzlaff, N. (2001). Eur. J. Inorg. Chem. pp. 521–527.  CrossRef Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHegelmann, I., Beck, A., Eichhorn, C., Weibert, B. & Burzlaff, N. (2003). Eur. J. Inorg. Chem. pp. 339–347.  CrossRef Google Scholar
First citationHeinrikson, R. L. (1977). Methods Enzymol. 47, 175–189.  CrossRef Google Scholar
First citationHolland, D. R., Hausrath, A. C., Juers, D. & Matthews, B. W. (1995). Protein Sci. 4, 1955–1965.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLipscomb, W. N. (1970). Acc. Chem. Res. 3, 81–89.  CrossRef Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPockaj, M., Kozlevcar, B. & Kitanovski, N. (2015). Acta Chim. Slov. 62, 272–280.  Google Scholar
First citationRees, D. C., Lewis, M. & Lipscomb, W. N. (1983). J. Mol. Biol. 168, 367–387.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpiropulos, N. G., Chingas, G. C., Sullivan, M., York, J. T. & Brown, E. C. (2011). Inorg. Chim. Acta, 376, 562–573.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds