research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and photophysical properties of chlorido­[(E)-3-hy­dr­oxy-2-methyl-6-(quinolin-8-yldiazen­yl)phenolato]copper(II) monohydrate

crossmark logo

aDepartment of Chemistry, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
*Correspondence e-mail: chihiro.kachi@chem.sci.toho-u.ac.jp

Edited by C. Schulzke, Universität Greifswald, Germany (Received 3 March 2022; accepted 27 March 2022; online 5 April 2022)

The reaction between copper(II) chloride dihydrate and the (E)-2-methyl-4-(quinolin-8-yldiazen­yl)benzene-1,3-diol ligand in aceto­nitrile leads to the formation of the title compound, [Cu(C16H12N3O2)Cl]·H2O. The ligand is deprotonated and coordinates with three donor atoms (tridentate) to the CuII ion. Individual mol­ecules of the CuII complex are connected by chloride bridges, forming a one-dimensional coordination polymer. No photoisomerization to the cis isomer of the azo ligand was observed upon irradiation with UV light.

1. Chemical context

Azo­benzene derivatives are well-known dyes with fascinating characteristics such as cis–trans photoisomerization and azo–hydrazone tautomerism. The combination of azo compounds with metal ions to form complexes is a promising approach for controlling their photophysical properties. In metal complexes with azo ligands, the metal centers and azo ligands can affect each other's properties. For example, cis–trans photoisomerization by irradiation with a single frequency of light has been achieved in azo-conjugated metal complexes by a combination of the photophysical and the redox properties of ligand and metal center (Nishihara, 2005[Nishihara, H. (2005). Coord. Chem. Rev. 249, 1468-1475.]). Azo­benzene deriv­atives with hy­droxy groups in the ortho or para position tend to form hydrazone tautomers (Jacques et al., 1979[Jacques, P., Strub, H., See, J. & Fleury, J.-P. (1979). Tetrahedron, 35, 2071-2073.]; Ball & Nicholls, 1982[Ball, P. & Nicholls, C. H. (1982). Dyes Pigments, 3, 5-26.]; Rauf et al., 2015[Rauf, M. A., Hisaindee, S. & Saleh, N. (2015). RSC Adv. 5, 18097-18110.]). A hydrazone tautomer can be converted to an azo tautomer by complexation to the metal ion (Chen et al., 2012[Chen, X.-C., Tao, T., Wang, Y.-G., Peng, Y.-X., Huang, W. & Qian, H.-F. (2012). Dalton Trans. 41, 11107-11115.]; Cai et al., 2016[Cai, J., Li, Z., Qiu, Y., OuYang, Z., Lin, W., Yang, L., Feng, W., Yu, X. & Dong, W. (2016). New J. Chem. 40, 9370-9379.]). In this study, we used the ortho and para isomer of the hy­droxy-substituted azo­benzene derivative, (E)-2-methyl-4-(quinolin-8-yldiazen­yl)benz­ene-1,3-diol, to investigate azo–hydrazone tautomerism in its CuII complex. The photophysical properties of the ligand and the CuII complex were studied by UV–Vis spectroscopy to address the potential photoisomerization.

[Scheme 1]

2. Structural commentary

The crystal structure of the CuII complex is shown in Fig. 1[link]. The asymmetric unit contains one CuII complex and one solvent water mol­ecule. The hy­droxy group in the ortho-position of the azo ligand is deprotonated and is coordinated the CuII center. In the asymmetric unit, the CuII ion is 4-coordinated in a distorted square-planar geometry. The donor atoms comprise one nitro­gen atom of the quinoline moiety, one nitro­gen atom of the azo group, one deprotonated alcohol oxygen atom, and a chloride ion. The other hy­droxy group of the azo ligand, in the para-position, remains protonated. The chlorido ligand is also weakly coordinated by an adjacent CuII center occupying its apical position, resulting in an elongated square-pyramidal coordination polyhedron around the copper(II) ions. The Cu1—Cl1i distance in the apical position is 2.7395 (10) Å, which is notably longer than the distances in the equatorial positions, Cu1—Cl1 = 2.2803 (8) Å, Cu1—O1 = 1.917 (2) Å, Cu1—N1 = 2.008 (3) Å, and Cu1—N2 = 1.945 (3) Å [symmetry code: (i) x + 1, y, z]. The N2—N3 bond distance of 1.293 (4) Å is typical for the N=N double bond of an azo group. The structural features of the aromatic rings and the C11—O1 single-bond length of 1.300 (4) Å also indicate that the ligand adopts the azo structure, rather than the hydrazone structure, which is similar to the structures observed in analogous azo-metal complexes with other metals, including Ni, Cu, and Zn (Cai et al., 2016[Cai, J., Li, Z., Qiu, Y., OuYang, Z., Lin, W., Yang, L., Feng, W., Yu, X. & Dong, W. (2016). New J. Chem. 40, 9370-9379.]; Kochem et al., 2011[Kochem, A., Orio, M., Philouze, C., Jamet, H., du Moulinet d'Hardemare, A. & Thomas, F. (2011). Eur. J. Inorg. Chem. pp. 45-48.], 2014[Kochem, A., Carrillo, A., Philouze, C., van Gastel, M., du Moulinet d'Hardemare, A. & Thomas, F. (2014). Eur. J. Inorg. Chem. pp. 4263-4267.]).

[Figure 1]
Figure 1
Crystal structure of the title compound showing the atom-labeling scheme, generated with Mercury software (Version 2021.2.0; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

The coordinated chloride ion bridges adjacent CuII complexes to form a one-dimensional coordination polymer resulting in columns along the crystallographic a-axis direction (Fig. 2[link]). This is supported by ππ stacking between the co-planar quinoline rings with a centroid–centroid distance of 3.7711 (4) Å, an inter-plane distance of 3.3494 (12) Å, and a slippage of 1.733 (2) Å. The 1D columns are linked through hydrogen bonds facilitated by the solvent water mol­ecules, C14—H14⋯O3, O2—H2A⋯O3, O3—H3W⋯Cl1i, and O3—H4W⋯O1ii, [symmetry codes: (i) x + [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}]; (ii) x − [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}]] (Table 1[link], Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O3 0.95 2.65 3.318 (4) 128
O2—H2A⋯O3 0.82 (4) 1.87 (4) 2.686 (4) 172 (4)
O3—H3W⋯Cl1i 0.70 (4) 2.45 (4) 3.104 (3) 157 (5)
O3—H4W⋯O1ii 0.89 (6) 2.20 (6) 2.911 (4) 136 (4)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing of the title compound viewed along the b axis showing inter­molecular hydrogen bonds and ππ stacking between the azo ligands, generated with Mercury software (Version 2021.2.0; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). Inter­molecular hydrogen bonds are shown as blue dashed lines.
[Figure 3]
Figure 3
Crystal packing of the title compound viewed along the a axis showing inter­molecular hydrogen bonds (blue dashed lines), generated with Mercury software (Version 2021.2.0; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.42, update of November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with ConQuest (Version 2020.3.0; Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) for phenyl- and quinolinyl-bearing azo ligands with an ortho-hy­droxy substituent and their complexes resulted in only seven hits. These structures include one ligand derivative and six trans­ition-metal complexes (an azo­benzene derivative and its Zn complex, refcodes ONOKUY and ONOLAF; Kochem et al., 2011[Kochem, A., Orio, M., Philouze, C., Jamet, H., du Moulinet d'Hardemare, A. & Thomas, F. (2011). Eur. J. Inorg. Chem. pp. 45-48.]; Cu complexes, refcodes MOGLAX and MOGLEB; Kochem et al., 2014[Kochem, A., Carrillo, A., Philouze, C., van Gastel, M., du Moulinet d'Hardemare, A. & Thomas, F. (2014). Eur. J. Inorg. Chem. pp. 4263-4267.]; an Re complex, refcode TOZTUZ; Sarkar et al., 2015[Sarkar, R. & Rajak, K. K. (2015). J. Organomet. Chem. 779, 1-13.]; a Co complex, refcode VARQUD; Taylor et al., 2017[Taylor, R. A., Bonanno, N. M., Mirza, D., Lough, A. J. & Lemaire, M. T. (2017). Polyhedron, 131, 34-39.]; an Ho complex, refcode NAMJIY; Taylor et al., 2018[Taylor, R. A., Bonanno, N. M., Cibian, M., Yadav, J., Silverstein, H. J., Wiebe, C. R., Mauws, C., Lough, A. J. & Lemaire, M. T. (2018). Inorganics 6, 56.]). While co-planarity of the aromatic moieties was observed in some of these structures, the formation of the column-type coordination polymeric structure of the title compound has no precedence in this group.

5. UV–Vis spectra for the azo ligand and CuII complex

The UV–Vis spectra of the azo ligand and the CuII complex in CH3CN are shown in Fig. 4[link]. The maximum of the extinction (ɛmax) was observed at 406 nm for the ligand, while the CuII complex showed decreased absorption and red-shifted maxima at 420 and 489 nm. To investigate the photoisomerization of the ligand and the CuII complex, the samples were irradiated at maximum wavelength, but no photoisomerization to the cis isomer was observed for either compound.

[Figure 4]
Figure 4
UV–Vis spectra of the ligand and the title compound in CH3CN.

6. Synthesis and crystallization

To synthesize the title ligand, an aqueous solution of 1.2 M NaNO2 (3 mL) was slowly added to a cold solution of 8-amino­quinoline (0.432 g, 3.00 mmol) in 0.5 M HCl(aq) (20 mL). The resulting solution was stirred at 277 K for 15 min, and an aqueous solution of (NH2)2CO (0.180 g, 3.00 mmol) in 3 mL of water was then added to give a diazo­nium chloride solution. This solution was added to an aqueous 0.25 M NaOH solution of 2,6-di­hydroxy­toluene (0.372 g, 3.00 mmol) and stirred at 277 K for 30 min and then stirred at room temperature for 15 h. The reaction mixture was acidified with 1 M HCl(aq) (10 mL) and a red precipitate was formed. The precipitate was filtered off and washed with water and then with cold tetra­hydro­furan. Yield, 86% (0.787 g, 2.58 mmol). IR: νmax (KBr): 3400, 3068, 1633, 1536, 1503, 1488, 1447, 1364, 1299, 1212, 787 cm−1. 1H NMR (400 MHz, CD3CN): δH 9.06 (d, 1H), 8.41 (d, 1H), 8.20 (d, 1H), 7.97 (d, 1H), 7.74 (t, 1H), 7.62 (dd, 1H), 7.49 (d, 1H), 6.63 (d, 1H), 2.12 (s, 3H). Analysis calculated for C16H13N3O2·0.72HCl: C, 62.90; H, 4.53; N, 13.75. Found: C, 62.49; H, 4.31; N, 14.17. The CuII complex was obtained as a brown solid by the reaction of the azo ligand synthesized as described above (0.099 g, 0.324 mmol) in 4 mL of ethanol with CuCl2·2H2O (0.061 g, 0.358 mmol) in 2 mL of H2O. Yield, 54% (0.073 g, 0.193 mmol). Crystals of the CuII complex suitable for the X-ray crystallography study were obtained by the slow diffusion of a CH3CN solution of the ligand into an aqueous solution of CuCl2·2H2O. IR: νmax (KBr): 3418, 2924, 2854, 1633, 1557, 1508, 1436, 1283, 1258, 1048 cm−1. Analysis calculated for C16H12ClCuN3O2: C, 50.94; H, 3.21; N, 11.14. Found: C, 50.82; H, 3.63; N, 11.49.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All non-hydrogen atoms were refined anisotropically. The O—H hydrogen atoms of the solvent water mol­ecules and the hy­droxy group in the para-position were found in the difference-Fourier map and were refined isotropically without restraints or constraints. Other hydrogen atoms were generated geometrically, and refined with a riding model with C—H = 0.98 Å, Uiso(H) = 1.5 Ueq(C) for methyl, and C—H = 0.95 Å, Uiso(H) = 1.2 Ueq(C) for aromatic hydrogen atoms. Two reflections were omitted as clear outliers.

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C16H12N3O2)Cl]·H2O
Mr 395.29
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 3.7711 (4), 26.451 (3), 15.0864 (15)
β (°) 97.100 (2)
V3) 1493.3 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.66
Crystal size (mm) 0.44 × 0.09 × 0.02
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.629, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 8133, 2746, 2132
Rint 0.049
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.081, 1.04
No. of reflections 2746
No. of parameters 230
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.42, −0.41
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Chlorido[(E)-3-hydroxy-2-methyl-6-(quinolin-8-yldiazenyl)phenolato]copper(II) monohydrate top
Crystal data top
[Cu(C16H12N3O2)Cl]·H2OF(000) = 804
Mr = 395.29Dx = 1.758 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 3.7711 (4) ÅCell parameters from 1510 reflections
b = 26.451 (3) Åθ = 2.7–24.3°
c = 15.0864 (15) ŵ = 1.66 mm1
β = 97.100 (2)°T = 100 K
V = 1493.3 (3) Å3Plate, brown
Z = 40.44 × 0.09 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
2132 reflections with I > 2σ(I)
φ and ω scansRint = 0.049
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 25.4°, θmin = 2.1°
Tmin = 0.629, Tmax = 0.745h = 44
8133 measured reflectionsk = 2131
2746 independent reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0286P)2 + 0.6665P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2746 reflectionsΔρmax = 0.42 e Å3
230 parametersΔρmin = 0.41 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9143 (9)1.03984 (12)0.8827 (2)0.0157 (7)
H10.8222461.0260990.9333710.019*
C20.9909 (9)1.09143 (12)0.8821 (2)0.0162 (7)
H20.9517751.1119320.9317010.019*
C31.1222 (9)1.11240 (12)0.8101 (2)0.0176 (8)
H31.1740561.1475280.8091690.021*
C41.1803 (9)1.08129 (12)0.7369 (2)0.0146 (7)
C51.3129 (9)1.09847 (12)0.6585 (2)0.0156 (8)
H51.3716621.1331330.6526680.019*
C61.3564 (8)1.06562 (12)0.5914 (2)0.0154 (7)
H61.4407001.0779480.5386990.018*
C71.2798 (8)1.01391 (12)0.5981 (2)0.0140 (7)
H71.3144250.9915810.5506310.017*
C81.1548 (8)0.99580 (12)0.6736 (2)0.0124 (7)
C91.0988 (8)1.02935 (12)0.7434 (2)0.0127 (7)
C101.0113 (9)0.86492 (12)0.6316 (2)0.0140 (7)
C110.8938 (8)0.83965 (12)0.7082 (2)0.0132 (7)
C120.8113 (9)0.78725 (12)0.7008 (2)0.0151 (7)
C130.8379 (9)0.76272 (12)0.6209 (2)0.0164 (8)
C140.9591 (9)0.78717 (13)0.5468 (2)0.0184 (8)
H140.9795220.7689540.4933600.022*
C151.0453 (9)0.83666 (12)0.5529 (2)0.0160 (7)
H151.1304210.8529820.5035550.019*
C160.6924 (9)0.75947 (12)0.7792 (2)0.0180 (8)
H16A0.5344730.7315130.7574450.027*
H16B0.5633950.7827520.8142870.027*
H16C0.9018570.7460560.8167310.027*
Cl10.5361 (2)0.92919 (3)0.91540 (5)0.0160 (2)
Cu10.90089 (11)0.93390 (2)0.80589 (2)0.01287 (13)
H2A0.747 (11)0.7051 (16)0.563 (3)0.045 (14)*
H3W0.853 (12)0.6570 (17)0.448 (3)0.043 (18)*
H4W0.533 (15)0.674 (2)0.412 (4)0.09 (2)*
N10.9636 (7)1.00915 (10)0.81610 (16)0.0126 (6)
N21.0654 (7)0.94509 (10)0.69027 (17)0.0141 (6)
N31.0982 (7)0.91430 (10)0.62523 (17)0.0131 (6)
O10.8645 (6)0.86267 (8)0.78313 (14)0.0157 (5)
O20.7473 (7)0.71334 (9)0.61565 (17)0.0225 (6)
O30.7360 (10)0.67746 (11)0.44880 (19)0.0275 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0175 (19)0.0184 (18)0.0110 (16)0.0034 (15)0.0011 (14)0.0007 (15)
C20.0185 (19)0.0147 (18)0.0144 (17)0.0026 (15)0.0016 (15)0.0033 (15)
C30.023 (2)0.0077 (17)0.0206 (18)0.0023 (14)0.0033 (15)0.0017 (15)
C40.0135 (18)0.0114 (17)0.0180 (17)0.0024 (14)0.0012 (15)0.0000 (14)
C50.0162 (19)0.0076 (17)0.0223 (19)0.0023 (14)0.0001 (15)0.0044 (15)
C60.0148 (18)0.0175 (18)0.0136 (16)0.0015 (15)0.0006 (14)0.0045 (15)
C70.0126 (17)0.0162 (18)0.0136 (16)0.0003 (14)0.0029 (14)0.0019 (15)
C80.0114 (17)0.0126 (17)0.0131 (16)0.0020 (14)0.0004 (13)0.0018 (14)
C90.0106 (17)0.0144 (18)0.0122 (16)0.0017 (13)0.0027 (14)0.0006 (14)
C100.0137 (18)0.0123 (17)0.0160 (17)0.0007 (14)0.0010 (14)0.0014 (14)
C110.0107 (17)0.0137 (17)0.0145 (16)0.0017 (14)0.0011 (14)0.0000 (14)
C120.0168 (19)0.0120 (17)0.0168 (17)0.0014 (14)0.0029 (14)0.0002 (15)
C130.020 (2)0.0086 (17)0.0205 (18)0.0002 (14)0.0003 (15)0.0002 (15)
C140.025 (2)0.0156 (18)0.0142 (17)0.0045 (15)0.0025 (15)0.0033 (15)
C150.0218 (19)0.0124 (18)0.0142 (16)0.0021 (15)0.0043 (15)0.0009 (15)
C160.022 (2)0.0126 (17)0.0196 (18)0.0015 (15)0.0036 (16)0.0004 (15)
Cl10.0190 (4)0.0161 (4)0.0137 (4)0.0011 (4)0.0049 (3)0.0009 (3)
Cu10.0193 (2)0.0089 (2)0.0110 (2)0.00015 (17)0.00432 (16)0.00005 (17)
N10.0161 (15)0.0102 (14)0.0112 (13)0.0040 (12)0.0011 (12)0.0001 (12)
N20.0178 (16)0.0110 (14)0.0141 (14)0.0007 (12)0.0046 (12)0.0001 (12)
N30.0165 (16)0.0110 (14)0.0115 (14)0.0005 (12)0.0004 (12)0.0012 (12)
O10.0262 (14)0.0087 (11)0.0130 (11)0.0012 (10)0.0051 (10)0.0013 (10)
O20.0403 (17)0.0093 (13)0.0195 (14)0.0043 (11)0.0095 (12)0.0056 (11)
O30.040 (2)0.0172 (15)0.0252 (15)0.0017 (15)0.0047 (15)0.0014 (13)
Geometric parameters (Å, º) top
C1—N11.323 (4)C11—O11.300 (4)
C1—C21.395 (5)C11—C121.422 (4)
C1—H10.9500C12—C131.383 (4)
C2—C31.366 (4)C12—C161.506 (4)
C2—H20.9500C13—O21.350 (4)
C3—C41.416 (4)C13—C141.417 (4)
C3—H30.9500C14—C151.349 (4)
C4—C91.414 (4)C14—H140.9500
C4—C51.415 (4)C15—H150.9500
C5—C61.359 (4)C16—H16A0.9800
C5—H50.9500C16—H16B0.9800
C6—C71.404 (4)C16—H16C0.9800
C6—H60.9500Cl1—Cu12.2803 (8)
C7—C81.372 (4)Cl1—Cu1i2.7395 (10)
C7—H70.9500Cu1—O11.917 (2)
C8—C91.412 (4)Cu1—N21.945 (2)
C8—N21.413 (4)Cu1—N12.008 (3)
C9—N11.374 (4)N2—N31.293 (3)
C10—N31.353 (4)O2—H2A0.82 (4)
C10—C151.423 (4)O3—H3W0.70 (4)
C10—C111.451 (4)O3—H4W0.89 (6)
N1—C1—C2123.2 (3)O2—C13—C12117.4 (3)
N1—C1—H1118.4O2—C13—C14119.9 (3)
C2—C1—H1118.4C12—C13—C14122.6 (3)
C3—C2—C1119.9 (3)C15—C14—C13119.2 (3)
C3—C2—H2120.1C15—C14—H14120.4
C1—C2—H2120.1C13—C14—H14120.4
C2—C3—C4119.4 (3)C14—C15—C10121.4 (3)
C2—C3—H3120.3C14—C15—H15119.3
C4—C3—H3120.3C10—C15—H15119.3
C9—C4—C5118.2 (3)C12—C16—H16A109.5
C9—C4—C3117.0 (3)C12—C16—H16B109.5
C5—C4—C3124.8 (3)H16A—C16—H16B109.5
C6—C5—C4120.3 (3)C12—C16—H16C109.5
C6—C5—H5119.8H16A—C16—H16C109.5
C4—C5—H5119.8H16B—C16—H16C109.5
C5—C6—C7121.6 (3)Cu1—Cl1—Cu1i96.97 (3)
C5—C6—H6119.2O1—Cu1—N290.72 (10)
C7—C6—H6119.2O1—Cu1—N1173.25 (9)
C8—C7—C6119.7 (3)N2—Cu1—N182.56 (10)
C8—C7—H7120.2O1—Cu1—Cl192.28 (6)
C6—C7—H7120.2N2—Cu1—Cl1161.09 (9)
C7—C8—C9119.9 (3)N1—Cu1—Cl194.27 (7)
C7—C8—N2126.4 (3)O1—Cu1—Cl1ii95.81 (7)
C9—C8—N2113.8 (3)N2—Cu1—Cl1ii101.29 (8)
N1—C9—C8117.1 (3)N1—Cu1—Cl1ii85.00 (8)
N1—C9—C4122.6 (3)Cl1—Cu1—Cl1ii96.97 (3)
C8—C9—C4120.3 (3)C1—N1—C9118.0 (3)
N3—C10—C15113.6 (3)C1—N1—Cu1129.8 (2)
N3—C10—C11127.0 (3)C9—N1—Cu1112.1 (2)
C15—C10—C11119.4 (3)N3—N2—C8114.6 (2)
O1—C11—C12118.9 (3)N3—N2—Cu1131.0 (2)
O1—C11—C10122.9 (3)C8—N2—Cu1114.40 (19)
C12—C11—C10118.2 (3)N2—N3—C10120.5 (3)
C13—C12—C11119.1 (3)C11—O1—Cu1127.15 (19)
C13—C12—C16121.0 (3)C13—O2—H2A107 (3)
C11—C12—C16119.8 (3)H3W—O3—H4W114 (5)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O30.952.653.318 (4)128
O2—H2A···O30.82 (4)1.87 (4)2.686 (4)172 (4)
O3—H3W···Cl1iii0.70 (4)2.45 (4)3.104 (3)157 (5)
O3—H4W···O1iv0.89 (6)2.20 (6)2.911 (4)136 (4)
Symmetry codes: (iii) x+1/2, y+3/2, z1/2; (iv) x1/2, y+3/2, z1/2.
 

References

First citationBall, P. & Nicholls, C. H. (1982). Dyes Pigments, 3, 5–26.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCai, J., Li, Z., Qiu, Y., OuYang, Z., Lin, W., Yang, L., Feng, W., Yu, X. & Dong, W. (2016). New J. Chem. 40, 9370–9379.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, X.-C., Tao, T., Wang, Y.-G., Peng, Y.-X., Huang, W. & Qian, H.-F. (2012). Dalton Trans. 41, 11107–11115.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJacques, P., Strub, H., See, J. & Fleury, J.-P. (1979). Tetrahedron, 35, 2071–2073.  CrossRef CAS Web of Science Google Scholar
First citationKochem, A., Carrillo, A., Philouze, C., van Gastel, M., du Moulinet d'Hardemare, A. & Thomas, F. (2014). Eur. J. Inorg. Chem. pp. 4263–4267.  Web of Science CSD CrossRef Google Scholar
First citationKochem, A., Orio, M., Philouze, C., Jamet, H., du Moulinet d'Hardemare, A. & Thomas, F. (2011). Eur. J. Inorg. Chem. pp. 45–48.  Web of Science CSD CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNishihara, H. (2005). Coord. Chem. Rev. 249, 1468–1475.  Web of Science CrossRef CAS Google Scholar
First citationRauf, M. A., Hisaindee, S. & Saleh, N. (2015). RSC Adv. 5, 18097–18110.  Web of Science CrossRef CAS Google Scholar
First citationSarkar, R. & Rajak, K. K. (2015). J. Organomet. Chem. 779, 1–13.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTaylor, R. A., Bonanno, N. M., Cibian, M., Yadav, J., Silverstein, H. J., Wiebe, C. R., Mauws, C., Lough, A. J. & Lemaire, M. T. (2018). Inorganics 6, 56.  Web of Science CSD CrossRef Google Scholar
First citationTaylor, R. A., Bonanno, N. M., Mirza, D., Lough, A. J. & Lemaire, M. T. (2017). Polyhedron, 131, 34–39.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds