research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-1-[2,2-di­bromo-1-(4-nitro­phen­yl)ethen­yl]-2-(4-fluoro­phen­yl)diazene

crossmark logo

aDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ 1148 Baku, Azerbaijan, dAzerbaijan State Pedagogical University, Uzeyir Hajibeyli str., 68, Baku, Azerbaijan, ePeoples' Friendship University of Russia, 6 Miklukho-Maklaya, Moscow, Russian Federation, fN.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Av., Moscow, Russian Federation, and gDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by M. Weil, Vienna University of Technology, Austria (Received 30 March 2022; accepted 25 April 2022; online 28 April 2022)

In the title compound, C14H8Br2FN3O2, the 4-fluoro­phenyl ring and the nitro-substituted phenyl ring form a dihedral angle of 64.37 (10)°. Mol­ecules in the crystal are connected by C—H⋯O and C—H⋯F hydrogen bonds into layers parallel to (011). The crystal packing is consolidated by C—Br⋯π and C—F⋯π inter­actions, as well as by ππ stacking inter­actions. According to a Hirshfeld surface analysis of the crystal structure, the most significant contributions to the crystal packing are from O⋯H/H⋯O (15.0%), H⋯H (14.3%), Br⋯H/H⋯Br (14.2%), C⋯H/H⋯C (10.1%), F⋯H/H⋯F (7.9%), Br⋯Br (7.2%) and Br⋯C/C⋯Br (5.8%) contacts.

1. Chemical context

Azo dyes are characterized by one or more azo groups R—N=N—R′, where R and R′ can be either alkyl, aryl or heterocyclic functional groups. Depending on the attached substituents, azo compounds have attracted attention because of their high synthetic potential for organic and inorganic chemistry and numerous useful properties. For example, azo dyes find applications in the design of functional materials attributed to smart hydrogen bonding, as self-assembled layers, photo-triggered structural switching, liquid crystals, ionophors, indicators, semiconductors, spectrophotometric reagents for determination of metal ions, catalysts, photoluminescent materials, optical recording media, spin-coating films and anti­microbial agents (Kopylovich et al., 2012[Kopylovich, M. N., Mac Leod, T. C. O., Haukka, M., Amanullayeva, G. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). J. Inorg. Biochem. 115, 72-77.]; Ma et al., 2020[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.], 2021[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.]; Mac Leod et al., 2012[Mac Leod, T. C., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439-440, 15-23.]; Viswanathan et al., 2019[Viswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291-303.]). The azo-to-hydrazo tautomerism and E/Z isomerization properties of azo compounds are both crucial phenomena in the synthesis and design of new functional materials (Mahmudov et al., 2012[Mahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187-189.], 2013[Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108-112.], 2020[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.]; Mizar et al., 2012[Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305-2313.]). Moreover, attachment of functional groups to the azo compounds acting as non-covalent donors or acceptors can be applied as a synthetic strategy for the improvement of the functional properties of this class of organic compounds (Gurbanov et al., 2020a[Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628-633.],b[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833-14837.]; Mahmoudi et al., 2017[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017). Eur. J. Inorg. Chem. pp. 4763-4772.], 2018[Mahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018). Inorg. Chem. 57, 4395-4408.]; Shixaliyev et al., 2013[Shixaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Nenajdenko, V. G., Muzalevskiy, V. M., Mahmudov, K. T. & Kopylovich, M. N. (2013). Catal. Today, 217, 76-79.], 2014[Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807-4815.]).

In the above context, we have attached F, Br and NO2 groups and aryl rings to the –N=N– moiety leading to a new azo compound, (E)-1-[2,2-di­bromo-1-(4-nitro­phen­yl)ethen­yl]-2-(4-fluoro­phen­yl)diazene, the mol­ecular and crystal structure of which along with a Hirshfeld surface analysis are reported here.

[Scheme 1]

2. Structural commentary

The mol­ecular conformation of the title compound is not planar, as seen in Fig. 1[link], with the 4-fluoro­phenyl ring and the nitro-substituted phenyl ring subtending a dihedral angle of 64.37 (10)°. The C1=C2 double bond has a small twist, with the dihedral angle between atoms C1/Br1/Br2 and C2/C3/N2 being 3.99 (10)°, possibly to minimize steric repulsion between Br2 and H. The N3/N2/C2/C1/Br1/Br2 moiety subtends dihedral angles of 63.70 (8) and 1.39 (8)° with the C3–C8 and C9–C14 rings, respectively. The aromatic ring and olefin synthon in the mol­ecule are trans-configured with regard to the N=N double bond and are practically coplanar as revealed by the C2—N2=N3—C9 torsion angle of −178.63 (16)°. All of the bond lengths and angles in the title compound are similar to those for the related azo compounds reported in the Database survey section.

[Figure 1]
Figure 1
The title mol­ecule with the labelling scheme and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯F hydrogen bonds into layers extending parallel to (011) (Table 1[link]; Figs. 2[link]–4[link][link]). The crystal packing is consolidated by C—Br⋯π [Br1⋯Cg1 (x, [{1\over 2}] − y, −[{1\over 2}] + z) = 3.6016 (9) Å, C1—Br1⋯Cg1 = 104.24 (7)°] and C—F⋯π [F1⋯Cg2 (1 − x, 1 − y, −z) = 3.5032 (17) Å, C12—F1⋯Cg2 = 92.53 (11)°] inter­actions, and weak ππ stacking [Cg1⋯Cg2 (x, [{3\over 2}] − y, [{1\over 2}] + z) = 4.0788 (12) Å, slippage = 1.776 Å], where Cg1 and Cg2 are the centroids of the C3–C8 and C9–C14 rings, respectively, (Figs. 5[link]–7[link][link])].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.95 2.47 3.331 (3) 151
C5—H5⋯F1ii 0.95 2.54 3.150 (3) 122
C11—H11⋯O2iii 0.95 2.58 3.367 (3) 140
C14—H14⋯F1iv 0.95 2.49 3.427 (3) 169
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, y, z-1]; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
View down [100] of the C—H⋯O and C—H⋯F inter­actions (dashed lines) in the title compound.
[Figure 3]
Figure 3
View down [010] of the C—H⋯O and C—H⋯F inter­actions (dashed lines) in the title compound.
[Figure 4]
Figure 4
View down [001] of the C—H⋯O and C—H⋯F inter­actions (dashed lines) in the title compound.
[Figure 5]
Figure 5
View down [100] of the title compound, showing the mol­ecular packing including C—Br⋯π and C—F⋯π inter­actions, as well as ππ inter­actions.
[Figure 6]
Figure 6
View down [010] of the title compound, showing the mol­ecular packing including C—Br⋯π and C—F⋯π inter­actions, as well as ππ inter­actions.
[Figure 7]
Figure 7
View down [001] of the title compound, showing the mol­ecular packing including C—Br⋯π and C—F⋯π inter­actions, as well as ππ inter­actions.

4. Hirshfeld surface analysis

Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]) was used to perform a Hirshfeld surface analysis and to generate the corresponding two-dimensional fingerprint plots, with a standard resolution of the three-dimensional dnorm surfaces plotted over a fixed color scale of −0.1845 (red) to 1.1463 (blue) a.u. (Fig. 8[link]). The red spots symbolize short contacts and negative dnorm values on the surface corresponding to the C—H⋯O and C—H⋯F hydrogen bonds described above (Table 1[link]). The C4—H4⋯O2 and C11—H11⋯O2 inter­actions, which play a key role in the mol­ecular packing of the title compound, are responsible for the red spot that occurs around O2. The bright-red spots appearing near O2 and hydrogen atoms H4 and H11 indicate their roles as donor and/or acceptor groups in hydrogen bonding; they also appear as blue and red regions corres­ponding to positive and negative potentials on the Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]) shown in Fig. 9[link].

[Figure 8]
Figure 8
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.1845 to 1.1463 a.u.
[Figure 9]
Figure 9
View of the three-dimensional Hirshfeld surface of the title complex plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. The hydrogen-bond donor and acceptor groups are viewed as blue and red regions, respectively around the atoms, corresponding to positive and negative potentials.

The overall two-dimensional fingerprint plot for the title compound is given in Fig. 10[link]a, and those delineated into O⋯H/H⋯O, H⋯H, Br⋯H/H⋯Br, C⋯H/H⋯C, F⋯H/H⋯F, Br⋯Br and Br⋯C/C⋯Br contacts are shown in Fig.10bh, while numerical details of the different contacts are given in Table 2[link]. The percentage contributions to the Hirshfeld surfaces from the various inter­atomic contacts are compiled in Table 3[link]. N⋯H/H⋯N, C⋯C, O⋯C/C⋯O, F⋯C/C⋯F, Br.·O/O⋯Br, N⋯C/C⋯N, N⋯O/O⋯N, N⋯N and F⋯F contacts contribute less than 5.7% to the Hirshfeld surface mapping and have little directional influence on the mol­ecular packing (Table 3[link]).

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
C1⋯Br2 3.6060 x, [{1\over 2}] + y, [{1\over 2}] − z
Br1⋯Br1 3.7247 x, 1 − y, −z
H4⋯O2 2.47 x, [{1\over 2}] − y, −[{1\over 2}] + z
H7⋯Br2 3.08 x, 1 − y, 1 − z
F1⋯H5 2.54 1 − x, [{1\over 2}] + y, [{1\over 2}] − z
C12⋯F1 3.3310 1 − x, 2 − y, −z
H14⋯F1 2.49 x, [{3\over 2}] − y, [{1\over 2}] + z
O2⋯H11 2.58 x, y, 1 + z
H13⋯O2 2.69 1 − x, 1 − y, 1 − z
C12⋯C12 3.5050 1 − x, 1 − y, −z

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound

Contact Percentage contribution
O⋯H/H⋯O 15.0
H⋯H 14.3
Br⋯H/H⋯Br 14.2
C⋯H/H⋯C 10.1
F⋯H/H⋯F 7.9
Br⋯Br 7.2
Br.·C/C⋯Br 5.8
N⋯H/H⋯N 5.7
C⋯C 4.2
O⋯C/C⋯O 4.0
F⋯C/C⋯F 3.1
Br.·O/O⋯Br 2.7
N⋯C/C⋯N 2.1
N⋯O/O⋯N 2.0
N⋯N 1.0
F⋯F 0.8
[Figure 10]
Figure 10
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) O⋯H / H⋯O, (c) H⋯H, (d) Br⋯H / H⋯Br, (e) C⋯H / H⋯C, (f) F⋯H / H⋯F, (g) Br⋯Br and (h) Br⋯C / C⋯Br inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the (E)-1-(2,2-di­chloro-1-phenyl­ethen­yl)-2-phenyl­diazene moiety resulted in 27 hits. Eight compounds are closely related to the title compound, viz. those with CSD refcodes GUPHIL (I) (Özkaraca et al., 2020[Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z. & Shadrack, D. M. (2020). Acta Cryst. E76, 1251-1254.]), HONBUK (II) (Akkurt et al., 2019[Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199-1204.]), HONBOE (III) (Akkurt et al., 2019[Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199-1204.]), HODQAV (IV) (Shikhaliyev et al., 2019a[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019a). CrystEngComm, 21, 5032-5038.]), XIZREG (V) (Atioğlu et al., 2019[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237-241.]), LEQXOX (VI) (Shikhaliyev et al., 2018a[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018a). Dyes Pigments, 150, 377-381.]), LEQXIR (VII) (Shikhaliyev et al., 2018b[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). Dyes Pigments, 150, 377-381.]) and PAXDOL (VIII) (Çelikesir et al., 2022[Çelikesir, S. T., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Suleymanova, G. T., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 404-408.]).

In the crystal of (I), mol­ecules are linked into inversion dimers via short halogen⋯halogen contacts [Cl1⋯Cl1 = 3.3763 (9) Å, C16—Cl1⋯Cl1 = 141.47 (7)°] compared to the van der Waals radius sum of 3.50 Å for two chlorine atoms. No other directional contacts could be identified, and the shortest aromatic ring centroid separation is greater than 5.25 Å. In the crystals of (II) and (III), mol­ecules are linked through weak X⋯Cl contacts [X = Cl for (II) and Br for (III)], C—H⋯Cl and C—Cl⋯π inter­actions into sheets lying parallel to (001). In the crystal of (IV), mol­ecules are stacked in columns parallel to [100] via weak C—H⋯Cl hydrogen bonds and face-to-face ππ stacking inter­actions. The crystal packing is further consolidated by short Cl⋯Cl contacts. In (V), mol­ecules are linked by C—H⋯O hydrogen bonds into zigzag chains running parallel to [001]. The crystal packing also features C—Cl⋯π, C—F⋯π and N—O⋯π inter­actions. In (VI), C—H⋯N and short Cl⋯Cl contacts are observed, and in (VII), C—H⋯N and C—H⋯O hydrogen bonds and short Cl⋯O contacts occur. In the crystal of (VIII), mol­ecules are linked into chains running parallel to [001] by C—H⋯O hydrogen bonds. The crystal packing is consolidated by C—F⋯π inter­actions and ππ stacking inter­actions, and short Br⋯O [2.9828 (13) Å] contacts are also observed.

6. Synthesis and crystallization

The title compound was synthesized according to a reported method (Akkurt et al., 2019[Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199-1204.]; Atioğlu et al., 2019[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237-241.]; Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]; Özkaraca et al., 2020[Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z. & Shadrack, D. M. (2020). Acta Cryst. E76, 1251-1254.]; Shikhaliyev et al., 2018a[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018a). Dyes Pigments, 150, 377-381.],b[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). Dyes Pigments, 150, 377-381.], 2019a[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019a). CrystEngComm, 21, 5032-5038.],b[Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019b). CrystEngComm, 21, 5032-5038.]). A 20 ml screw-neck vial was charged with dimethyl sulfoxide (10 ml), (E)-1-(4-fluoro­phen­yl)-2-(4-nitro­benzyl­idene)hydrazine (1 mmol), tetra­methyl­ethylenedi­amine (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CBr4 (4.5 mmol). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into a 0.01 M HCl solution (100 ml, pH = 2–3), and extracted with di­chloro­methane (3 × 20 ml). The combined organic phase was washed with water (3 × 50 ml), brine (30 ml), dried over anhydrous Na2SO4 and concentrated in vacuo using a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (v/v 3/1–1/1). Light-orange solid (yield 52%); m.p. 377 K. Analysis calculated for C14H8Br2FN3O2 (M = 429.04): C 39.19, H 1.88, N 9.79; found: C 39.17, H 1.85, N 9.76%. 1H NMR (300MHz, CDCl3) δ 7.36–7.14 (8H, Ar–H). 13C NMR (75MHz, CDCl3) δ 164.35, 153.13, 152.46, 133.69, 133.24, 131.74, 127.98, 127.89, 127.75, 127.42, 119.07, 89.02. ESI–MS: m/z: 430.06 [M + H]+. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms were positioned geometrically [C—H = 0.95 Å] and refined using a riding model with Uiso(H) = 1.2Ueq(C). The maximum electron density in the final difference map is located 0.75 Å from atom Br1, while the minimum electron density is located 0.72 Å from Br2.

Table 4
Experimental details

Crystal data
Chemical formula C14H8Br2FN3O2
Mr 429.05
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 16.0658 (2), 7.0329 (1), 12.7934 (2)
β (°) 96.8470 (6)
V3) 1435.21 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.67
Crystal size (mm) 0.37 × 0.21 × 0.08
 
Data collection
Diffractometer Bruker AXS D8 QUEST, Photon III detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.415, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 44165, 4177, 3809
Rint 0.102
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.096, 1.05
No. of reflections 4177
No. of parameters 199
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.00, −1.04
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

(E)-1-[2,2-Dibromo-1-(4-nitrophenyl)ethenyl]-2-(4-fluorophenyl)diazene top
Crystal data top
C14H8Br2FN3O2F(000) = 832
Mr = 429.05Dx = 1.986 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.0658 (2) ÅCell parameters from 9926 reflections
b = 7.0329 (1) Åθ = 3.2–33.2°
c = 12.7934 (2) ŵ = 5.67 mm1
β = 96.8470 (6)°T = 100 K
V = 1435.21 (4) Å3Plate, light red
Z = 40.37 × 0.21 × 0.08 mm
Data collection top
Bruker AXS D8 QUEST, Photon III detector
diffractometer
4177 independent reflections
Radiation source: fine-focus sealed X-Ray tube3809 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.102
Detector resolution: 7.31 pixels mm-1θmax = 30.0°, θmin = 2.6°
φ and ω shutterless scansh = 2222
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 99
Tmin = 0.415, Tmax = 0.747l = 1717
44165 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0647P)2 + 0.5442P]
where P = (Fo2 + 2Fc2)/3
4177 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 2.00 e Å3
0 restraintsΔρmin = 1.04 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.07857 (2)0.35922 (3)0.08663 (2)0.01718 (8)
Br20.02778 (2)0.28084 (3)0.31239 (2)0.02246 (8)
C10.10911 (13)0.3752 (3)0.23267 (15)0.0143 (3)
C20.18336 (12)0.4450 (3)0.27612 (15)0.0135 (3)
C30.20411 (12)0.4693 (3)0.39184 (15)0.0131 (3)
C40.26892 (13)0.3653 (3)0.44734 (16)0.0151 (4)
H40.3019350.2822090.4106510.018*
C50.28537 (13)0.3827 (3)0.55606 (16)0.0148 (3)
H50.3297920.3136450.5943940.018*
C60.23537 (13)0.5033 (3)0.60701 (15)0.0141 (3)
C70.17169 (13)0.6115 (3)0.55419 (16)0.0158 (4)
H70.1390470.6944550.5914910.019*
C80.15669 (12)0.5958 (3)0.44533 (15)0.0143 (3)
H80.1142680.6708500.4071270.017*
N10.24975 (12)0.5135 (2)0.72236 (14)0.0178 (3)
O10.19544 (12)0.5861 (2)0.76893 (13)0.0259 (3)
O20.31534 (11)0.4454 (2)0.76654 (12)0.0245 (3)
N20.23866 (11)0.4967 (2)0.20300 (13)0.0153 (3)
N30.31074 (11)0.5492 (3)0.24360 (14)0.0165 (3)
C90.36346 (12)0.6039 (3)0.16716 (15)0.0144 (3)
C100.33917 (13)0.6020 (3)0.05795 (16)0.0158 (4)
H100.2853070.5560490.0307640.019*
C110.39360 (14)0.6669 (3)0.00982 (16)0.0177 (4)
H110.3777880.6675400.0837800.021*
C120.47214 (14)0.7314 (3)0.03294 (17)0.0185 (4)
C130.49862 (14)0.7325 (3)0.13950 (18)0.0203 (4)
H130.5530300.7763220.1658620.024*
C140.44330 (14)0.6675 (3)0.20716 (17)0.0186 (4)
H140.4598640.6664180.2809650.022*
F10.52527 (9)0.7950 (2)0.03383 (11)0.0261 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01901 (12)0.01931 (12)0.01257 (11)0.00170 (7)0.00084 (8)0.00163 (6)
Br20.02126 (13)0.02844 (14)0.01798 (12)0.00940 (8)0.00360 (8)0.00113 (8)
C10.0179 (9)0.0133 (8)0.0121 (8)0.0006 (7)0.0030 (7)0.0007 (6)
C20.0173 (8)0.0111 (8)0.0124 (8)0.0016 (6)0.0022 (6)0.0007 (6)
C30.0144 (8)0.0131 (8)0.0118 (8)0.0003 (6)0.0022 (6)0.0005 (6)
C40.0176 (9)0.0159 (9)0.0124 (8)0.0025 (7)0.0038 (7)0.0002 (6)
C50.0165 (8)0.0144 (8)0.0134 (8)0.0000 (7)0.0013 (7)0.0020 (7)
C60.0196 (9)0.0124 (8)0.0105 (8)0.0044 (7)0.0027 (7)0.0002 (6)
C70.0197 (9)0.0124 (8)0.0159 (9)0.0001 (7)0.0052 (7)0.0017 (7)
C80.0156 (8)0.0133 (8)0.0142 (8)0.0016 (7)0.0023 (7)0.0000 (7)
N10.0269 (9)0.0122 (7)0.0147 (8)0.0054 (6)0.0037 (6)0.0008 (6)
O10.0394 (9)0.0243 (8)0.0159 (7)0.0010 (7)0.0107 (7)0.0038 (6)
O20.0325 (9)0.0245 (8)0.0150 (7)0.0041 (7)0.0029 (6)0.0020 (6)
N20.0182 (8)0.0141 (7)0.0139 (7)0.0018 (6)0.0026 (6)0.0002 (6)
N30.0192 (8)0.0158 (8)0.0148 (7)0.0010 (6)0.0034 (6)0.0005 (6)
C90.0172 (9)0.0133 (8)0.0128 (8)0.0019 (7)0.0026 (7)0.0002 (7)
C100.0179 (9)0.0154 (8)0.0140 (8)0.0004 (7)0.0012 (7)0.0010 (7)
C110.0212 (9)0.0184 (9)0.0132 (8)0.0013 (8)0.0015 (7)0.0007 (7)
C120.0194 (9)0.0183 (9)0.0188 (9)0.0006 (7)0.0062 (8)0.0009 (7)
C130.0168 (9)0.0232 (10)0.0205 (10)0.0025 (8)0.0012 (8)0.0018 (8)
C140.0198 (9)0.0217 (9)0.0140 (9)0.0006 (8)0.0004 (7)0.0017 (7)
F10.0239 (7)0.0354 (8)0.0202 (6)0.0064 (6)0.0081 (5)0.0037 (6)
Geometric parameters (Å, º) top
Br1—C11.878 (2)N1—O11.225 (2)
Br2—C11.872 (2)N1—O21.232 (3)
C1—C21.347 (3)N2—N31.266 (2)
C2—N21.412 (3)N3—C91.421 (3)
C2—C31.488 (3)C9—C141.397 (3)
C3—C41.395 (3)C9—C101.405 (3)
C3—C81.402 (3)C10—C111.380 (3)
C4—C51.390 (3)C10—H100.9500
C4—H40.9500C11—C121.390 (3)
C5—C61.384 (3)C11—H110.9500
C5—H50.9500C12—F11.354 (2)
C6—C71.385 (3)C12—C131.379 (3)
C6—N11.468 (2)C13—C141.390 (3)
C7—C81.389 (3)C13—H130.9500
C7—H70.9500C14—H140.9500
C8—H80.9500
C2—C1—Br2123.06 (15)O1—N1—O2123.97 (19)
C2—C1—Br1123.08 (15)O1—N1—C6118.25 (18)
Br2—C1—Br1113.85 (10)O2—N1—C6117.77 (17)
C1—C2—N2114.61 (17)N3—N2—C2114.84 (17)
C1—C2—C3122.32 (17)N2—N3—C9112.81 (17)
N2—C2—C3123.05 (17)C14—C9—C10120.10 (19)
C4—C3—C8120.02 (18)C14—C9—N3115.55 (18)
C4—C3—C2120.73 (17)C10—C9—N3124.33 (18)
C8—C3—C2119.23 (17)C11—C10—C9119.98 (19)
C5—C4—C3120.28 (18)C11—C10—H10120.0
C5—C4—H4119.9C9—C10—H10120.0
C3—C4—H4119.9C10—C11—C12118.29 (19)
C6—C5—C4118.27 (18)C10—C11—H11120.9
C6—C5—H5120.9C12—C11—H11120.9
C4—C5—H5120.9F1—C12—C13118.6 (2)
C5—C6—C7122.93 (18)F1—C12—C11118.07 (19)
C5—C6—N1118.21 (18)C13—C12—C11123.3 (2)
C7—C6—N1118.85 (17)C12—C13—C14118.0 (2)
C6—C7—C8118.38 (18)C12—C13—H13121.0
C6—C7—H7120.8C14—C13—H13121.0
C8—C7—H7120.8C13—C14—C9120.3 (2)
C7—C8—C3120.04 (18)C13—C14—H14119.8
C7—C8—H8120.0C9—C14—H14119.8
C3—C8—H8120.0
Br2—C1—C2—N2175.66 (13)C7—C6—N1—O114.3 (3)
Br1—C1—C2—N23.1 (3)C5—C6—N1—O214.4 (3)
Br2—C1—C2—C35.6 (3)C7—C6—N1—O2166.82 (18)
Br1—C1—C2—C3175.56 (14)C1—C2—N2—N3175.03 (18)
C1—C2—C3—C4115.8 (2)C3—C2—N2—N36.3 (3)
N2—C2—C3—C465.7 (3)C2—N2—N3—C9178.63 (16)
C1—C2—C3—C863.1 (3)N2—N3—C9—C14178.57 (18)
N2—C2—C3—C8115.5 (2)N2—N3—C9—C100.4 (3)
C8—C3—C4—C51.7 (3)C14—C9—C10—C111.4 (3)
C2—C3—C4—C5177.12 (18)N3—C9—C10—C11176.7 (2)
C3—C4—C5—C60.8 (3)C9—C10—C11—C120.6 (3)
C4—C5—C6—C72.1 (3)C10—C11—C12—F1179.95 (19)
C4—C5—C6—N1176.62 (18)C10—C11—C12—C130.5 (3)
C5—C6—C7—C81.0 (3)F1—C12—C13—C14179.7 (2)
N1—C6—C7—C8177.77 (17)C11—C12—C13—C140.7 (3)
C6—C7—C8—C31.5 (3)C12—C13—C14—C90.1 (3)
C4—C3—C8—C72.9 (3)C10—C9—C14—C131.2 (3)
C2—C3—C8—C7175.96 (18)N3—C9—C14—C13177.1 (2)
C5—C6—N1—O1164.51 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.952.473.331 (3)151
C5—H5···F1ii0.952.543.150 (3)122
C11—H11···O2iii0.952.583.367 (3)140
C14—H14···F1iv0.952.493.427 (3)169
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y, z1; (iv) x, y+3/2, z+1/2.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
C1···Br23.6060-x, 1/2 + y, 1/2 - z
Br1···Br13.7247-x, 1 - y, -z
H4···O22.47x, 1/2 - y, -1/2 + z
H7···Br23.08-x, 1 - y, 1 - z
F1···H52.541 - x, 1/2 + y, 1/2 - z
C12···F13.33101 - x, 2 - y, -z
H14···F12.49x, 3/2 - y, 1/2 + z
O2···H112.58x, y, 1 + z
H13···O22.691 - x, 1 - y, 1 - z
C12···C123.50501 - x, 1 - y, -z
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound top
ContactPercentage contribution
O···H/H···O15.0
H···H14.3
Br···H/H···Br14.2
C···H/H···C10.1
F···H/H···F7.9
Br···Br7.2
Br..C/C···Br5.8
N···H/H···N5.7
C···C4.2
O···C/C···O4.0
F···C/C···F3.1
Br..O/O···Br2.7
N···C/C···N2.1
N···O/O···N2.0
N···N1.0
F···F0.8
 

Acknowledgements

The authors' contributions are as follows. Conceptualization, NQS, MA and AB; synthesis, NAM and GVB; X-ray analysis, ZA, VNK and MA; writing (review and editing of the manuscript) ZA, MA and AB; funding acquisition, NQS, NAM and GVB; supervision, NQS, MA and AB.

Funding information

This work was performed under the support of the Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EIF-BGM-4-RFTF-1/2017–21/13/4).

References

First citationAkkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAtioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇelikesir, S. T., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Suleymanova, G. T., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 404–408.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKopylovich, M. N., Mac Leod, T. C. O., Haukka, M., Amanullayeva, G. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). J. Inorg. Biochem. 115, 72–77.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.  Web of Science CrossRef Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.  Web of Science CrossRef Google Scholar
First citationMac Leod, T. C., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439–440, 15–23.  Web of Science CrossRef CAS Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.  Web of Science CrossRef CAS Google Scholar
First citationMahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018). Inorg. Chem. 57, 4395–4408.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017). Eur. J. Inorg. Chem. pp. 4763–4772.  Web of Science CSD CrossRef Google Scholar
First citationMahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187–189.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.  Web of Science CSD CrossRef CAS Google Scholar
First citationMizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.  Web of Science CSD CrossRef Google Scholar
First citationÖzkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z. & Shadrack, D. M. (2020). Acta Cryst. E76, 1251–1254.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018a). Dyes Pigments, 150, 377–381.  CrossRef CAS Google Scholar
First citationShikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). Dyes Pigments, 150, 377–381.  CrossRef CAS Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019a). CrystEngComm, 21, 5032–5038.  CrossRef CAS Google Scholar
First citationShikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019b). CrystEngComm, 21, 5032–5038.  CrossRef CAS Google Scholar
First citationShixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.  Web of Science CSD CrossRef CAS Google Scholar
First citationShixaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Nenajdenko, V. G., Muzalevskiy, V. M., Mahmudov, K. T. & Kopylovich, M. N. (2013). Catal. Today, 217, 76–79.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationViswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds