research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new pseudopolymorph of berberine chloride: crystal structure and Hirshfeld surface analysis

crossmark logo

aNew Mexico Highlands University, 1005 Diamond Ave., Las Vegas NM, 87701, USA
*Correspondence e-mail: lrcastaneda@nmhu.edu

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 12 January 2022; accepted 23 March 2022; online 5 April 2022)

A new pseudopolymorph of berberine, 9,10-dimeth­oxy-5,6-di­hydro-2H-7λ5-[1,3]dioxolo[4,5-g]iso­quinolino­[3,2-a]isoquinolin-7-ylium chloride methanol monosolvate, C20H18NO4+·Cl·CH3OH, was obtained during co-crystallization of berberine chloride with malonic acid from methanol. The berberine cations form dimers, which are further packed in stacks. The title structure was compared with other reported solvates of berberine chloride: its dihydrate, tetra­hydrate, and ethanol solvate hemihydrate. Hirshfeld analysis was performed to show the inter­molecular inter­actions in the crystal structure of the title compound, and its fingerprint plots were compared with those of the already studied solvates.

1. Chemical context

The ability of co-crystals and polymorphs of active pharmaceutical ingredients (APIs) to change their physicochemical properties without modification of their biological activity has been pointed out in multiple publications, for instance, Shan & Zaworotko (2008[Shan, N. & Zaworotko, M. J. (2008). Drug Discovery, 13, 440-446.]), Bernstein (2002[Bernstein, J. (2002). Polymorphism in Molecular Crystals. New York: Oxford University Press.], 2005[Bernstein, J. (2005). Cryst. Growth Des. 5, 1661-1662.]) and Brittain (2009[Brittain, H. G. (2009). Polymorphism in Pharmaceutical Solids. New York: Informa, Healthcare.]). Currently, examples presented in the literature demonstrate that some attempts to grow co-crystals of organic compounds, including APIs, with particular coformers (additives) result in the formation of new polymorphs (Song & Cölfen, 2011[Song, R. Q. & Cölfen, H. (2011). CrystEngComm, 13, 1249-1276.]). In some cases, the combining of particular compounds with additives can increase the nucleation rate and thus lead to the development of a new crystalline form of the substance. Most likely, the additive suppressed formation of the general form, as a result of which a new polymorph begins to grow (Lee, 2014[Lee, E. H. (2014). Asian J. Pharm. Sci. 9, 163-175.]). For example, it was reported that combining different additives (trimesic acid, benzoic acid, phthalic acid, isophthalic acid, etc) with hexol (Co4H42N12O18S3), allowed two different polymorphic and one new pseudopolymorphic forms of this substance to be obtained (Mehta et al., 2007[Mehta, G., Sen, S. & Venkatesan, K. (2007). CrystEngComm, 9, 144-151.]).

New polymorph modifications are often obtained sporadically. For example, the second form of maleic acid was found only recently, in 2006, while the first form was reported in 1881. Inter­estingly, this new form was obtained during co-crystallization of maleic acid with caffeine (Day et al., 2006[Day, G. M., Trask, A. V., Motherwell, W. S. & Jones, W. (2006). Chem. Commun. pp. 54-56.]). Another example of this phenomenon was demonstrated by the well-known explosive 1,3,5-tri­nitro­benzene, which was co-crystallized with tris­indane. Instead obtaining of a new co-crystal, two new polymorphs of the main compound were discovered (Thallapally et al., 2004[Thallapally, P. K., Jetti, R. K., Katz, A. K., Carrell, H. L., Singh, K., Lahiri, K. & Desiraju, G. R. (2004). Angew. Chem. Int. Ed. 43, 1149-1155.]). These examples demonstrate that sometimes applying additives to the compound of inter­est may lead to a new polymorph. In some cases, the polymorph modifications demonstrate improved properties compared to the previously known form of the substance. Kobayashi et al. (2000[Kobayashi, Y., Ito, S., Itai, S. & Yamamoto, K. (2000). Int. J. Pharm. 193, 137-146.]) compared the dissolution rate and bioavailability of carbamazepine dihydrate and its polymorphs. It was noted that one of the polymorphs showed a higher dissolution rate than the other species.

Berberine, a natural product belonging to the class of alkaloids, is extracted from the leaves, barks, or roots of various plants such as Coptis chinensis, Hydrastis canadensis, etc. (Babu et al., 2012[Babu, H. N. R., Thriveni, H. N. & Vasudeva, R. (2012). J. Nat. Prod. Plant Resour. 2, 540-544.]). It was reported that berberine and its derivatives can be highly effective against inflammatory processes (Yeşilada & Küpeli, 2002[Yeşilada, E. & Küpeli, E. (2002). J. Ethnopharmacol. 79, 237-248.]), fungi (Silva et al., 2016[Silva, A. R. da, de Andrade Neto, J. B., da Silva, C. R., Campos, R. de S., Rde, S., Costa Silva, R. A., Freitas, D. D., do Nascimento, F. B., de Andrade, L. N., Sampaio, L. S., Grangeiro, T. B., Magalhães, H. I., Cavalcanti, B. C., de Moraes, M. O. & Nobre Júnior, H. V. (2016). Antimicrob. Agents Chemother. 60, 3551-3557.]), used as anti­oxidants (El-Wahab et al., 2013[El-Wahab, A. E. A., Ghareeb, D. A., Sarhan, E. E., Abu-Serie, M. M. & El Demellawy, M. A. (2013). BMC Complement. Altern. Med. 13: 218.]), or mutagens (Čerňáková et al., 2002[Čerňáková, M., Košt'álová, D., Kettmann, V., Plodová, M., Tóth, J. & Dřímal, J. (2002). BMC Complement. Altern. Med. 2: 2.]). Currently, berberine is available as a supplement. Berberine chloride (BCl) is a stable salt of berberine that is soluble in water (Battu et al., 2010[Battu, S. K., Repka, M. A., Maddineni, S., Chittiboyina, A. G., Avery, M. A. & Majumdar, S. (2010). AAPS J. 11, 1466-1475.]). The primary goal of this study was to obtain co-crystals of berberine chloride with three different acids, glutaric, malonic, and succinic, in an attempt to increase its solubility. In addition, it was inter­esting to follow studies of BCl hydrates (Singh et al., 2018[Singh, M., Bhandary, S., Bhowal, R. & Chopra, D. (2018). CrystEngComm, 20, 2253-2257.]), demonstrating the mechanical responses of BCl single crystals on cooling and heating.

[Scheme 1]

2. Crystallization

Berberine chloride (Alfa Aesar, lot No. R25HO28) was co-crystallized with glutaric (Alfa Aesar, lot No. D22Z032), malonic (Alfa Aesar, lot No. 10178800), and succinic (Spectrum, lot No. 1BK0179) acids. A slow evaporation technique was used for all three experiments. A molar ratio 1:1 for each pair was used; the compounds were dissolved separately in 5 mL of methanol with heating and ultrasonication. After that, those solutions were combined together and filtered. Then the three resulting solutions were left for evaporation at room temperature. After 7 days, small yellow needles were collected from the solutions with glutaric and malonic acids. The sample with succinic acid was not suitable for further characterization. The structure characterization showed that samples of BCl with glutaric and malonic acids gave two different species: one with two water mol­ecules and another with one mol­ecule of methanol. The obtained pseudopolymorph with two water mol­ecules had been studied before (Kariuki & Jones, 1995[Kariuki, B. M. & Jones, W. (1995). Acta Cryst. C51, 1234-1240.]). Crystals of the new BCl solvate with methanol were very fragile and dissipated very quickly in the air, most probably because of solvent loss. These crystals were used for diffraction studies with necessary precautions.

3. Structural commentary

Berberine chloride is a quaternary ammonium salt from the group of iso­quinoline alkaloids. The berberine core (Fig. 1[link]) contains two almost planar aromatic fragments (N1/C1–C9 and C10–C15) with a dihedral angle of 13.91 (4)° between them, which is similar to the corresponding values in other berberine cations presented in Table 1[link]. The bond lengths and bond angles in the cation are in line with those of previously reported analogues (Kariuki & Jones, 1995[Kariuki, B. M. & Jones, W. (1995). Acta Cryst. C51, 1234-1240.]; Singh et al., 2018[Singh, M., Bhandary, S., Bhowal, R. & Chopra, D. (2018). CrystEngComm, 20, 2253-2257.]). The positions of the single and double bonds (see scheme) correspond to the bond lengths found in our experimental diffraction study. One of the two methyl­ene groups attached to the cation lies almost in the plane of the aromatic ring while the other is nearly perpendicular to it (Fig. 1[link]). The torsion angles involving these groups are 5.8 (2)° for C20—O4—C4—C5 and −79.29 (18)° for C24—O3—C3—C4.

Table 1
Selected crystallographic data for berberine chloride pseudopolymorphs

  (C20H18NO4)+·Cl·2H2O (C20H18NO4)+·Cl·4H2O (C20H18NO4)+·Cl·EtOH·0.5H2O (C20H18NO4)+·Cl·MeOH
CSD Refcode XUNFES01 YUJHAM01 YUJHIU  
Space group C2/c P[\overline{1}] P[\overline{1}] P[\overline{1}]
a (Å) 27.449 (7) 6.8909 (4) 7.371 (1) 7.332 (2)
b (Å) 7.0744 (17) 11.4787 (6) 11.2724 (10) 9.886 (3)
c (Å) 21.677 (6) 13.1419 (7) 13.3998 (10) 13.270 (4)
α (°) 90 76.205 (4) 77.587 (7) 93.359 (8)
β (°) 117.695 (7) 89.221 (4) 73.299 (7) 102.703 (8)
γ (°) 90 85.231 (4) 78.228 (8) 92.410 (8)
Z 8 2 2 2
ρ (g cm−3) 1.454 1.465 1.377 1.434
Dihedral angle between aromatic fragments (°) 13.64 (4) 11.3 (1) 11.0 (1) 13.91 (4)
Mean-plane deviation (Å) 0.185 0.161 0.161 0.196
Distances between mol­ecular planes (Å) 3.5408 (12), 3.6475 (12) 3.4280 (6), 3.5330 (7) 3.4222 (19), 3.4144 (17) 3.5640 (19), 3.4982 (16)
Distances between centroids (Å) 4.2997 (11), 5.1407 (12) 4.3583 (5), 5.1838 (5) 4.6729 (15), 4.5413 (15) 5.9017 (16), 4.3704 (14)
[Figure 1]
Figure 1
Mol­ecular structure of the title compound with the atom labeling. Displacement ellipsoids are drawn at the 50% level.

4. Supra­molecular features

The berberine cations in the structure of the title compound are not involved in the formation of any hydrogen bonds. The only short contact that might be considered as a specific inter­action is the contact of Cl with the methanol hydrogen atom H5A [2.23 (2) Å]. This distance is quite close to the value of 2.079 Å that was presented in the review by Kovács & Varga (2006[Kovács, A. & Varga, Z. (2006). Coord. Chem. Rev. 250, 710-727.]). Details of the hydrogen-bond geometry are given in Table 2[link]. In the crystal, the berberine cations form stacks along the a-axis direction. The neighboring cations within the stack are related by inversion (Fig. 2[link]). The inter­planar distance (only core atoms were included in plane calculation) to the cation related by the symmetry operationx + 1, −y + 1, −z + 1 is shorter than that to the other cation related by −x + 2, −y + 1, −z + 1, being 3.564 (2) and 3.498 (2) Å, respectively. In general, the crystal packing can be described as `stacks that are built of dimers'.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯Cl1 0.84 (2) 2.23 (2) 3.0613 (18) 176 (2)
[Figure 2]
Figure 2
The dimers of berberine cations in the pseudopolymorphs with (a) two water mol­ecules, (b) four water mol­ecules, (c) one mol­ecule of ethanol and 0.5 mol­ecules of water, and (d) one methanol mol­ecule (see text for references).

5. Database survey

A search of the Cambridge Structural Database (CSD version 5.42, last update November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) demonstrated the significant inter­est in berberine salts. The structure of BCl dihydrate has been determined three times [XUNFES (Tong et al., 2010[Tong, H. H., Chow, A. S., Chan, H. M., Chow, A. H., Wan, Y. K., Williams, I. D., Shek, F. L. & Chan, C. K. (2010). J. Pharm. Sci. 99, 1942-1954.]); XUNFES01 (Singh et al., 2018[Singh, M., Bhandary, S., Bhowal, R. & Chopra, D. (2018). CrystEngComm, 20, 2253-2257.]); XUNFES02 (Fronczek, 2019[Fronczek, F. (2019). Personal communication (refcode XUNFES02). CCDC, Cambridge, England.])] with almost equal precision. The structure of BCl tetra­hydrate has been determined twice [YUJHAM (Kariuki & Jones, 1995[Kariuki, B. M. & Jones, W. (1995). Acta Cryst. C51, 1234-1240.]); YUJHAM01 (Singh et al., 2018[Singh, M., Bhandary, S., Bhowal, R. & Chopra, D. (2018). CrystEngComm, 20, 2253-2257.])]. To the best of our knowledge, the only non-solvated berberine salt to be characterized is the iodine deriv­ative (YUJHUG; Kariuki & Jones, 1995[Kariuki, B. M. & Jones, W. (1995). Acta Cryst. C51, 1234-1240.]). In addition, BCl ethanol solvate (YUJHIU; Kariuki & Jones, 1995[Kariuki, B. M. & Jones, W. (1995). Acta Cryst. C51, 1234-1240.]), as well as berberine iodide monohydrate (KUZSAA; Grundt et al., 2010[Grundt, P., Pernat, J., Krivogorsky, B., Halverson, M. A. & Berry, S. M. (2010). Acta Cryst. E66, o2585-o2586.]), bromide dihydrate (YUJHOA; Kariuki & Jones, 1995[Kariuki, B. M. & Jones, W. (1995). Acta Cryst. C51, 1234-1240.]), and sulfate hepta­hydrate (YUJJAO; Kariuki & Jones, 1995[Kariuki, B. M. & Jones, W. (1995). Acta Cryst. C51, 1234-1240.]) should be mentioned. The very inter­esting type of behavior exhibited by the BCl dihydrate and tetra­hydrate at different temperatures was described by Singh et al. (2018[Singh, M., Bhandary, S., Bhowal, R. & Chopra, D. (2018). CrystEngComm, 20, 2253-2257.]). Depending on the chosen conditions, the crystals demonstrated unexpected mechanical responses: bending, cracking, and jumping. The explanation for these thermo-mechanical properties was linked to the presence of destabilizing inter­actions between the water mol­ecules.

To estimate the similarities and differences between the crystal structures of pseudopolymorphs of BCl, we compared the hydrogen bonding and mol­ecular packing for the four solvates presented in Table 1[link]. All of the berberine cations in these structures are arranged in stacks, the space group for all compounds except for the dihydrate is P[\overline{1}]; for the dihydrate, the space group is C2/c. The stacks are formed of the very similar dimers shown in Fig. 2[link]. Table 1[link] demonstrates that the cations in stacks are situated in such a way that the distances between the mean planes (only core atoms were included in plane calculations) of the cations vary by ca 0.2 Å. The distances between the centroids of the aromatic rings characterizing the mol­ecular slippage show more diversity than the inter­planar distances.

As in the title structure, the water mol­ecules in the dihydrate and in the ethanol solvate do not form hydrogen bonds with the berberine cation, but make short contacts with the Cl anion. However, in the crystal structure of the tetra­hydrate, one of the water mol­ecules forms a bifurcated hydrogen bond with the berberine cation.

6. Hirshfeld surface analysis

The Hirshfeld surface analysis was performed using Crystal Explorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.]). According to the Hirshfeld surface presented in Fig. 3[link], the shortest inter­molecular contacts are found for the hydrogen atoms attached to the nitro­gen-containing C1–N1–C17 fragment. Fig. 4[link] gives the fingerprint plots for all the pseudopolymorphs presented in Table 1[link]. There are 15 different types of inter­actions in these crystals between five elements – H, C, N, Cl, and O – from which 60 fingerprint plots can be generated. 20 plots for which the inter­actions contribute above 2% to the Hirshfeld surface are presented in Fig. 4[link]. In spite of the different number and nature of the solvate/hydrate mol­ecules in the pseudopolymorphs presented, the fingerprint plots allow generalization of the impact of the inter­molecular inter­actions in these structures. In all structures, the H⋯H contacts provide the largest contributions (44.0–48.3%). The presence of H⋯O/O⋯H inter­actions, corresponding to inter­actions between the solvate mol­ecules, is also important (15.2–23.8%). The next highest contribution is by inter­actions involving the Cl anion (8.6–13.6%). The fingerprint plot for the methanol solvate is different from the others since there are no water mol­ecules in this structure, and no hydrogen bonds between the solvent and berberine cation.

[Figure 3]
Figure 3
Hirshfeld surface for the berberine cation in the title structure plotted over dnorm in the range −0.1877 to 1.1413 a.u.
[Figure 4]
Figure 4
The two-dimensional fingerprint plots for pseudopolymorphs of BCl with (a) two water mol­ecules, (b) four water mol­ecules, (c) one mol­ecule of ethanol and 0.5 mol­ecules of water, and (d) one methanol mol­ecule.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The O-bound H atom was refined freely. All other H atoms were positioned geometrically (C—H = 0.95, 0.98 and 0.98 Å for sp2-hybridized, methyl and methyl­ene C atoms, respectively) and refined using a riding model, with Uiso(H) = 1.5Ueq(C) and 1.2Ueq(C) for methyl and other H atoms, respectively.

Table 3
Experimental details

Crystal data
Chemical formula C20H18NO4+·Cl·CH4O
Mr 403.84
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.332 (2), 9.886 (3), 13.270 (4)
α, β, γ (°) 93.359 (8), 102.703 (8), 92.410 (8)
V3) 935.3 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.55 × 0.10 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.642, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 14444, 3376, 2867
Rint 0.040
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.095, 1.03
No. of reflections 3376
No. of parameters 260
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.20
Computer programs: APEX2 (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

9,10-Dimethoxy-5,6-dihydro-2H-7λ5-[1,3]dioxolo[4,5-g]isoquinolino[3,2-a]isoquinolin-7-ylium chloride methanol monosolvate top
Crystal data top
C20H18NO4+·Cl·CH4OZ = 2
Mr = 403.84F(000) = 424
Triclinic, P1Dx = 1.434 Mg m3
a = 7.332 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.886 (3) ÅCell parameters from 6433 reflections
c = 13.270 (4) Åθ = 2.5–25.3°
α = 93.359 (8)°µ = 0.24 mm1
β = 102.703 (8)°T = 100 K
γ = 92.410 (8)°Needle, yellow
V = 935.3 (4) Å30.55 × 0.10 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
2867 reflections with I > 2σ(I)
φ and ω scansRint = 0.040
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 25.3°, θmin = 1.6°
Tmin = 0.642, Tmax = 0.745h = 88
14444 measured reflectionsk = 1111
3376 independent reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.2603P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3376 reflectionsΔρmax = 0.25 e Å3
260 parametersΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.04980 (6)0.79926 (5)0.29804 (3)0.04056 (15)
O30.59675 (15)0.44604 (11)0.16673 (8)0.0296 (3)
O20.84006 (16)0.65879 (12)0.92758 (8)0.0337 (3)
O40.66750 (17)0.18213 (12)0.14990 (9)0.0368 (3)
O10.81836 (18)0.89074 (12)0.92490 (9)0.0389 (3)
N10.67296 (16)0.65364 (12)0.45335 (9)0.0214 (3)
O50.3207 (2)0.74509 (16)0.23676 (11)0.0543 (4)
H5A0.217 (3)0.758 (2)0.2511 (18)0.059 (7)*
C20.69666 (19)0.45102 (15)0.35149 (11)0.0219 (3)
C70.76561 (19)0.38502 (15)0.44335 (11)0.0212 (3)
C100.76096 (19)0.67708 (15)0.64377 (11)0.0219 (3)
C90.74277 (19)0.59387 (15)0.54597 (11)0.0209 (3)
C10.6537 (2)0.58739 (15)0.36132 (11)0.0225 (3)
H10.6097370.6335290.3005950.027*
C30.6685 (2)0.38017 (16)0.25342 (12)0.0240 (3)
C150.7548 (2)0.81869 (15)0.64324 (12)0.0248 (3)
C80.78951 (19)0.46096 (15)0.53918 (11)0.0217 (3)
H80.8395460.4188540.6010540.026*
C40.7038 (2)0.24385 (16)0.24690 (12)0.0268 (3)
C130.7967 (2)0.83456 (16)0.82525 (12)0.0286 (4)
C60.8054 (2)0.24662 (15)0.43410 (12)0.0240 (3)
H60.8539270.2008220.4943980.029*
C120.8071 (2)0.69476 (16)0.82650 (12)0.0262 (3)
C110.7888 (2)0.61277 (15)0.73828 (12)0.0246 (3)
H110.7943580.5170790.7400060.030*
C160.7342 (2)0.88310 (15)0.54205 (12)0.0267 (3)
H16A0.8590430.8974250.5260980.032*
H16B0.6806780.9727880.5475720.032*
C50.7741 (2)0.17823 (16)0.33812 (12)0.0267 (3)
H50.8003030.0850980.3329940.032*
C140.7722 (2)0.89967 (16)0.73571 (13)0.0303 (4)
H140.7670920.9955480.7359770.036*
C170.6085 (2)0.79463 (15)0.45553 (12)0.0256 (3)
H17A0.4785480.7927380.4655000.031*
H17B0.6090590.8333450.3884590.031*
C180.7981 (3)0.77680 (18)0.98451 (13)0.0389 (4)
H18A0.8853950.7891631.0532430.047*
H18B0.6686200.7672610.9948120.047*
C240.7346 (3)0.4840 (2)0.10979 (13)0.0397 (4)
H24A0.6723860.5197610.0444600.060*
H24B0.8019690.4042030.0951750.060*
H24C0.8234120.5538090.1509480.060*
C200.6856 (3)0.03844 (18)0.13960 (15)0.0465 (5)
H20A0.6565660.0074100.0660300.070*
H20B0.5985740.0078430.1744150.070*
H20C0.8142030.0175330.1712970.070*
C190.2949 (3)0.7269 (2)0.12882 (16)0.0553 (5)
H19A0.2540550.8110530.0976140.083*
H19B0.1994870.6534430.1021870.083*
H19C0.4132660.7034620.1112430.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0405 (3)0.0448 (3)0.0379 (3)0.00321 (19)0.01065 (19)0.01218 (19)
O30.0315 (6)0.0354 (6)0.0231 (6)0.0089 (5)0.0065 (5)0.0056 (5)
O20.0441 (7)0.0364 (6)0.0203 (6)0.0081 (5)0.0064 (5)0.0011 (5)
O40.0496 (7)0.0327 (6)0.0251 (6)0.0103 (5)0.0024 (5)0.0069 (5)
O10.0542 (8)0.0335 (7)0.0275 (6)0.0011 (6)0.0093 (6)0.0088 (5)
N10.0221 (6)0.0208 (6)0.0229 (7)0.0019 (5)0.0077 (5)0.0035 (5)
O50.0457 (8)0.0675 (10)0.0444 (8)0.0259 (7)0.0025 (7)0.0087 (7)
C20.0179 (7)0.0248 (8)0.0244 (8)0.0002 (6)0.0076 (6)0.0018 (6)
C70.0167 (7)0.0230 (7)0.0249 (8)0.0006 (6)0.0071 (6)0.0020 (6)
C100.0187 (7)0.0227 (8)0.0247 (8)0.0011 (6)0.0067 (6)0.0000 (6)
C90.0183 (7)0.0225 (7)0.0232 (8)0.0002 (6)0.0074 (6)0.0039 (6)
C10.0209 (7)0.0258 (8)0.0226 (8)0.0016 (6)0.0081 (6)0.0043 (6)
C30.0207 (7)0.0289 (8)0.0229 (8)0.0030 (6)0.0057 (6)0.0032 (6)
C150.0232 (8)0.0230 (8)0.0288 (8)0.0003 (6)0.0080 (6)0.0011 (6)
C80.0211 (7)0.0235 (8)0.0214 (7)0.0009 (6)0.0063 (6)0.0042 (6)
C40.0254 (8)0.0302 (8)0.0244 (8)0.0030 (6)0.0055 (6)0.0032 (7)
C130.0286 (8)0.0299 (8)0.0263 (8)0.0002 (7)0.0067 (7)0.0067 (7)
C60.0224 (7)0.0242 (8)0.0264 (8)0.0024 (6)0.0066 (6)0.0042 (6)
C120.0238 (8)0.0311 (8)0.0239 (8)0.0023 (6)0.0056 (6)0.0020 (6)
C110.0260 (8)0.0222 (8)0.0262 (8)0.0017 (6)0.0074 (6)0.0003 (6)
C160.0300 (8)0.0198 (7)0.0324 (9)0.0022 (6)0.0109 (7)0.0034 (6)
C50.0260 (8)0.0231 (8)0.0312 (8)0.0029 (6)0.0072 (7)0.0006 (6)
C140.0334 (9)0.0226 (8)0.0350 (9)0.0001 (7)0.0098 (7)0.0034 (7)
C170.0288 (8)0.0215 (8)0.0285 (8)0.0066 (6)0.0091 (7)0.0054 (6)
C180.0527 (11)0.0392 (10)0.0248 (9)0.0106 (8)0.0086 (8)0.0020 (7)
C240.0444 (10)0.0493 (11)0.0287 (9)0.0044 (8)0.0136 (8)0.0092 (8)
C200.0604 (12)0.0343 (10)0.0382 (10)0.0137 (9)0.0009 (9)0.0133 (8)
C190.0539 (13)0.0633 (14)0.0491 (12)0.0147 (11)0.0112 (10)0.0001 (10)
Geometric parameters (Å, º) top
O3—C31.3692 (18)C8—H80.9500
O3—C241.439 (2)C4—C51.413 (2)
O2—C121.3800 (19)C13—C121.388 (2)
O2—C181.434 (2)C13—C141.365 (2)
O4—C41.3577 (19)C6—H60.9500
O4—C201.434 (2)C6—C51.375 (2)
O1—C131.3771 (19)C12—C111.362 (2)
O1—C181.435 (2)C11—H110.9500
N1—C91.3985 (19)C16—H16A0.9900
N1—C11.3277 (19)C16—H16B0.9900
N1—C171.4913 (18)C16—C171.511 (2)
O5—H5A0.84 (2)C5—H50.9500
O5—C191.403 (2)C14—H140.9500
C2—C71.420 (2)C17—H17A0.9900
C2—C11.402 (2)C17—H17B0.9900
C2—C31.411 (2)C18—H18A0.9900
C7—C81.411 (2)C18—H18B0.9900
C7—C61.415 (2)C24—H24A0.9800
C10—C91.473 (2)C24—H24B0.9800
C10—C151.403 (2)C24—H24C0.9800
C10—C111.418 (2)C20—H20A0.9800
C9—C81.375 (2)C20—H20B0.9800
C1—H10.9500C20—H20C0.9800
C3—C41.384 (2)C19—H19A0.9800
C15—C161.500 (2)C19—H19B0.9800
C15—C141.404 (2)C19—H19C0.9800
C3—O3—C24113.45 (12)C12—C11—C10116.81 (14)
C12—O2—C18104.11 (12)C12—C11—H11121.6
C4—O4—C20117.96 (13)C15—C16—H16A109.5
C13—O1—C18104.21 (12)C15—C16—H16B109.5
C9—N1—C17120.12 (12)C15—C16—C17110.85 (12)
C1—N1—C9122.41 (12)H16A—C16—H16B108.1
C1—N1—C17117.41 (12)C17—C16—H16A109.5
C19—O5—H5A108.6 (16)C17—C16—H16B109.5
C1—C2—C7118.11 (13)C4—C5—H5119.4
C1—C2—C3121.13 (14)C6—C5—C4121.25 (14)
C3—C2—C7120.74 (13)C6—C5—H5119.4
C8—C7—C2118.12 (13)C15—C14—H14121.5
C8—C7—C6123.47 (14)C13—C14—C15117.05 (15)
C6—C7—C2118.41 (13)C13—C14—H14121.5
C15—C10—C9120.13 (13)N1—C17—C16110.76 (12)
C15—C10—C11120.57 (13)N1—C17—H17A109.5
C11—C10—C9119.28 (13)N1—C17—H17B109.5
N1—C9—C10117.99 (13)C16—C17—H17A109.5
C8—C9—N1117.48 (13)C16—C17—H17B109.5
C8—C9—C10124.53 (13)H17A—C17—H17B108.1
N1—C1—C2121.67 (14)O2—C18—O1107.08 (13)
N1—C1—H1119.2O2—C18—H18A110.3
C2—C1—H1119.2O2—C18—H18B110.3
O3—C3—C2119.09 (13)O1—C18—H18A110.3
O3—C3—C4121.25 (13)O1—C18—H18B110.3
C4—C3—C2119.55 (14)H18A—C18—H18B108.6
C10—C15—C16118.82 (13)O3—C24—H24A109.5
C10—C15—C14120.94 (14)O3—C24—H24B109.5
C14—C15—C16120.22 (14)O3—C24—H24C109.5
C7—C8—H8118.9H24A—C24—H24B109.5
C9—C8—C7122.17 (14)H24A—C24—H24C109.5
C9—C8—H8118.9H24B—C24—H24C109.5
O4—C4—C3115.86 (14)O4—C20—H20A109.5
O4—C4—C5124.33 (14)O4—C20—H20B109.5
C3—C4—C5119.81 (14)O4—C20—H20C109.5
O1—C13—C12109.63 (14)H20A—C20—H20B109.5
C14—C13—O1128.09 (15)H20A—C20—H20C109.5
C14—C13—C12122.27 (14)H20B—C20—H20C109.5
C7—C6—H6119.9O5—C19—H19A109.5
C5—C6—C7120.19 (14)O5—C19—H19B109.5
C5—C6—H6119.9O5—C19—H19C109.5
O2—C12—C13109.29 (13)H19A—C19—H19B109.5
C11—C12—O2128.37 (14)H19A—C19—H19C109.5
C11—C12—C13122.33 (14)H19B—C19—H19C109.5
C10—C11—H11121.6
O3—C3—C4—O41.7 (2)C3—C2—C7—C60.0 (2)
O3—C3—C4—C5178.63 (13)C3—C2—C1—N1177.44 (13)
O2—C12—C11—C10178.08 (14)C3—C4—C5—C61.2 (2)
O4—C4—C5—C6179.13 (14)C15—C10—C9—N115.96 (19)
O1—C13—C12—O21.39 (18)C15—C10—C9—C8164.13 (14)
O1—C13—C12—C11179.46 (13)C15—C10—C11—C120.5 (2)
O1—C13—C14—C15179.53 (15)C15—C16—C17—N152.38 (16)
N1—C9—C8—C71.2 (2)C8—C7—C6—C5178.34 (13)
C2—C7—C8—C92.1 (2)C13—O1—C18—O222.69 (17)
C2—C7—C6—C51.2 (2)C13—C12—C11—C100.9 (2)
C2—C3—C4—O4177.95 (13)C6—C7—C8—C9177.41 (13)
C2—C3—C4—C52.4 (2)C12—O2—C18—O123.50 (17)
C7—C2—C1—N11.2 (2)C12—C13—C14—C150.9 (2)
C7—C2—C3—O3178.12 (12)C11—C10—C9—N1165.41 (12)
C7—C2—C3—C41.8 (2)C11—C10—C9—C814.5 (2)
C7—C6—C5—C40.6 (2)C11—C10—C15—C16177.13 (13)
C10—C9—C8—C7178.67 (13)C11—C10—C15—C141.3 (2)
C10—C15—C16—C1735.95 (18)C16—C15—C14—C13177.85 (14)
C10—C15—C14—C130.5 (2)C14—C15—C16—C17145.62 (14)
C9—N1—C1—C22.2 (2)C14—C13—C12—O2177.46 (14)
C9—N1—C17—C1638.12 (17)C14—C13—C12—C111.7 (2)
C9—C10—C15—C161.5 (2)C17—N1—C9—C103.74 (18)
C9—C10—C15—C14179.90 (13)C17—N1—C9—C8176.18 (12)
C9—C10—C11—C12179.17 (13)C17—N1—C1—C2175.01 (13)
C1—N1—C9—C10179.13 (12)C18—O2—C12—C1315.39 (17)
C1—N1—C9—C80.9 (2)C18—O2—C12—C11165.53 (16)
C1—N1—C17—C16144.61 (13)C18—O1—C13—C1213.23 (17)
C1—C2—C7—C80.89 (19)C18—O1—C13—C14168.00 (17)
C1—C2—C7—C6178.67 (13)C24—O3—C3—C2104.41 (16)
C1—C2—C3—O30.5 (2)C24—O3—C3—C479.29 (18)
C1—C2—C3—C4176.85 (13)C20—O4—C4—C3174.50 (15)
C3—C2—C7—C8179.54 (13)C20—O4—C4—C55.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···Cl10.84 (2)2.23 (2)3.0613 (18)176 (2)
Selected crystallographic data for berberine chloride pseudopolymorphs top
(C20H18NO4)+·Cl-·2H2O(C20H18NO4)+·Cl-·4H2O(C20H18NO4)+·Cl-·EtOH·0.5H2O(C20H18NO4)+·Cl-·MeOH
CSD RefcodeXUNFES01YUJHAM01YUJHIU
Space groupC2/cP1P1P1
a (Å)27.449 (7)6.8909 (4)7.371 (1)7.332 (2)
b (Å)7.0744 (17)11.4787 (6)11.2724 (10)9.886 (3)
c (Å)21.677 (6)13.1419 (7)13.3998 (10)13.270 (4)
α (°)9076.205 (4)77.587 (7)93.359 (8)
β (°)117.695 (7)89.221 (4)73.299 (7)102.703 (8)
γ (°)9085.231 (4)78.228 (8)92.410 (8)
Z8222
ρ (g cm-3)1.4541.4651.3771.434
Dihedral angle between aromatic fragments (°)13.64 (4)11.3 (1)11.0 (1)13.91 (4)
Mean-plane deviation (Å)0.1850.1610.1610.196
Distances between molecular planes (Å)3.5408 (12), 3.6475 (12)3.4280 (6), 3.5330 (7)3.4222 (19), 3.4144 (17)3.5640 (19), 3.4982 (16)
Distances between centroids (Å)4.2997 (11), 5.1407 (12)4.3583 (5), 5.1838 (5)4.6729 (15), 4.5413 (15)5.9017 (16), 4.3704 (14)
 

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (PREM No. 1523611); National Science Foundation, Directorate for Mathematical and Physical Sciences (PREM No. 2122108).

References

First citationBabu, H. N. R., Thriveni, H. N. & Vasudeva, R. (2012). J. Nat. Prod. Plant Resour. 2, 540–544.  CAS Google Scholar
First citationBattu, S. K., Repka, M. A., Maddineni, S., Chittiboyina, A. G., Avery, M. A. & Majumdar, S. (2010). AAPS J. 11, 1466–1475.  CAS Google Scholar
First citationBernstein, J. (2002). Polymorphism in Molecular Crystals. New York: Oxford University Press.  Google Scholar
First citationBernstein, J. (2005). Cryst. Growth Des. 5, 1661–1662.  Web of Science CrossRef CAS Google Scholar
First citationBrittain, H. G. (2009). Polymorphism in Pharmaceutical Solids. New York: Informa, Healthcare.  Google Scholar
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationČerňáková, M., Košt'álová, D., Kettmann, V., Plodová, M., Tóth, J. & Dřímal, J. (2002). BMC Complement. Altern. Med. 2: 2.  Google Scholar
First citationDay, G. M., Trask, A. V., Motherwell, W. S. & Jones, W. (2006). Chem. Commun. pp. 54–56.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEl-Wahab, A. E. A., Ghareeb, D. A., Sarhan, E. E., Abu-Serie, M. M. & El Demellawy, M. A. (2013). BMC Complement. Altern. Med. 13: 218.  Google Scholar
First citationFronczek, F. (2019). Personal communication (refcode XUNFES02). CCDC, Cambridge, England.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGrundt, P., Pernat, J., Krivogorsky, B., Halverson, M. A. & Berry, S. M. (2010). Acta Cryst. E66, o2585–o2586.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKariuki, B. M. & Jones, W. (1995). Acta Cryst. C51, 1234–1240.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKobayashi, Y., Ito, S., Itai, S. & Yamamoto, K. (2000). Int. J. Pharm. 193, 137–146.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKovács, A. & Varga, Z. (2006). Coord. Chem. Rev. 250, 710–727.  Google Scholar
First citationLee, E. H. (2014). Asian J. Pharm. Sci. 9, 163–175.  CrossRef Google Scholar
First citationMehta, G., Sen, S. & Venkatesan, K. (2007). CrystEngComm, 9, 144–151.  Web of Science CSD CrossRef CAS Google Scholar
First citationShan, N. & Zaworotko, M. J. (2008). Drug Discovery, 13, 440–446.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, A. R. da, de Andrade Neto, J. B., da Silva, C. R., Campos, R. de S., Rde, S., Costa Silva, R. A., Freitas, D. D., do Nascimento, F. B., de Andrade, L. N., Sampaio, L. S., Grangeiro, T. B., Magalhães, H. I., Cavalcanti, B. C., de Moraes, M. O. & Nobre Júnior, H. V. (2016). Antimicrob. Agents Chemother. 60, 3551–3557.  Web of Science PubMed Google Scholar
First citationSingh, M., Bhandary, S., Bhowal, R. & Chopra, D. (2018). CrystEngComm, 20, 2253–2257.  Web of Science CSD CrossRef CAS Google Scholar
First citationSong, R. Q. & Cölfen, H. (2011). CrystEngComm, 13, 1249–1276.  Web of Science CrossRef CAS Google Scholar
First citationThallapally, P. K., Jetti, R. K., Katz, A. K., Carrell, H. L., Singh, K., Lahiri, K. & Desiraju, G. R. (2004). Angew. Chem. Int. Ed. 43, 1149–1155.  Web of Science CSD CrossRef CAS Google Scholar
First citationTong, H. H., Chow, A. S., Chan, H. M., Chow, A. H., Wan, Y. K., Williams, I. D., Shek, F. L. & Chan, C. K. (2010). J. Pharm. Sci. 99, 1942–1954.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.  Google Scholar
First citationYeşilada, E. & Küpeli, E. (2002). J. Ethnopharmacol. 79, 237–248.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds