research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di-μ-chlorido-bis­­{chlorido­[(−)-5,6-pinenebi­pyridine]­cobalt(II)} aqua­di­chlorido[(−)-5,6-pinenebi­pyridine]cobalt(II)

crossmark logo

aUniversity of Applied Sciences of Western Switzerland, HES-SO, HEIA-FR, Boulevard de Pérolles 80, CH-1700 Fribourg, Switzerland, and bUniversité de Fribourg, Département de Chimie, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
*Correspondence e-mail: olimpia.mamulasteiner@hefr.ch

Edited by M. Weil, Vienna University of Technology, Austria (Received 15 February 2022; accepted 29 March 2022; online 5 April 2022)

The crystal structure of [Co2Cl4(C17H18N2)2][CoCl2(C17H18N2)(H2O)] or [Co(L)Cl(μ-Cl)]2[Co(L)(Cl)2(OH2)], where L is the enanti­opure bidentate ligand (−)-5,6-pinenebi­pyridine (C17H18N2), has been determined. Crystals suitable for X-ray structure analysis were obtained by slow evaporation of an ethano­lic solution containing equimolar amounts of L and CoCl2·6H2O. The CoII cations all have a coordination number of five, and in each case the coordination polyhedron is a trigonal bipyramid. The Co—N bonds lengths range from 2.037 (7) to 2.195 (7) Å, and Co—Cl bonds lengths range from 2.284 (2) to 2.509 (2) Å. The asymmetric unit contains two discrete complexes, one dinuclear and the other mononuclear. Between the two mol­ecules, two types of inter­molecular inter­actions have been evidenced: ππ stackings involving the bi­pyridine units, and O—H⋯Cl hydrogen bonds between the hydrogen atoms of the aqua ligand coordinating to the mononuclear complex and the non-bridging chlorido ligand coordinating to the dinuclear mol­ecule. These inter­actions lead to a two-dimensional supra­molecular arrangement parallel to the ab plane.

1. Chemical context

Single-mol­ecule magnets (SMMs) are metal–organic compounds that are superparamagnetic below a blocking temperature. It is important to note that this type of magnetism has a mol­ecular origin, instead of the more traditional bulk-originated magnetism (Zhu et al., 2013[Zhu, Y.-Y., Cui, C., Zhang, Y.-Q., Jia, J.-H., Guo, X., Gao, C., Qian, K., Jiang, S.-D., Wang, B.-W., Wang, Z.-M. & Gao, S. (2013). Chem. Sci. 4, 1802-1806.]). Below the blocking temperature, a SMM exhibits magnetic hysteresis. In order to obtain a coordination compound behaving as an SMM, a paramagnetic metal cation has to be used, for example CoII (Lang et al., 2019[Lang, W.-J., Kurmoo, M. & Zeng, M.-H. (2019). Inorg. Chem. 58, 7236-7242.]). Moreover, the use of chiral ligands for these paramagnetic metal cations can lead to predetermination of their chirality and thus to the synthesis of magnetochiral materials (Liu et al., 2018[Liu, M.-J., Yuan, J., Wang, B.-L., Wu, S.-T., Zhang, Y.-Q., Liu, C.-M. & Kou, H.-Z. (2018). Cryst. Growth Des. 18, 7611-7617.]). The enanti­omers of 5,6-pinene bi­pyridine (C17H18N2; L) and their derivatives have the ability to predetermine the chirality of d and f metal cations (Lama et al., 2008[Lama, M., Mamula, O., Kottas, G. S., De Cola, L., Stoeckli-Evans, H. & Shova, S. (2008). Inorg. Chem. 47, 8000-8015.]; Mamula & von Zelewsky, 2003[Mamula, O. (2003). Coord. Chem. Rev. 242, 87-95.]).

[Scheme 1]

Within a current project we are investigating the metal complexes obtained with paramagnetic metal cations, i.e. CoII, and report here the crystal structure of [Co(L)Cl(μ-Cl)]2[Co(L)(Cl)2(OH2)] (1).

2. Structural commentary

The asymmetric unit of (1) comprises two discrete complexes (Fig. 1[link]). The dinuclear complex possess two bidentate terminal (−)-5,6-pinenebi­pyridine ligands coordinated by two distinct CoII cations (Co1, Co2) via their nitro­gen atoms. The two CoII cations are linked by two bridging chlorido ligands (Cl2, Cl3). Each coordination sphere is completed by two additional terminal chlorido ligands (Cl1, Cl4), leading to a coordination number of 5 in each case. The mononuclear complex (Co3) also features a CoII cation with a coordination number of 5. In this case, one bidentate (−)-5,6-pinenebi­pyridine, two terminal chlorido ligands (Cl5; Cl6) and an aqua ligand bind to the CoII cation. The two types of complexes inter­act via an O—H⋯Cl hydrogen bond (indicated with a dashed line in Fig. 1[link]; Table 1[link]) between one hydrogen atom belonging to the aqua ligand of the mononuclear complex and a terminal chlorido ligand belonging to the dinuclear complex. The other hydrogen atom of the water mol­ecule forms another hydrogen bond with a dinuclear complex belonging to a neighbouring mol­ecule (vide infra).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl1 0.84 (10) 2.37 (10) 3.194 (7) 166 (9)
O1—H1B⋯Cl4i 0.87 (10) 2.43 (10) 3.260 (7) 161 (9)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structures of the two complexes present in (1), with the O—H⋯Cl hydrogen bond shown as a dashed line. Displacement ellipsoids are set at the 30% probability level. Carbon-bound hydrogen atoms are omitted for clarity.

The geometric parameters for the trigonal–bipyramidal coordination environments are similar for the three CoII cations. In order to compare their coordination polyhedra, the values for the parameter τ were calculated. For a perfect trigonal–bipyramidal arrangement τ is 1, and for a perfect square-pyramidal arrangement τ is 0 (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). The polyhedron around the cation in the mononuclear complex (Co3 in Fig. 2[link]) is the closest to trigonal–bipyramidal (τ = 0.78). However, those of the cations of the dinuclear complex are not so different (τ = 0.69 for Co1, τ = 0.64 for Co2, see Fig. 2[link]).

[Figure 2]
Figure 2
The trigonal–bipyramidal coordination spheres of the CoII cations in (a) the dinuclear complex and (b) the mononuclear complex. Non-coordinating atoms are omitted for clarity.

The Co—N bond lengths are between 2.037 (7) and 2.195 (7) Å, the Co—Cl bonds lengths are between 2.284 (2) and 2.509 (2) Å and the Co—O bond length is 2.160 (6) Å, which are all within the expected ranges (Bernhardt & Lawrance, 2003[Bernhardt, P. V. & Lawrance, G. A. (2003). Comprehensive Coordination Chemistry II, vol. 6, ch. 6.1 Cobalt. Amsterdam: Elsevier Pergamon.]).

3. Supra­molecular features

In the crystal, hydrogen-bonding inter­actions occur between the dinuclear and mononuclear complexes, leading to a supra­molecular zigzag chain extending parallel to the b axis (Fig. 3[link]). The hydrogen atoms of the aqua ligand of the mononuclear complex form hydrogen bonds with the terminal chlorido ligands belonging to the dinuclear complex. The bond lengths and angles (Table 1[link]), are in the expected ranges for this type of inter­action (Steiner, 2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]).

[Figure 3]
Figure 3
Hydrogen bonds (blue dotted lines) forming an infinite supra­molecular chain. Carbon-bound hydrogen atoms are omitted for clarity. [Symmetry codes: (i) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z; (ii) 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z; (iii) x, −1 + y, z.]

This arrangement is stabilized by ππ stacking inter­actions, which are responsible for the cohesion of the structure by forming layers of alternating dinuclear and mononuclear complexes extending parallel to the ab plane (Fig. 4[link]). Neighbouring dinuclear complexes are connected via ππ inter­actions between the bi­pyridine units whereby two ππ inter­actions are established between the two pyridine rings annelated to the pinene moiety and the two `free pyridines' (the pinene-free pyridine rings of the pinene-bi­pyridine ligands). The distances between the aromatic centroids are 3.793 (5) Å (slippage 0.987 Å) and 3.940 (5) Å (slippage 1.278 Å). The two pinene bi­pyridine ligands belonging to neighbouring dinuclear complexes are connected via their `free' pyridine entity to the `free' pyridine entities of the pinenebi­pyridine ligands of the mononuclear complexes. The distances [3.625 (5) Å with a slippage of 1.137 Å, and 3.718 (5) Å with a slippage of 1.503 Å] are typical for these kinds of inter­actions (Robin & Fromm, 2006[Robin, Y. A. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127-2157.]).

[Figure 4]
Figure 4
ππ stacking inter­actions shown as dotted black lines. [Symmetry codes: (ii) 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z; (v) −1 + x, y, z; (vi) 1 + x, y, z; (vii) −x, −[{1\over 2}] + y, [{1\over 2}] − z.]

Considering all the inter­molecular inter­actions (hydrogen bonds and ππ stackings), the two-dimensional supra­molecular arrangement can be drawn schematically as shown in Fig. 5[link].

[Figure 5]
Figure 5
Schematic representation of the two-dimensional arrangement in the crystal structure of (1). [Symmetry codes: (iv) −x, [{1\over 2}] + y, [{1\over 2}] − z; (v) −1 + x, y, z.]

4. Database survey

A survey of the Cambridge Structural Database (Version 5.42, September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed no cobalt complexes containing the ligand (−) or (+)-5,6-pinenebi­pyridine (nor 4,5-pinenebi­pyridine). However, a few mononuclear complexes with ligands containing the 5,6-pinenebi­pyridine moiety in their skeleton have been reported. A tetra­hedral CoII complex, UCUFAZ, containing a bidentate bi­pyridine ligand analogue to the ligand L but containing two pinene groups, has been characterized (Lötscher et al., 2001[Lötscher, D., Rupprecht, S., Collomb, P., Belser, P., Viebrock, H., von Zelewsky, A. & Burger, P. (2001). Inorg. Chem. 40, 5675-5681.]). Two tridentate ligands, UKITOX and UKIVAL (Suhr et al., 2002[Suhr, D., Lötscher, D., Stoeckli-Evans, H. & von Zelewsky, A. (2002). Inorg. Chim. Acta, 341, 17-24.]), composed of 2,2′:6′,2′′ terpyridine containing two pinene groups annelated to the terminal pyridine rings, coord­inated by a CoII cation together with two chloride anions to form a complex whose geometry is pseudo-trigonal–bipyramidal. Finally, Yeung et al. (2009[Yeung, C.-T., Sham, K.-C., Lee, W.-S., Wong, W.-T., Wong, W.-Y. & Kwong, H.-L. (2009). Inorg. Chim. Acta, 362, 326-3273.]) used terpyridine ligands from the same family as the ones of Suhr et al. and obtained similar structures (XUDHOU and XUDJEM).

5. Synthesis and crystallization

A pink solution of CoCl2·6H2O (238 mg, 1 mmol) in ethanol (4 ml) was added to a colourless solution containing L (250 mg, 1 mmol) in ethanol (20 ml) and stirred for a few minutes. A fraction of the total volume of the resulting blue solution (about 3 ml) was transferred into a test tube and left to evaporate slowly under ambient conditions. Within a few days, violet single crystals were harvested.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were placed in geometrically idealized positions (C—H = 0.95–1.00 Å) while those attached to O were positioned from a difference-Fourier map, then refined for a few cycles to ensure that reasonable displacement parameters could be achieved. Their coordinates were adjusted to give O—H = 0.87 Å. All hydrogen atoms were refined using a riding model with isotropic displacement parameters 1.2–1.5 times those of the parent atoms.

Table 2
Experimental details

Crystal data
Chemical formula [Co2Cl4(C17H18N2)2][CoCl2(C17H18N2)(H2O)]
Mr 1158.50
Crystal system, space group Orthorhombic, P212121
Temperature (K) 200
a, b, c (Å) 8.5470 (4), 22.0971 (9), 26.9407 (12)
V3) 5088.1 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 10.82
Crystal size (mm) 0.21 × 0.11 × 0.05
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Integration (X-RED32; Stoe, 2016[Stoe (2016). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.176, 0.523
No. of measured, independent and observed [I > 2σ(I)] reflections 40552, 8979, 7084
Rint 0.129
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.138, 1.07
No. of reflections 8979
No. of parameters 617
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.63, −0.51
Absolute structure Flack x determined using 2418 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter −0.042 (4)
Computer programs: X-AREA and X-RED32 (Stoe, 2016[Stoe (2016). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe, 2016); cell refinement: X-AREA (Stoe, 2016); data reduction: X-RED32 (Stoe, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: PLATON (Spek, 2020) and publCIF (Westrip, 2010).

Di-µ-chlorido-bis{chlorido[(–)-5,6-pinenebipyridine]cobalt(II)} aquadichlorido[(–)-5,6-pinenebipyridine]cobalt(II) top
Crystal data top
[Co2Cl4(C17H18N2)2][CoCl2(C17H18N2)(H2O)]Dx = 1.512 Mg m3
Mr = 1158.50Cu Kα radiation, λ = 1.54186 Å
Orthorhombic, P212121Cell parameters from 32247 reflections
a = 8.5470 (4) Åθ = 2.6–68.1°
b = 22.0971 (9) ŵ = 10.82 mm1
c = 26.9407 (12) ÅT = 200 K
V = 5088.1 (4) Å3Prism, violet
Z = 40.21 × 0.11 × 0.05 mm
F(000) = 2380
Data collection top
Stoe IPDS 2T
diffractometer
8979 independent reflections
Radiation source: Genix-Cu, 3D, microfocus7084 reflections with I > 2σ(I)
Multilayer optic monochromatorRint = 0.129
Detector resolution: 6.67 pixels mm-1θmax = 68.1°, θmin = 2.6°
rotation method, ω scansh = 109
Absorption correction: integration
(X-Red32; Stoe, 2016)
k = 2526
Tmin = 0.176, Tmax = 0.523l = 3131
40552 measured reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0437P)2 + 12.2194P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.053(Δ/σ)max < 0.001
wR(F2) = 0.138Δρmax = 0.63 e Å3
S = 1.07Δρmin = 0.51 e Å3
8979 reflectionsExtinction correction: SHELXL2017/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
617 parametersExtinction coefficient: 0.00083 (12)
0 restraintsAbsolute structure: Flack x determined using 2418 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Primary atom site location: dualAbsolute structure parameter: 0.042 (4)
Hydrogen site location: mixed
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.59450 (15)0.33142 (6)0.21719 (5)0.0261 (3)
Co20.36326 (15)0.20357 (6)0.25146 (5)0.0272 (3)
Co30.34642 (15)0.50356 (6)0.35583 (5)0.0276 (3)
H1A0.494 (12)0.473 (4)0.271 (4)0.041*
H1B0.518 (12)0.535 (5)0.281 (4)0.041*
Cl10.4747 (3)0.41998 (10)0.19496 (8)0.0416 (6)
Cl20.5387 (2)0.23709 (9)0.18204 (8)0.0335 (5)
Cl30.4013 (3)0.30157 (10)0.27947 (8)0.0361 (5)
Cl40.4998 (3)0.11977 (10)0.27565 (8)0.0373 (5)
Cl50.4083 (3)0.40985 (10)0.38590 (9)0.0416 (5)
Cl60.4811 (3)0.58759 (10)0.38148 (8)0.0398 (5)
O10.5059 (7)0.4990 (3)0.2938 (2)0.0365 (14)
N10.7658 (8)0.3446 (3)0.2702 (3)0.0269 (15)
N20.7995 (8)0.3417 (3)0.1717 (3)0.0263 (15)
N30.1742 (8)0.1839 (3)0.2083 (2)0.0279 (16)
N40.1745 (8)0.1953 (3)0.3063 (2)0.0272 (15)
N50.1534 (8)0.5088 (3)0.3085 (3)0.0286 (15)
N60.1529 (7)0.5121 (3)0.4079 (2)0.0247 (15)
C10.7377 (10)0.3510 (4)0.3188 (3)0.032 (2)
H10.6332940.3481410.3306100.038*
C20.8577 (12)0.3618 (4)0.3522 (3)0.041 (2)
H20.8351360.3667350.3864510.049*
C31.0110 (11)0.3653 (4)0.3355 (3)0.034 (2)
H31.0948130.3716690.3580290.041*
C41.0386 (10)0.3593 (4)0.2854 (3)0.032 (2)
H41.1421960.3626910.2729550.039*
C50.9144 (10)0.3483 (3)0.2528 (3)0.0258 (17)
C60.9352 (8)0.3422 (3)0.1989 (3)0.0223 (17)
C71.0783 (10)0.3370 (4)0.1769 (3)0.0303 (19)
H71.1701050.3354790.1967050.036*
C81.0903 (10)0.3339 (4)0.1254 (3)0.0313 (19)
H81.1893420.3296340.1098100.038*
C90.9546 (10)0.3371 (4)0.0976 (3)0.0292 (18)
C100.8095 (9)0.3408 (4)0.1224 (3)0.0251 (18)
C110.6631 (10)0.3451 (4)0.0912 (3)0.032 (2)
H11A0.6053150.3823540.1001030.038*
H11B0.5947160.3100190.0984480.038*
C120.7014 (10)0.3461 (4)0.0360 (3)0.033 (2)
H120.6095790.3504970.0132380.040*
C130.8383 (11)0.3905 (4)0.0265 (3)0.037 (2)
H13A0.8404120.4256980.0492390.044*
H13B0.8488120.4034660.0085660.044*
C140.9509 (10)0.3382 (4)0.0417 (3)0.033 (2)
H141.0541150.3364370.0242540.040*
C150.8196 (11)0.2943 (4)0.0222 (3)0.034 (2)
C160.8006 (11)0.2322 (4)0.0473 (3)0.036 (2)
H16A0.7081870.2117690.0338640.054*
H16B0.7877620.2378470.0831970.054*
H16C0.8937540.2075630.0409970.054*
C170.8308 (12)0.2847 (5)0.0338 (3)0.044 (2)
H17A0.9184980.2575680.0412120.066*
H17B0.8476840.3236950.0502720.066*
H17C0.7333230.2665900.0459690.066*
C180.1847 (10)0.1732 (4)0.1592 (3)0.0292 (19)
H180.2837400.1763030.1434230.035*
C190.0552 (10)0.1578 (4)0.1312 (3)0.034 (2)
H190.0663890.1492820.0968420.041*
C200.0916 (10)0.1547 (4)0.1534 (3)0.033 (2)
H200.1826210.1458980.1345160.040*
C210.1003 (10)0.1649 (4)0.2038 (3)0.0318 (19)
H210.1979510.1616970.2204890.038*
C220.0331 (9)0.1797 (4)0.2302 (3)0.0264 (18)
C230.0307 (9)0.1907 (4)0.2846 (3)0.0274 (18)
C240.1050 (10)0.1930 (4)0.3122 (3)0.034 (2)
H240.2039720.1884260.2965980.041*
C250.0950 (11)0.2022 (4)0.3632 (3)0.038 (2)
H250.1875220.2050810.3825850.045*
C260.0491 (10)0.2071 (4)0.3854 (3)0.0314 (19)
C270.1835 (9)0.2034 (4)0.3552 (3)0.0273 (18)
C280.3411 (11)0.2064 (5)0.3802 (3)0.040 (2)
H28A0.4011560.2409880.3667470.048*
H28B0.4003540.1688840.3730560.048*
C290.3229 (12)0.2137 (4)0.4364 (3)0.040 (2)
H290.4234580.2172510.4551860.048*
C300.2034 (12)0.2649 (5)0.4465 (4)0.045 (2)
H30A0.2010030.2969580.4208340.054*
H30B0.2091180.2823490.4803390.054*
C310.0764 (12)0.2152 (4)0.4400 (3)0.040 (2)
H310.0192520.2193550.4611370.047*
C320.2033 (12)0.1683 (5)0.4587 (4)0.042 (2)
C330.1953 (14)0.1045 (5)0.4379 (4)0.053 (3)
H33A0.2916830.0827080.4462640.079*
H33B0.1836860.1062610.4017500.079*
H33C0.1054220.0832670.4523110.079*
C340.2119 (15)0.1650 (6)0.5151 (4)0.060 (3)
H34A0.1229100.1415980.5277330.091*
H34B0.2085410.2059850.5289780.091*
H34C0.3097170.1452380.5250170.091*
C350.1575 (11)0.5104 (4)0.2590 (3)0.035 (2)
H350.2564200.5083680.2430380.043*
C360.0247 (11)0.5150 (4)0.2297 (3)0.040 (2)
H360.0327680.5158220.1945250.048*
C370.1175 (11)0.5183 (5)0.2523 (4)0.041 (2)
H370.2101360.5216520.2330010.049*
C380.1261 (11)0.5167 (4)0.3032 (4)0.039 (2)
H380.2246160.5190850.3194030.047*
C390.0098 (9)0.5117 (4)0.3307 (3)0.0284 (18)
C400.0108 (9)0.5097 (4)0.3862 (3)0.0278 (18)
C410.1264 (10)0.5042 (4)0.4130 (3)0.0321 (19)
H410.2245080.5010350.3966640.039*
C420.1172 (10)0.5036 (4)0.4646 (3)0.0318 (19)
H420.2095700.4997090.4839860.038*
C430.0268 (10)0.5086 (4)0.4875 (3)0.0291 (18)
C440.1613 (10)0.5124 (4)0.4574 (3)0.0291 (19)
C450.3188 (10)0.5155 (4)0.4826 (3)0.036 (2)
H45A0.3732900.5530190.4723360.043*
H45B0.3833750.4806200.4720630.043*
C460.3010 (11)0.5148 (4)0.5391 (3)0.036 (2)
H460.4006910.5180640.5583560.043*
C470.1712 (11)0.5602 (4)0.5540 (3)0.035 (2)
H47A0.1624420.5956260.5317320.042*
H47B0.1745880.5726960.5892980.042*
C480.0517 (10)0.5089 (4)0.5428 (3)0.033 (2)
H480.0443420.5075880.5640080.040*
C490.1861 (12)0.4632 (4)0.5563 (3)0.034 (2)
C500.1942 (13)0.4021 (4)0.5297 (4)0.045 (2)
H50A0.2925560.3817580.5381880.067*
H50B0.1893080.4085120.4937560.067*
H50C0.1058550.3768140.5401430.067*
C510.1961 (13)0.4523 (5)0.6124 (4)0.048 (3)
H51A0.1072220.4273880.6229930.072*
H51B0.1932960.4911660.6298080.072*
H51C0.2939840.4312470.6201740.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0219 (7)0.0243 (7)0.0321 (7)0.0015 (5)0.0018 (6)0.0016 (6)
Co20.0223 (7)0.0276 (7)0.0317 (7)0.0009 (6)0.0020 (6)0.0015 (6)
Co30.0202 (7)0.0290 (7)0.0335 (7)0.0008 (6)0.0011 (6)0.0008 (6)
Cl10.0492 (14)0.0341 (11)0.0416 (12)0.0167 (10)0.0021 (11)0.0008 (9)
Cl20.0325 (11)0.0299 (10)0.0382 (11)0.0058 (9)0.0089 (9)0.0055 (9)
Cl30.0336 (11)0.0342 (11)0.0404 (11)0.0040 (9)0.0092 (10)0.0076 (9)
Cl40.0370 (12)0.0346 (11)0.0402 (12)0.0098 (9)0.0051 (10)0.0038 (9)
Cl50.0469 (13)0.0316 (11)0.0463 (13)0.0114 (10)0.0015 (11)0.0020 (10)
Cl60.0375 (12)0.0360 (11)0.0460 (13)0.0144 (10)0.0018 (10)0.0004 (10)
O10.027 (3)0.040 (4)0.042 (4)0.001 (3)0.004 (3)0.006 (3)
N10.022 (4)0.029 (4)0.029 (4)0.004 (3)0.001 (3)0.002 (3)
N20.024 (4)0.023 (4)0.032 (4)0.002 (3)0.000 (3)0.001 (3)
N30.031 (4)0.023 (3)0.030 (4)0.002 (3)0.001 (3)0.001 (3)
N40.024 (4)0.027 (4)0.031 (4)0.002 (3)0.001 (3)0.004 (3)
N50.027 (4)0.026 (4)0.033 (4)0.000 (3)0.003 (3)0.001 (3)
N60.012 (3)0.029 (4)0.033 (4)0.004 (3)0.003 (3)0.000 (3)
C10.031 (5)0.037 (5)0.028 (5)0.005 (4)0.003 (4)0.002 (4)
C20.052 (6)0.044 (5)0.027 (5)0.008 (5)0.004 (5)0.001 (4)
C30.037 (5)0.027 (4)0.037 (5)0.005 (4)0.017 (4)0.005 (4)
C40.023 (4)0.034 (5)0.039 (5)0.003 (4)0.010 (4)0.005 (4)
C50.027 (4)0.017 (4)0.033 (4)0.001 (3)0.003 (4)0.002 (3)
C60.010 (4)0.022 (4)0.035 (4)0.001 (3)0.002 (3)0.000 (3)
C70.020 (4)0.031 (4)0.039 (5)0.001 (4)0.006 (4)0.003 (4)
C80.016 (4)0.035 (5)0.043 (5)0.006 (4)0.001 (4)0.003 (4)
C90.025 (4)0.029 (4)0.034 (5)0.002 (4)0.001 (4)0.003 (4)
C100.017 (4)0.027 (4)0.031 (4)0.009 (3)0.000 (3)0.002 (4)
C110.024 (4)0.042 (5)0.029 (4)0.002 (4)0.001 (4)0.003 (4)
C120.030 (5)0.034 (5)0.034 (5)0.011 (4)0.009 (4)0.005 (4)
C130.034 (5)0.040 (5)0.036 (5)0.002 (4)0.005 (4)0.013 (4)
C140.025 (5)0.039 (5)0.035 (5)0.005 (4)0.006 (4)0.003 (4)
C150.034 (5)0.037 (5)0.030 (4)0.008 (4)0.007 (4)0.003 (4)
C160.038 (5)0.030 (5)0.039 (5)0.002 (4)0.004 (4)0.001 (4)
C170.039 (6)0.057 (7)0.036 (5)0.008 (5)0.003 (4)0.004 (5)
C180.025 (4)0.028 (4)0.034 (5)0.005 (4)0.001 (4)0.001 (4)
C190.030 (5)0.035 (5)0.037 (5)0.006 (4)0.002 (4)0.001 (4)
C200.026 (4)0.029 (5)0.045 (5)0.005 (4)0.011 (4)0.003 (4)
C210.017 (4)0.043 (5)0.036 (5)0.004 (4)0.000 (4)0.005 (4)
C220.018 (4)0.029 (4)0.032 (4)0.001 (3)0.003 (4)0.007 (3)
C230.017 (4)0.031 (4)0.035 (5)0.001 (3)0.005 (4)0.004 (4)
C240.021 (4)0.037 (5)0.044 (5)0.004 (4)0.005 (4)0.000 (4)
C250.029 (5)0.040 (5)0.044 (5)0.003 (4)0.009 (4)0.004 (4)
C260.031 (5)0.025 (4)0.039 (5)0.004 (4)0.000 (4)0.008 (4)
C270.022 (4)0.032 (4)0.028 (4)0.003 (4)0.002 (4)0.001 (4)
C280.026 (5)0.057 (6)0.035 (5)0.000 (4)0.006 (4)0.002 (5)
C290.041 (6)0.047 (6)0.031 (5)0.004 (5)0.002 (4)0.000 (4)
C300.055 (7)0.042 (6)0.040 (6)0.000 (5)0.001 (5)0.000 (5)
C310.045 (6)0.038 (5)0.036 (5)0.012 (4)0.005 (4)0.002 (4)
C320.045 (6)0.044 (6)0.037 (5)0.005 (5)0.004 (5)0.007 (5)
C330.067 (8)0.038 (6)0.052 (6)0.013 (5)0.010 (6)0.011 (5)
C340.063 (8)0.078 (8)0.041 (6)0.004 (7)0.000 (6)0.015 (6)
C350.027 (5)0.046 (6)0.033 (5)0.004 (4)0.004 (4)0.003 (4)
C360.037 (5)0.053 (6)0.029 (5)0.003 (5)0.005 (4)0.001 (4)
C370.026 (5)0.060 (6)0.037 (5)0.003 (4)0.004 (4)0.000 (5)
C380.021 (5)0.053 (6)0.044 (5)0.000 (4)0.002 (4)0.005 (4)
C390.018 (4)0.029 (4)0.038 (5)0.005 (3)0.001 (4)0.003 (4)
C400.020 (4)0.025 (4)0.038 (5)0.004 (3)0.002 (4)0.000 (4)
C410.023 (4)0.032 (5)0.042 (5)0.002 (4)0.002 (4)0.000 (4)
C420.024 (4)0.028 (4)0.043 (5)0.004 (4)0.014 (4)0.004 (4)
C430.028 (4)0.024 (4)0.036 (5)0.003 (4)0.009 (4)0.002 (4)
C440.027 (4)0.027 (4)0.033 (5)0.003 (4)0.002 (4)0.001 (4)
C450.024 (5)0.045 (5)0.038 (5)0.003 (4)0.001 (4)0.001 (4)
C460.040 (5)0.035 (5)0.033 (5)0.003 (4)0.001 (4)0.000 (4)
C470.035 (5)0.029 (4)0.040 (5)0.006 (4)0.003 (4)0.010 (4)
C480.027 (5)0.035 (5)0.037 (5)0.007 (4)0.005 (4)0.007 (4)
C490.044 (6)0.024 (4)0.033 (5)0.001 (4)0.002 (4)0.002 (4)
C500.055 (7)0.027 (5)0.052 (6)0.004 (4)0.002 (5)0.008 (4)
C510.060 (7)0.047 (6)0.037 (5)0.005 (5)0.000 (5)0.001 (5)
Geometric parameters (Å, º) top
Co1—Cl12.288 (2)C20—H200.9500
Co1—Cl22.339 (2)C20—C211.379 (12)
Co1—Cl32.445 (2)C21—H210.9500
Co1—N12.066 (7)C21—C221.382 (11)
Co1—N22.151 (7)C22—C231.486 (11)
Co2—Cl22.509 (2)C23—C241.379 (11)
Co2—Cl32.316 (2)C24—H240.9500
Co2—Cl42.284 (2)C24—C251.392 (12)
Co2—N32.037 (7)C25—H250.9500
Co2—N42.195 (7)C25—C261.374 (12)
Co3—Cl52.286 (3)C26—C271.411 (11)
Co3—Cl62.291 (2)C26—C311.501 (12)
Co3—O12.160 (6)C27—C281.508 (12)
Co3—N52.089 (7)C28—H28A0.9900
Co3—N62.178 (6)C28—H28B0.9900
O1—H1A0.84 (10)C28—C291.531 (12)
O1—H1B0.87 (10)C29—H291.0000
N1—C11.338 (11)C29—C301.549 (14)
N1—C51.356 (10)C29—C321.553 (14)
N2—C61.373 (10)C30—H30A0.9900
N2—C101.332 (10)C30—H30B0.9900
N3—C181.347 (10)C30—C311.555 (14)
N3—C221.345 (10)C31—H311.0000
N4—C231.365 (10)C31—C321.581 (13)
N4—C271.330 (10)C32—C331.519 (14)
N5—C351.334 (10)C32—C341.525 (13)
N5—C391.366 (10)C33—H33A0.9800
N6—C401.350 (10)C33—H33B0.9800
N6—C441.333 (10)C33—H33C0.9800
C1—H10.9500C34—H34A0.9800
C1—C21.385 (13)C34—H34B0.9800
C2—H20.9500C34—H34C0.9800
C2—C31.387 (14)C35—H350.9500
C3—H30.9500C35—C361.386 (13)
C3—C41.375 (12)C36—H360.9500
C4—H40.9500C36—C371.361 (13)
C4—C51.399 (12)C37—H370.9500
C5—C61.469 (11)C37—C381.374 (13)
C6—C71.364 (11)C38—H380.9500
C7—H70.9500C38—C391.381 (12)
C7—C81.391 (12)C39—C401.496 (11)
C8—H80.9500C40—C411.383 (11)
C8—C91.383 (12)C41—H410.9500
C9—C101.411 (11)C41—C421.392 (12)
C9—C141.506 (12)C42—H420.9500
C10—C111.509 (11)C42—C431.381 (12)
C11—H11A0.9900C43—C441.410 (11)
C11—H11B0.9900C43—C481.507 (12)
C11—C121.524 (12)C44—C451.509 (12)
C12—H121.0000C45—H45A0.9900
C12—C131.549 (13)C45—H45B0.9900
C12—C151.571 (12)C45—C461.531 (12)
C13—H13A0.9900C46—H461.0000
C13—H13B0.9900C46—C471.548 (13)
C13—C141.560 (12)C46—C491.575 (13)
C14—H141.0000C47—H47A0.9900
C14—C151.573 (13)C47—H47B0.9900
C15—C161.538 (12)C47—C481.556 (11)
C15—C171.527 (12)C48—H481.0000
C16—H16A0.9800C48—C491.573 (13)
C16—H16B0.9800C49—C501.530 (12)
C16—H16C0.9800C49—C511.531 (13)
C17—H17A0.9800C50—H50A0.9800
C17—H17B0.9800C50—H50B0.9800
C17—H17C0.9800C50—H50C0.9800
C18—H180.9500C51—H51A0.9800
C18—C191.382 (12)C51—H51B0.9800
C19—H190.9500C51—H51C0.9800
C19—C201.392 (12)
Cl1—Co1—Cl2124.40 (10)C20—C21—C22120.0 (8)
Cl1—Co1—Cl396.21 (9)C22—C21—H21120.0
Cl2—Co1—Cl384.24 (8)N3—C22—C21122.1 (8)
N1—Co1—Cl1112.2 (2)N3—C22—C23115.6 (7)
N1—Co1—Cl2123.4 (2)C21—C22—C23122.3 (7)
N1—Co1—Cl392.4 (2)N4—C23—C22115.0 (7)
N1—Co1—N278.5 (3)N4—C23—C24121.6 (7)
N2—Co1—Cl197.2 (2)C24—C23—C22123.3 (7)
N2—Co1—Cl291.72 (19)C23—C24—H24120.4
N2—Co1—Cl3166.0 (2)C23—C24—C25119.1 (8)
Cl3—Co2—Cl283.28 (8)C25—C24—H24120.4
Cl4—Co2—Cl298.44 (9)C24—C25—H25120.1
Cl4—Co2—Cl3126.39 (10)C26—C25—C24119.8 (8)
N3—Co2—Cl296.4 (2)C26—C25—H25120.1
N3—Co2—Cl3119.8 (2)C25—C26—C27118.3 (8)
N3—Co2—Cl4113.3 (2)C25—C26—C31125.2 (8)
N3—Co2—N477.5 (3)C27—C26—C31116.5 (8)
N4—Co2—Cl2164.91 (19)N4—C27—C26122.1 (7)
N4—Co2—Cl387.81 (19)N4—C27—C28120.0 (7)
N4—Co2—Cl496.65 (19)C26—C27—C28117.8 (7)
Cl5—Co3—Cl6120.73 (10)C27—C28—H28A109.5
O1—Co3—Cl594.9 (2)C27—C28—H28B109.5
O1—Co3—Cl687.4 (2)C27—C28—C29110.9 (8)
O1—Co3—N6169.3 (3)H28A—C28—H28B108.0
N5—Co3—Cl5116.7 (2)C29—C28—H28A109.5
N5—Co3—Cl6122.4 (2)C29—C28—H28B109.5
N5—Co3—O191.6 (3)C28—C29—H29114.9
N5—Co3—N677.8 (3)C28—C29—C30108.6 (8)
N6—Co3—Cl591.49 (19)C28—C29—C32112.4 (8)
N6—Co3—Cl696.71 (19)C30—C29—H29114.9
Co1—Cl2—Co294.77 (8)C30—C29—C3288.3 (8)
Co2—Cl3—Co197.09 (9)C32—C29—H29114.9
Co3—O1—H1A121 (7)C29—C30—H30A114.4
Co3—O1—H1B109 (7)C29—C30—H30B114.4
H1A—O1—H1B111 (9)C29—C30—C3185.6 (7)
C1—N1—Co1124.3 (6)H30A—C30—H30B111.5
C1—N1—C5119.9 (7)C31—C30—H30A114.4
C5—N1—Co1115.7 (5)C31—C30—H30B114.4
C6—N2—Co1112.6 (5)C26—C31—C30107.6 (8)
C10—N2—Co1128.3 (5)C26—C31—H31116.2
C10—N2—C6118.7 (7)C26—C31—C32109.9 (7)
C18—N3—Co2123.0 (6)C30—C31—H31116.2
C22—N3—Co2118.5 (5)C30—C31—C3287.1 (7)
C22—N3—C18118.5 (7)C32—C31—H31116.2
C23—N4—Co2112.3 (5)C29—C32—C3184.6 (7)
C27—N4—Co2127.7 (5)C33—C32—C29119.2 (9)
C27—N4—C23119.1 (7)C33—C32—C31117.4 (9)
C35—N5—Co3126.2 (6)C33—C32—C34109.0 (9)
C35—N5—C39117.4 (7)C34—C32—C29112.6 (9)
C39—N5—Co3116.4 (5)C34—C32—C31112.4 (8)
C40—N6—Co3113.6 (5)C32—C33—H33A109.5
C44—N6—Co3127.1 (6)C32—C33—H33B109.5
C44—N6—C40118.9 (7)C32—C33—H33C109.5
N1—C1—H1119.3H33A—C33—H33B109.5
N1—C1—C2121.4 (8)H33A—C33—H33C109.5
C2—C1—H1119.3H33B—C33—H33C109.5
C1—C2—H2120.1C32—C34—H34A109.5
C1—C2—C3119.9 (9)C32—C34—H34B109.5
C3—C2—H2120.1C32—C34—H34C109.5
C2—C3—H3120.8H34A—C34—H34B109.5
C4—C3—C2118.3 (8)H34A—C34—H34C109.5
C4—C3—H3120.8H34B—C34—H34C109.5
C3—C4—H4119.9N5—C35—H35118.3
C3—C4—C5120.1 (8)N5—C35—C36123.4 (8)
C5—C4—H4119.9C36—C35—H35118.3
N1—C5—C4120.3 (8)C35—C36—H36120.7
N1—C5—C6116.7 (7)C37—C36—C35118.7 (8)
C4—C5—C6123.0 (8)C37—C36—H36120.7
N2—C6—C5115.2 (7)C36—C37—H37120.2
C7—C6—N2121.6 (7)C36—C37—C38119.5 (9)
C7—C6—C5123.2 (7)C38—C37—H37120.2
C6—C7—H7119.9C37—C38—H38120.3
C6—C7—C8120.3 (8)C37—C38—C39119.5 (8)
C8—C7—H7119.9C39—C38—H38120.3
C7—C8—H8120.8N5—C39—C38121.6 (8)
C9—C8—C7118.5 (8)N5—C39—C40115.5 (7)
C9—C8—H8120.8C38—C39—C40122.8 (8)
C8—C9—C10118.9 (8)N6—C40—C39116.0 (7)
C8—C9—C14124.1 (8)N6—C40—C41122.6 (8)
C10—C9—C14117.0 (7)C41—C40—C39121.4 (8)
N2—C10—C9122.0 (7)C40—C41—H41120.8
N2—C10—C11120.1 (7)C40—C41—C42118.4 (8)
C9—C10—C11118.0 (7)C42—C41—H41120.8
C10—C11—H11A109.3C41—C42—H42120.2
C10—C11—H11B109.3C43—C42—C41119.6 (8)
C10—C11—C12111.5 (7)C43—C42—H42120.2
H11A—C11—H11B108.0C42—C43—C44118.4 (8)
C12—C11—H11A109.3C42—C43—C48124.6 (7)
C12—C11—H11B109.3C44—C43—C48117.0 (8)
C11—C12—H12115.5N6—C44—C43122.0 (8)
C11—C12—C13109.5 (7)N6—C44—C45119.9 (7)
C11—C12—C15110.9 (7)C43—C44—C45118.1 (7)
C13—C12—H12115.5C44—C45—H45A109.4
C13—C12—C1586.4 (7)C44—C45—H45B109.4
C15—C12—H12115.5C44—C45—C46111.0 (7)
C12—C13—H13A114.1H45A—C45—H45B108.0
C12—C13—H13B114.1C46—C45—H45A109.4
C12—C13—C1487.3 (6)C46—C45—H45B109.4
H13A—C13—H13B111.3C45—C46—H46115.5
C14—C13—H13A114.1C45—C46—C47108.8 (8)
C14—C13—H13B114.1C45—C46—C49111.2 (7)
C9—C14—C13106.7 (7)C47—C46—H46115.5
C9—C14—H14116.7C47—C46—C4986.9 (7)
C9—C14—C15109.8 (7)C49—C46—H46115.5
C13—C14—H14116.7C46—C47—H47A114.1
C13—C14—C1586.0 (7)C46—C47—H47B114.1
C15—C14—H14116.7C46—C47—C4887.1 (7)
C12—C15—C1486.0 (7)H47A—C47—H47B111.3
C16—C15—C12118.5 (8)C48—C47—H47A114.1
C16—C15—C14118.5 (7)C48—C47—H47B114.1
C17—C15—C12112.0 (7)C43—C48—C47106.8 (7)
C17—C15—C14111.8 (8)C43—C48—H48116.7
C17—C15—C16108.5 (8)C43—C48—C49109.2 (7)
C15—C16—H16A109.5C47—C48—H48116.7
C15—C16—H16B109.5C47—C48—C4986.7 (7)
C15—C16—H16C109.5C49—C48—H48116.7
H16A—C16—H16B109.5C48—C49—C4685.5 (6)
H16A—C16—H16C109.5C50—C49—C46118.3 (8)
H16B—C16—H16C109.5C50—C49—C48119.4 (8)
C15—C17—H17A109.5C50—C49—C51108.7 (8)
C15—C17—H17B109.5C51—C49—C46111.7 (8)
C15—C17—H17C109.5C51—C49—C48111.7 (8)
H17A—C17—H17B109.5C49—C50—H50A109.5
H17A—C17—H17C109.5C49—C50—H50B109.5
H17B—C17—H17C109.5C49—C50—H50C109.5
N3—C18—H18119.1H50A—C50—H50B109.5
N3—C18—C19121.7 (8)H50A—C50—H50C109.5
C19—C18—H18119.1H50B—C50—H50C109.5
C18—C19—H19120.0C49—C51—H51A109.5
C18—C19—C20120.0 (8)C49—C51—H51B109.5
C20—C19—H19120.0C49—C51—H51C109.5
C19—C20—H20121.2H51A—C51—H51B109.5
C21—C20—C19117.6 (8)H51A—C51—H51C109.5
C21—C20—H20121.2H51B—C51—H51C109.5
C20—C21—H21120.0
Co1—N1—C1—C2177.8 (7)C20—C21—C22—N30.9 (13)
Co1—N1—C5—C4177.8 (6)C20—C21—C22—C23179.6 (8)
Co1—N1—C5—C60.4 (9)C21—C22—C23—N4170.0 (8)
Co1—N2—C6—C512.1 (8)C21—C22—C23—C246.6 (13)
Co1—N2—C6—C7167.6 (6)C22—N3—C18—C190.4 (12)
Co1—N2—C10—C9168.1 (6)C22—C23—C24—C25178.5 (8)
Co1—N2—C10—C1113.1 (11)C23—N4—C27—C260.4 (12)
Co2—N3—C18—C19177.6 (6)C23—N4—C27—C28177.9 (8)
Co2—N3—C22—C21178.2 (6)C23—C24—C25—C261.8 (14)
Co2—N3—C22—C230.6 (9)C24—C25—C26—C270.9 (13)
Co2—N4—C23—C2211.9 (9)C24—C25—C26—C31178.1 (8)
Co2—N4—C23—C24171.5 (7)C25—C26—C27—N40.1 (13)
Co2—N4—C27—C26168.7 (6)C25—C26—C27—C28177.7 (8)
Co2—N4—C27—C2813.8 (12)C25—C26—C31—C30135.5 (9)
Co3—N5—C35—C36178.8 (7)C25—C26—C31—C32131.2 (9)
Co3—N5—C39—C38178.5 (7)C26—C27—C28—C290.5 (12)
Co3—N5—C39—C401.0 (9)C26—C31—C32—C2979.7 (8)
Co3—N6—C40—C399.5 (9)C26—C31—C32—C3340.5 (12)
Co3—N6—C40—C41169.1 (7)C26—C31—C32—C34168.0 (9)
Co3—N6—C44—C43169.7 (6)C27—N4—C23—C22178.0 (7)
Co3—N6—C44—C459.0 (11)C27—N4—C23—C241.4 (12)
N1—C1—C2—C30.8 (14)C27—C26—C31—C3045.5 (10)
N1—C5—C6—N28.6 (10)C27—C26—C31—C3247.8 (11)
N1—C5—C6—C7171.1 (8)C27—C28—C29—C3048.1 (11)
N2—C6—C7—C83.0 (13)C27—C28—C29—C3247.9 (11)
N2—C10—C11—C12177.4 (7)C28—C29—C30—C3184.5 (8)
N3—C18—C19—C201.9 (13)C28—C29—C32—C3181.3 (9)
N3—C22—C23—N48.8 (10)C28—C29—C32—C3337.2 (12)
N3—C22—C23—C24174.6 (8)C28—C29—C32—C34166.6 (9)
N4—C23—C24—C252.1 (13)C29—C30—C31—C2681.9 (8)
N4—C27—C28—C29178.1 (8)C29—C30—C31—C3228.0 (7)
N5—C35—C36—C370.3 (15)C30—C29—C32—C3128.1 (7)
N5—C39—C40—N67.2 (11)C30—C29—C32—C33146.5 (9)
N5—C39—C40—C41171.4 (8)C30—C29—C32—C3484.0 (9)
N6—C40—C41—C422.5 (12)C30—C31—C32—C2928.0 (7)
N6—C44—C45—C46179.6 (7)C30—C31—C32—C33148.1 (9)
C1—N1—C5—C40.5 (12)C30—C31—C32—C3484.3 (10)
C1—N1—C5—C6178.6 (7)C31—C26—C27—N4178.9 (8)
C1—C2—C3—C41.5 (13)C31—C26—C27—C281.4 (11)
C2—C3—C4—C51.7 (12)C32—C29—C30—C3128.6 (7)
C3—C4—C5—N11.3 (12)C35—N5—C39—C380.6 (12)
C3—C4—C5—C6179.3 (8)C35—N5—C39—C40179.9 (7)
C4—C5—C6—N2169.4 (7)C35—C36—C37—C380.3 (15)
C4—C5—C6—C710.8 (12)C36—C37—C38—C390.1 (15)
C5—N1—C1—C20.3 (13)C37—C38—C39—N50.6 (14)
C5—C6—C7—C8177.3 (7)C37—C38—C39—C40180.0 (9)
C6—N2—C10—C93.4 (12)C38—C39—C40—N6172.3 (8)
C6—N2—C10—C11175.4 (7)C38—C39—C40—C419.2 (13)
C6—C7—C8—C90.9 (13)C39—N5—C35—C360.1 (14)
C7—C8—C9—C102.6 (12)C39—C40—C41—C42179.0 (7)
C7—C8—C9—C14176.0 (8)C40—N6—C44—C431.8 (12)
C8—C9—C10—N20.4 (12)C40—N6—C44—C45179.6 (8)
C8—C9—C10—C11179.2 (8)C40—C41—C42—C430.3 (12)
C8—C9—C14—C13132.5 (9)C41—C42—C43—C441.9 (12)
C8—C9—C14—C15135.7 (9)C41—C42—C43—C48179.5 (8)
C9—C10—C11—C121.4 (11)C42—C43—C44—N60.9 (12)
C9—C14—C15—C1278.5 (7)C42—C43—C44—C45177.8 (8)
C9—C14—C15—C1642.0 (10)C42—C43—C48—C47135.9 (9)
C9—C14—C15—C17169.3 (7)C42—C43—C48—C49131.6 (9)
C10—N2—C6—C5175.1 (7)C43—C44—C45—C460.9 (11)
C10—N2—C6—C75.1 (12)C43—C48—C49—C4679.3 (7)
C10—C9—C14—C1346.1 (10)C43—C48—C49—C5040.7 (11)
C10—C9—C14—C1545.6 (10)C43—C48—C49—C51169.1 (7)
C10—C11—C12—C1345.3 (10)C44—N6—C40—C39177.9 (7)
C10—C11—C12—C1548.3 (10)C44—N6—C40—C413.5 (12)
C11—C12—C13—C1482.7 (8)C44—C43—C48—C4745.4 (10)
C11—C12—C15—C1481.4 (8)C44—C43—C48—C4947.0 (10)
C11—C12—C15—C1639.0 (11)C44—C45—C46—C4746.5 (10)
C11—C12—C15—C17166.7 (8)C44—C45—C46—C4947.6 (10)
C12—C13—C14—C981.3 (8)C45—C46—C47—C4883.7 (8)
C12—C13—C14—C1528.2 (6)C45—C46—C49—C4881.6 (8)
C13—C12—C15—C1428.0 (6)C45—C46—C49—C5039.5 (12)
C13—C12—C15—C16148.5 (8)C45—C46—C49—C51166.8 (8)
C13—C12—C15—C1783.9 (8)C46—C47—C48—C4381.3 (8)
C13—C14—C15—C1227.8 (6)C46—C47—C48—C4927.8 (6)
C13—C14—C15—C16148.3 (8)C47—C46—C49—C4827.4 (6)
C13—C14—C15—C1784.3 (8)C47—C46—C49—C50148.5 (9)
C14—C9—C10—N2178.3 (8)C47—C46—C49—C5184.2 (8)
C14—C9—C10—C110.5 (11)C47—C48—C49—C4627.3 (6)
C15—C12—C13—C1428.2 (6)C47—C48—C49—C50147.3 (8)
C18—N3—C22—C210.1 (12)C47—C48—C49—C5184.3 (8)
C18—N3—C22—C23178.7 (7)C48—C43—C44—N6179.6 (7)
C18—C19—C20—C212.8 (13)C48—C43—C44—C450.9 (11)
C19—C20—C21—C222.3 (13)C49—C46—C47—C4827.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl10.84 (10)2.37 (10)3.194 (7)166 (9)
O1—H1B···Cl4i0.87 (10)2.43 (10)3.260 (7)161 (9)
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Ma­thias Oguey for their contribution to the crystallization experiments.

Funding information

Funding for this research was provided by: Haute école Spécialisée de Suisse Occidentale.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBernhardt, P. V. & Lawrance, G. A. (2003). Comprehensive Coordination Chemistry II, vol. 6, ch. 6.1 Cobalt. Amsterdam: Elsevier Pergamon.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLama, M., Mamula, O., Kottas, G. S., De Cola, L., Stoeckli-Evans, H. & Shova, S. (2008). Inorg. Chem. 47, 8000–8015.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLang, W.-J., Kurmoo, M. & Zeng, M.-H. (2019). Inorg. Chem. 58, 7236–7242.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLiu, M.-J., Yuan, J., Wang, B.-L., Wu, S.-T., Zhang, Y.-Q., Liu, C.-M. & Kou, H.-Z. (2018). Cryst. Growth Des. 18, 7611–7617.  Web of Science CSD CrossRef CAS Google Scholar
First citationLötscher, D., Rupprecht, S., Collomb, P., Belser, P., Viebrock, H., von Zelewsky, A. & Burger, P. (2001). Inorg. Chem. 40, 5675–5681.  Web of Science PubMed Google Scholar
First citationMamula, O. (2003). Coord. Chem. Rev. 242, 87–95.  Web of Science CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRobin, Y. A. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127–2157.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationStoe (2016). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSuhr, D., Lötscher, D., Stoeckli-Evans, H. & von Zelewsky, A. (2002). Inorg. Chim. Acta, 341, 17–24.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYeung, C.-T., Sham, K.-C., Lee, W.-S., Wong, W.-T., Wong, W.-Y. & Kwong, H.-L. (2009). Inorg. Chim. Acta, 362, 326–3273.  Web of Science CSD CrossRef Google Scholar
First citationZhu, Y.-Y., Cui, C., Zhang, Y.-Q., Jia, J.-H., Guo, X., Gao, C., Qian, K., Jiang, S.-D., Wang, B.-W., Wang, Z.-M. & Gao, S. (2013). Chem. Sci. 4, 1802–1806.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds