research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a heterotrimetallic 12-metallacrown-4 with 2-propyl­valerate anion bridges

crossmark logo

aDepartment of Chemistry and Biochemistry, Shippensburg University, Shippensburg, PA 17257, USA, and bDepartment of Chemistry, Purdue University, West Lafayette, IN 47907, USA
*Correspondence e-mail: cmzaleski@ship.edu

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 13 October 2022; accepted 31 October 2022; online 8 November 2022)

The synthesis and single-crystal X-ray structure for tetra­aqua­tetra­kis­(μ-2-pro­pyl­valerato)tetra­kis­(μ4-salicyl­hydroximato)dysprosiumtetra­manganese­sodium di­methyl­formamide tetra­solvate, [DyMn4Na(C7H4NO3)4(C8H15O2)4(H2O)4]·4C3H7NO or DyNa(2-PV)4[12-MCMnIIINshi-4](H2O)4·4DMF, 1, where MC is metallacrown, shi3− is salicyl­hydroximate, 2-PV is 2-propyl­valerate, and DMF is N,N-di­methyl­formamide, is reported. The slightly domed metallamacrocycle contains four ring MnIII ions and four shi3− ligands that generate an [MnIII—N—O] repeat unit that recurs four times. The ring MnIII ions are five-coordinate with a square-pyramidal shape. Furthermore, the metallacrown binds both a DyIII ion and a Na+ ion in the central cavity. The central ions are located on opposite faces of the cavity with the DyIII ion located on the convex side of the MC and the Na+ ion located on the concave side. Each central ion is eight-coordinate although they possess different geometries. The DyIII ion has a square-anti­prismatic shape, while the Na+ ion has an extremely distorted biaugmented trigonal–prismatic shape. The four 2-propyl­valerate anions help to tether the DyIII to the MC cavity by forming bridges between the DyIII ion and each ring MnIII ion. Moreover, the inter­stitial DMF mol­ecules are hydrogen bonded to the water mol­ecules that complete the coordination environment of the Na+ ion. The metallacrown framework (excluding the DyIII and Na+ ions), the bridging 2-propyl­valerate, and the inter­stitial DMF mol­ecule experience whole-mol­ecule disorder due to the rotational orientation of the metallamacrocycle. Additionally, the main moiety alkyl chain of the 2-propyl­valerate is disordered over two additional orientations, and the main moiety inter­stitial DMF mol­ecule is disordered over one additional orientation. The main moiety of the metallacrown framework refined to 0.9030 (14), while the minor B-moiety refined to 0.0971 (14). The main moiety alkyl chain of the 2-propyl­valerate refined to 0.287 (3): 0.309 (3): 0.307 (3), and the minor B-moiety alkyl chain refined to 0.0971 (14). Lastly, the main moiety inter­stitial DMF refined to 0.549 (3): 0.354 (3), and the minor B-moiety DMF refined to 0.0971 (14).

1. Chemical context

Materials that combine both 3d and 4f metal ions have potentially inter­esting magnetic properties as a result of the inter­action between the paramagnetic centers. In particular, 3d–4f materials have applications in the areas of single-mol­ecule magnetism (Liu et al., 2015[Liu, K., Shi, W. & Cheng, P. (2015). Coord. Chem. Rev. 289-290, 74-122.]), single-chain magnetism (Wang et al., 2014[Wang, Z. X., Zhang, X., Zhang, Y. Z., Li, M. X., Zhao, H., Andruh, M. & Dunbar, K. R. (2014). Angew. Chem. Int. Ed. 53, 11567-11570.]), and magnetorefrigeration (Lun et al., 2021[Lun, H. J., Xu, L., Kong, X. J., Long, L. S. & Zheng, L. S. (2021). Inorg. Chem. 60, 10079-10083.]). The systematic synthesis of these heterometallic compounds is of inter­est to chemists and material scientists, and metallacrowns (MC) are a class of mol­ecules particularly suited for the investigation of such materials because of their ability to inter­change components of the mol­ecule while maintaining the overall structural features (Mezei et al., 2007[Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933-5003.]; Lutter et al., 2018[Lutter, J. C., Zaleski, C. M. & Pecoraro, V. L. (2018). Advances in Inorganic Chemistry, edited by R. van Eldik & R. Puchta, pp. 177-246. Amsterdam: Elsevier.]).

Metallacrowns are metallamacrocyclic compounds with a metal–nitro­gen–oxygen repeat unit about the inner ring. Several 3d–4f metallacrown systems have proven to be single-mol­ecule magnets (SMM) (Boron, 2022[Boron, T. T. III (2022). Advances in Metallacrown Chemistry, edited by C. M. Zaleski, pp. 157-219. Cham: Springer Nature.]) and magnetorefrigerates (Lutter et al., 2021[Lutter, J. C., Boron, T. T. III, Chadwick, K. E., Davis, A. H., Kleinhaus, S., Kampf, J. W., Zaleski, C. M. & Pecoraro, V. L. (2021). Polyhedron, 202, 115190.]; Salerno et al., 2021[Salerno, E. V., Kampf, J. W., Pecoraro, V. L. & Mallah, T. (2021). Inorg. Chem. Front. 8, 2611-2623.]; Saha et al., 2022[Saha, S., Das, K. S., Sharma, T., Bala, S., Adhikary, A., Huang, G. Z., Tong, M. L., Ghosh, A., Das, B., Rajaraman, G. & Mondal, R. (2022). Inorg. Chem. 61, 2141-2153.]). Indeed, we have been particularity focused on a lanthanide–manganese 12-metallacrown-4 system, LnNaY4[12-MCMnIIINshi-4], where Y is a carboxyl­ate anion and shi3− is salicyl­hydroximate (Azar et al., 2014[Azar, M. R., Boron, T. T. III, Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729-1742.]). These metallacrowns are based on a 12-membered MC ring with four oxygen atoms comprising the MC cavity. In addition, four MnIII are part of the MC ring and the central cavity captures two cations in the central cavity: an LnIII ion and a Na+ ion. The two cations bind to opposite sides of the MC cavity. Furthermore, four carboxyl­ate anions bridge between each ring MnIII ions and the central LnIII ion. We first reported these heterotrimetallic compounds with acetate bridges in 2014 (Azar et al., 2014[Azar, M. R., Boron, T. T. III, Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729-1742.]) and demonstrated that the MCs could bind a range of LnIII ions in the central cavity, Pr to Yb (except Pm). Subsequently, we investigated the single-mol­ecule magnet behavior of a series of DyNaY4[12-MCMnIIINshi-4] compounds, where Y is acetate, tri­methyl­acetate, benzoate, or 2-hy­droxy­benzoate (i.e. salicylate) (Boron et al., 2016[Boron, T. T. III, Lutter, J. C., Daly, C. I., Chow, C. Y., Davis, A. H., Nimthong-Roldán, A., Zeller, M., Kampf, J. W., Zaleski, C. M. & Pecoraro, V. L. (2016). Inorg. Chem. 55, 10597-10607.]). In this series, only the MCs with bridging 2-hy­droxy­benzoate anions displayed single-mol­ecule magnet properties. We hypothesized that the Lewis basicity of the bridging ligand may affect the magnetic coupling between the metal centers, thus switching on or off the SMM behavior. The pKa of the parent carb­oxy­lic acid was used as a pr­oxy for the Lewis basicity of the carboxyl­ate, with lower pKa values indicating greater electron-withdrawing ability for the subsequent carboxyl­ate anion. For the investigated carboxyl­ate anions, 2-hy­droxy­benzoic acid has the lowest pKa (2.98) while the other acids are of comparable pKa values, 4.20 for benzoic acid, 4.76 for acetic acid, and 5.03 for tri­methyl­acetic acid (Haynes, 2010[Haynes, W. M. (2010). CRC Handbook of Chemistry and Physics, 91st ed., pp. 8-42-8-51. Boca Raton, FL: CRC Press.]). Therefore, 2-hy­droxy­benzoate is the most electron-withdrawing in the series, and this may affect the magnetic coupling between the DyIII and MnIII ions. We have also extended the types of DyNaY4[12-MCMnIIINshi-4] structures by synthesizing complexes with 3-hy­droxy- and 4-hy­droxy­benzoate (Manickas et al., 2020[Manickas, E. C., Zeller, M. & Zaleski, C. M. (2020). Acta Cryst. E76, 1213-1221.]) and with halogen­ated benzoate anions (2-fluoro-, 3-fluoro-, 4-fluoro-, 2-chloro-, 3-chloro-, 3-bromo-, and 2-iodo­benzoate; (Michael et al., 2021[Michael, C. H., Zeller, M. & Zaleski, C. M. (2021). J. Chem. Crystallogr. 51, 562-574.]). These carboxyl­ates have a range of pKa values that spans from 2.86 to 4.57 (Haynes, 2010[Haynes, W. M. (2010). CRC Handbook of Chemistry and Physics, 91st ed., pp. 8-42-8-51. Boca Raton, FL: CRC Press.]), although at this time we have not investigated the SMM properties of these compounds.

Seeking to expand the types of DyNaY4[12-MCMnIIINshi-4] structures beyond benzoate anions, we decided to determine if 2-propyl­valerate, which has two propyl chains off the carboxyl­ate carbon atom, could lead to MC formation. Herein we report the synthesis and crystal structure DyNa(2-PV)4[12-MCMnIIINshi-4](H2O)4·4DMF, 1, where 2-PV is 2-propyl­valerate and DMF is N,N-di­methyl­formamide. Although the pKa of the parent 2-propyl­valeric acid is 4.6 (Haynes, 2010[Haynes, W. M. (2010). CRC Handbook of Chemistry and Physics, 91st ed., pp. 8-42-8-51. Boca Raton, FL: CRC Press.]) and the MC is not expected to possess SMM based on previous results, the 3d–4f compound will allow further investigation into the mol­ecular characteristics that lead to single-mol­ecule magnetism.

[Scheme 1]

2. Structural commentary

DyNa(2-PV)4[12-MCMnIIINshi-4](H2O)4·4DMF, 1, is centered about a crystallographic C4 axis along the DyIII and Na+ ions located in the central cavity of the metallamacrocycle. The fourfold rotational axis generates a metallacrown with four ring MnIII ions and four shi3− ligands that yield the MnIII–N–O repeat unit. In addition, four 2-propyl­valerate anions form bridges between each ring MnIII ion and the central DyIII ion, and four inter­stitial DMF mol­ecules are hydrogen bonded to the sodium-coordinated water mol­ecules of the metallacrown. The metallacrown framework (excluding the DyIII and Na+ ions), the bridging 2-propyl­valerate, and the inter­stitial DMF mol­ecule experience whole mol­ecule disorder as a result of the rotational orientation of the macrocycle. The main moiety of the mol­ecule has an MnIII–N–O counterclockwise rotation about the C4 axis, while the minor B-moiety has an MnIII–N–O clockwise rotation about the C4 axis. Furthermore, the main moiety alkyl chain of the 2-propyl­valerate is disordered over two additional orientations, and the main moiety inter­stitial DMF mol­ecule is disordered over one additional orientation. The main moiety of the metallacrown framework occupancy refined to 0.9030 (14), while the minor B-moiety refined to 0.0971 (14). The main moiety alkyl chain of the 2-propyl­valerate occupancies refined to 0.287 (3):0.309 (3):0.307 (3), and the minor B-moiety alkyl chain occupancy refined to 0.0971 (14). Lastly, the main moiety inter­stitial DMF refined to 0.549 (3):0.354 (3), and the minor B-moiety DMF refined to 0.0971 (14). In the following sections, all numbers refer to the major component, unless stated otherwise. The Refinement section contains complete details of the treatment of the disorder.

The oxidation states of the metal ions were determined based on overall mol­ecular charge considerations, structure features of the manganese ion, and bond-valence sum (BVS) values. The four triply deprotonated shi3− ligands and four 2-propyl­valerate anions provide an overall 16- charge, which is counterbalanced by one DyIII ion, one Na+ ion, and four MnIII ions (16+ total charge). In addition, the MnIII ion possesses an elongated bond along the z-axis [2.126 (5) Å] and compressed bonds in the xy lane [1.840 (4) to 1.946 (5) Å], which are typical of high spin 3d4 ions. Lastly, the BVS values (Liu & Thorp, 1993[Liu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102-4105.]; Trzesowska et al., 2004[Trzesowska, A., Kruszynski, R. & Bartczak, T. J. (2004). Acta Cryst. B60, 174-178.]) indicate that the DyIII and MnIII ions have a 3+ charge (Table 1[link]).

Table 1
Average bond length (Å) and bond-valence-sum (BVS) values (v.u.) used to support assigned oxidation states of the dysprosium and manganese ions of 1

  Avg. Bond length BVS value Assigned oxidation state
Dy1 2.361 3.14 3+
Mn1 1.953 3.02 3+

Both central ions, DyIII and Na+, are eight-coordinate although with different coordination geometries (Fig. 1[link]; Table 2[link]). The metallacrown framework of 1 is slightly domed with the DyIII ion located on the convex side of the metallamacrocycle and the Na+ ion located on the concave side. The DyIII ion is bound to the four oxime oxygen atoms of the MC cavity, which are provided by four different shi3− ligands, and four carboxyl­ate oxygen atoms of four different 2-propyl­valerate anions. The carboxyl­ate groups of the 2-propyl­valerate anions form three atom bridges to each ring MnIII ion. An analysis of the geometry with the program SHAPE 2.1 (Llunell et al., 2013[Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. Shape Software, Barcelona, Spain.]; Pinsky & Avnir, 1998[Pinsky, M. & Avnir, D. (1998). Inorg. Chem. 37, 5575-5582.]) best describes the shape as a square anti­prism (Casanova et al., 2005[Casanova, D., Llunell, M., Alemany, P. & Alvarez, S. (2005). Chem. Eur. J. 11, 1479-1494.]). The Continuous Shape Measure (CShM) value is 0.747, indicating that the geometry approaches that of an ideal square anti­prism. The Na+ ion is also bound to the four oxime oxygen atoms of the MC cavity, and the coordination environment is completed by four water mol­ecules. Each water mol­ecule also hydrogen bonds (Fig. 2[link]) to two inter­stitial DMF mol­ecules. The geometry of the Na+ ion cannot be clearly defined based on CShM values as the two lowest values are 3.667 for a biaugmented trigonal prism and 3.803 for a square anti­prism. Typically values above 3.0 indicate significant distortions from ideal geometry; thus, for the Na+ ion the geometry cannot be unambiguously specified (Cirera et al., 2005[Cirera, J., Ruiz, E. & Alvarez, S. (2005). Organometallics, 24, 1556-1562.]).

Table 2
Continuous Shape Measure (CShM) values for the geometry about the eight-coordinate central DyIII and Na+ ions of 1

Shape DyIII Na+
Octa­gon (D8h) 32.056 32.142
Heptagonal pyramid (C7v) 23.666 26.075
Hexagonal bipyramid (D6h) 16.870 13.023
Cube (Oh) 9.253 5.054
Square anti­prism (D4d) 0.747 3.803
Triangular dodeca­hedron (D2d) 2.730 4.048
Johnson gyrobifastigium (J26; D2s) 17.553 16.887
Johnson elongated triangular bipyramid (J14; D3h) 30.395 28.728
Johnson biaugmented trigonal prism (J50; C2v) 3.036 5.420
Biaugmented trigonal prism (C2v) 1.991 3.667
Johnson snub diphenoid (J84; D2d) 5.971 8.256
Triakis tetra­hedron (Td) 10.118 5.959
Elongated trigonal bipyramid (D3h) 25.708 25.581
[Figure 1]
Figure 1
The single-crystal X-ray structure of DyNa(O2C8H15)4[12-MCMnIIIN(shi)-4](H2O)4·4DMF, 1. A side view with only the metal atoms labeled for clarity. The displacement ellipsoids are at the 50% probability level. For clarity, hydrogen atoms, solvent mol­ecules, and disorder have been omitted. Color scheme: aqua – DyIII, green – MnIII, yellow – Na+, red – oxygen, blue – nitro­gen, and gray – carbon. All figures were generated with the program Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). [Symmetry codes: (i) +x, −y + [{1\over 2}], z; (ii) −x + [{1\over 2}], −y + [{1\over 2}], z; (iii) −x + [{1\over 2}], y, z.]
[Figure 2]
Figure 2
The single-crystal X-ray structure of DyNa(O2C8H15)4[12-MCMnIIIN(shi)-4](H2O)4·4DMF, 1. A top view with the four bridging 2-propyl­valerate anions removed for clarity. See Fig. 1[link] for additional display details. [Symmetry codes: (i) x, −y + [{1\over 2}], z; (ii) −x + [{1\over 2}], −y + [{1\over 2}], z; (iii) −x + [{1\over 2}], y, z.]

The ring MnIII ion is five-coordinate with a square-pyramidal shape (Table 3[link]). The basal region of the ligand environment consists of two trans chelate rings from two different shi3− ligands. One shi3− ligand forms a five-membered chelate ring by binding with the oxime and carbonyl oxygen atoms of the ligand, and the other shi3− ligand forms a six-membered chelate ring by binding with the oxime nitro­gen and phenolate oxygen atom of the ligand. The apical position is occupied by the carboxyl­ate oxygen atom of the bridging 2-propyl­valerate anion. Lastly, the water mol­ecule that is coordinated to the Na+ ion forms a long inter­action [2.527 (5) Å] with the MnIII ion.

Table 3
Continuous Shape Measure (CShM) values for the geometry about the five-coordinate ring MnIII ion of 1

Shape Penta­gon (D5h) Vacant octa­hedron (C4v) Trigonal bipyramid (D3h) Spherical square pyramid (C4v) Johnson trigonal bipyramid (J12; D3h)
Mn1 30.515 0.832 5.422 0.739 7.504

3. Supra­molecular features

For 1, the main metallacrown mol­ecule forms hydrogen bonds to the inter­stitial DMF mol­ecules via the water mol­ecules bound to the central sodium ion. Each water mol­ecule is hydrogen bonded to the carbonyl oxygen atom of two adjacent DMF mol­ecules (Table 4[link], Fig. 3[link]). This generates a small hydrogen-bonding network on the concave side of the metallacrown between the four sodium-bound water mol­ecules and the four inter­stitial DMF mol­ecules. A similar hydrogen-bonding connectivity is also observed for the minor B-moiety of the compound. These hydrogen bonds and pure van der Waals forces contribute to the overall packing of the mol­ecules.

Table 4
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯O7 0.86 (2) 2.02 (2) 2.860 (15) 165 (5)
O6—H6E⋯O7i 0.83 (2) 1.99 (2) 2.809 (19) 167 (5)
O6B—H6C⋯O7Bi 0.84 (2) 2.00 (2) 2.80 (3) 159 (10)
O6B—H6D⋯O7B 0.85 (2) 2.01 (2) 2.859 (19) 177 (10)
Symmetry code: (i) [-y+{\script{1\over 2}}, x, z].
[Figure 3]
Figure 3
Inter­molecular hydrogen bonding between the water mol­ecules coordinated to the Na+ ion of 1 and the inter­stitial DMF mol­ecules. Each coordinated water mol­ecule forms hydrogen bonds with two neighboring DMF mol­ecules. For clarity, only the hydrogen atoms (white) of the water mol­ecules and only two of the four DMF mol­ecules are displayed. See Fig. 1[link] for additional display details. [Symmetry codes: (i) x, −y + [{1\over 2}], z; (iii) −x + [{1\over 2}], y, z.]

4. Database survey

A survey of the Cambridge Structural Database (CSD version 5.43, update September 2022, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals forty LnXY4[12-MCMnIIIN(shi)-4] structures, where X is a counter-cation with a 1+ charge and Y is a carboxyl­ate anion (Azar et al., 2014[Azar, M. R., Boron, T. T. III, Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729-1742.]; Travis et al., 2015[Travis, J. R., Zeller, M. & Zaleski, C. M. (2015). Acta Cryst. E71, 1300-1306.], 2016[Travis, J. R., Zeller, M. & Zaleski, C. M. (2016). Polyhedron, 114, 29-36.]; Boron et al., 2016[Boron, T. T. III, Lutter, J. C., Daly, C. I., Chow, C. Y., Davis, A. H., Nimthong-Roldán, A., Zeller, M., Kampf, J. W., Zaleski, C. M. & Pecoraro, V. L. (2016). Inorg. Chem. 55, 10597-10607.]; Cao et al., 2016[Cao, F., Wei, R.-M., Li, J., Yang, L., Han, Y., Song, Y. & Dou, J.-M. (2016). Inorg. Chem. 55, 5914-5923.]; Qin et al., 2017[Qin, Y., Gao, Q., Chen, Y., Liu, W., Lin, F., Zhang, X., Dong, Y. & Li, Y. (2017). J. Clust Sci. 28, 891-903.]; Anthanasopoulou et al., 2018[Anthanasopoulou, A. A., Carrella, L. M. & Rentschler, E. (2018). Inorganics 6, 66.]; Manickas et al., 2020[Manickas, E. C., Zeller, M. & Zaleski, C. M. (2020). Acta Cryst. E76, 1213-1221.]; Michael et al., 2021[Michael, C. H., Zeller, M. & Zaleski, C. M. (2021). J. Chem. Crystallogr. 51, 562-574.]). The central LnIII metal ions include the lanthanide ions from Pr to Yb (except Pm) and yttrium. The counter-cation X is usually an Na+ or K+ ion that is also bound to the central cavity, but other unbound counter-cations such as tetra­butyl­ammonium, tetra­ethyl­ammonium, and tri­ethyl­ammonium have been employed. A range of bridg­ing carboxyl­ate anions (Y) have been used including acetate (OAc), tri­methyl­acetate (TMA), benzoate (ben), 2-hy­droxy­benzoate (2-OHben), 3-hy­droxy­benzoate (3-OHben), 4-hy­droxy­lbenzoate (4-OHben), 2-fluoro­benzoate (2-Fben), 3-fluoro­benzoate (3-Fben), 4-fluoro­benzoate (4-Fben), 2-chloro­benzoate (2-Clben), 4-chloro­benzoate (4-Clben), 3-bromo­benzoate (3-Brben), and 2-iodo­benzoate (2-Iben). Of the forty structures, thirteen contain both DyIII and Na+ as in 1 (Azar et al., 2014[Azar, M. R., Boron, T. T. III, Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729-1742.]; Boron et al., 2016[Boron, T. T. III, Lutter, J. C., Daly, C. I., Chow, C. Y., Davis, A. H., Nimthong-Roldán, A., Zeller, M., Kampf, J. W., Zaleski, C. M. & Pecoraro, V. L. (2016). Inorg. Chem. 55, 10597-10607.]; Manickas et al., 2020[Manickas, E. C., Zeller, M. & Zaleski, C. M. (2020). Acta Cryst. E76, 1213-1221.]; Michael et al., 2021[Michael, C. H., Zeller, M. & Zaleski, C. M. (2021). J. Chem. Crystallogr. 51, 562-574.]). The structural comparison of 1 will be limited to the MCs that contain DyIII and Na+ ions captured in the central MC cavity (Table 5[link]). Analysis of the parameters that define the MC cavity and framework such as the cavity radius, the cross cavity MnIII—MnIII distance, the distance between adjacent MnIII ions, the cross cavity oxime oxygen–oxime oxygen distance, and the distance of the DyIII ion from the oxime oxygen mean plane reveals that the identity of the bridging carboxyl­ate has little impact on the overall metallacrown structure. [These parameters were determined as previously defined (Azar et al., 2014[Azar, M. R., Boron, T. T. III, Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729-1742.])]. Indeed, this is a hallmark of metallacrown chemistry, the ability to switch components of the mol­ecular systems without significantly affecting the overall structure. This asset allows the systematic investigation of chemical and physical properties such as magnetism or luminescence across a range of structures (Boron et al., 2016[Boron, T. T. III, Lutter, J. C., Daly, C. I., Chow, C. Y., Davis, A. H., Nimthong-Roldán, A., Zeller, M., Kampf, J. W., Zaleski, C. M. & Pecoraro, V. L. (2016). Inorg. Chem. 55, 10597-10607.]; Chow et al., 2016[Chow, C. Y., Eliseeva, S. V., Trivedi, E. R., Nguyen, T. N., Kampf, J. W., Petoud, S. & Pecoraro, V. L. (2016). J. Am. Chem. Soc. 138, 5100-5109.]).

Table 5
Structural feature comparison of 1 and other DyNa(carboxyl­ate)4[12-MCMnIIIN(shi)-4] compounds (Å)

Compound MC cavity radiusa Avg. cross-cavity MnIII—MnIII distancea Avg. adjacent MnIII—MnIII distancea Avg. cross-cavity Ooxime—Ooxime distancea DyIII–oxime oxygen mean plane distanceb
DyNa(2-PV)4[12-MC-4], 1 0.54 6.51 4.60 3.68 1.6069 (37)
DyNa(OAc)4[12-MC-4] 0.55 6.52 4.61 3.71 1.5918 (7)
DyNa(TMA)4[12-MC-4] 0.56 6.51 4.60 3.73 1.5790 (19)
DyNa(ben)4[12-MC-4] 0.54 6.51 4.60 3.69 1.5811 (18)
DyNa(2-OHben)4[12-MC-4] 0.54 6.47 4.57 3.68 1.5094 (46)
DyNa(3-OHben)4[12-MC-4] 0.56 6.53 4.62 3.72 1.5463 (25)
DyNa(4-OHben)4[12-MC-4] 0.54 6.49 4.59 3.69 1.5925 (66)
DyNa(2-Fben)4[12-MC-4] 0.55 6.51 4.60 3.71 1.5424 (52)
DyNa(3-Fben)4[12-MC-4] 0.56 6.51 4.60 3.72 1.5567 (34)
DyNa(4-Fben)4[12-MC-4] 0.54 6.52 4.61 3.68 1.5589 (45)
DyNa(2-Clben)4[12-MC-4] 0.53 6.50 4.60 3.67 1.5883 (79)
DyNa(4-Clben)4[12-MC-4] 0.55 6.54 4.62 3.71 1.5593 (13)
DyNa(3-Brben)4[12-MC-4] 0.56 6.51 4.60 3.71 1.5685 (13)
DyNa(2-Iben)4[12-MC-4] 0.54 6.50 4.59 3.68 1.5764 (117)
Notes: (a) Measured with Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]); (b) measured with SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

5. Synthesis and crystallization

Materials

Dysprosium(III) nitrate penta­hydrate (99.99%) and manganese(II) nitrate tetra­hydrate (98%) were purchased from Alfa Aesar. Salicyl­hydroxamic acid (H3shi, >98%) and sodium 2-propyl­valerate (>98.0%) were purchased from TCI America. DMF (ACS grade) was purchased from VWR Chemicals BDH. All reagents were used as received and without further purification.

Synthesis

DyNa(2-PV)4[12-MCMnIIIN(shi)-4](H2O)4·4DMF, 1. Manganese(II) nitrate tetra­hydrate (2 mmol, 0.5020 g) was dissolved in 10 mL of DMF to produce a clear and colorless solution. Dysprosium(III) nitrate penta­hydrate (0.125 mmol, 0.0548 g), salicyl­hydroxamic acid (2 mmol, 0.3063 g), and sodium 2-prop­yl­valerate (4 mmol, 0.4648 g) were then dissolved in 10 mL of DMF, resulting in a clear, slightly tan solution. Next the manganese(II) nitrate solution was added to the latter solution resulting in a clear yellow solution. Then the solution slowly darkened, eventually producing a dark-brown/black color. The solution was stirred overnight and then gravity filtered the next day. No precipitate was recovered, and the dark-brown/black filtrate was allowed to slowly evaporate to aid crystal growth. After 11 days, dark-brown/black X-ray-quality crystals formed. The crystals were isolated and washed with cold DMF. The percentage yield was 64% (0.1562 g) based on dysprosium(III) nitrate penta­hydrate. FT–IR (ATR, cm−1): 1656, 1600, 1571, 1551, 1514, 1465, 1435, 1390, 1319, 1258, 1249, 1155, 1100, 1060, 1030, 932, 866, 820, 769, 754, 679, 665, 649, 606.

6. Refinement

Minor whole mol­ecule disorder was detected for the metallacrown mol­ecule (excluding the dysprosium and sodium ions) and all organic fragments, and the disorder was refined. The metallacrown is disordered by clockwise versus counterclockwise rotation orientation of the metallamacrocycle, as are the 2-propyl­valerate anion and the inter­stitial DMF mol­ecule (major and minor components). In addition, the main moiety alkyl chain of the 2-propyl­valerate is disordered over two additional sites, and the main moiety inter­stitial DMF mol­ecule is disordered over one additional site. The Uij components of ADPs for disordered atoms closer to each other than 2.7 Å were restrained to be similar (SIMU command of SHELXL). Occupancies were constrained to sum to unity for all sites using SUMP commands. The major and minor (B-moiety) metallacrown units were restrained to have similar geometries. For the B-moiety benzene ring of the salicyl­hydroximate, the C atoms were restrained to be close to planar (FLAT command of SHELXL). For the 2-propyl­valerate anion, the major (including the additional alkyl-chain disorder) and B-moieties were restrained to have similar geometries. The C-atom positions of the 2-propyl­valerate were further restrained based on typical carbon–carbon bond distances and angles. The B-moiety carboxyl­ate carbon atom (C8B) was restrained to planarity (CHIV 0 command of SHELXL).

For the inter­stitial DMF mol­ecule, the N atom was restrained to be equidistant from both carbon atoms of the methyl groups. In addition, the major (including the additional disorder) and B-moieties were restrained to have similar geometries. Hydrogen-atom positions of the water mol­ecule coordinated to the sodium ion were refined and O—H and H⋯H distances were restrained to 0.84 (2) and 1.36 (2) Å, respectively. The water-O and H-atom positions were further restrained based on hydrogen-bonding considerations to the inter­stitial DMF mol­ecule, and distances of all water H atoms to the sodium ion were restrained to be similar.

All other hydrogen atoms were placed in calculated positions and refined as riding on their carrier atoms with C—H distances of 0.95 Å for sp2 carbon atoms and to 1.00, 0.99 and 0.98 Å for aliphatic C—H, CH2 and CH3 moieties, respectively. The Uiso values for hydrogen atoms were set to a multiple of the Ueq value of the carrying carbon or oxygen atom (1.2 times for C—H and CH2 groups and 1.5 for water mol­ecules and methyl groups).

Subject to these conditions, the occupancy ratios refined as follows: main moiety metallacrown unit, 0.9030 (14); B-moiety metallacrown unit: 0.0971 (14); main alkyl chain of 2-propyl­valerate, 0.287 (3):0.309 (3):0.307 (3); B-moiety alkyl chain, 0.0971 (14); main moiety inter­stitial DMF, 0.549 (3):0.354 (3); and B-moiety DMF, 0.0971 (14). Additional crystal data, data collection, and structure refinement details are summarized in Table 6[link].

Table 6
Experimental details

Crystal data
Chemical formula [DyMn4Na(C7H4NO3)4(C8H15O2)4(H2O)4]·4C3H7NO
Mr 1942.94
Crystal system, space group Tetragonal, P4/n
Temperature (K) 150
a, c (Å) 18.2654 (9), 13.4219 (9)
V3) 4477.9 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.45
Crystal size (mm) 0.45 × 0.43 × 0.15
 
Data collection
Diffractometer Bruker AXS D8 Quest
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.020, 0.060
No. of measured, independent and observed [I > 2σ(I)] reflections 87812, 7801, 5435
Rint 0.070
(sin θ/λ)max−1) 0.747
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.257, 1.07
No. of reflections 7801
No. of parameters 708
No. of restraints 2628
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.36, −1.96
Computer programs: APEX4 and SAINT (Bruker, 2022[Bruker (2022). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX4 (Bruker, 2022); cell refinement: SAINT (Bruker, 2022); data reduction: SAINT (Bruker, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b), ShelXle (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Tetraaquatetrakis(µ-2-propylvalerato)tetrakis(µ4-salicylhydroximato)dysprosiumtetramanganesesodium dimethylformamide tetrasolvate, top
Crystal data top
[DyMn4Na(C7H4NO3)4(C8H15O2)4(H2O)4]·4C3H7NODx = 1.441 Mg m3
Mr = 1942.94Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4/nCell parameters from 9870 reflections
a = 18.2654 (9) Åθ = 2.5–32.0°
c = 13.4219 (9) ŵ = 1.45 mm1
V = 4477.9 (5) Å3T = 150 K
Z = 2Plate, brown
F(000) = 2002.20.45 × 0.43 × 0.15 mm
Data collection top
Bruker AXS D8 Quest
diffractometer
7801 independent reflections
Radiation source: fine focus sealed tube X-ray source5435 reflections with I > 2σ(I)
Triumph curved graphite crystal monochromatorRint = 0.070
Detector resolution: 7.4074 pixels mm-1θmax = 32.1°, θmin = 2.2°
ω and phi scansh = 2724
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2727
Tmin = 0.020, Tmax = 0.060l = 1919
87812 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: mixed
wR(F2) = 0.257H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.1326P)2 + 7.8338P]
where P = (Fo2 + 2Fc2)/3
7801 reflections(Δ/σ)max = 0.013
708 parametersΔρmax = 1.36 e Å3
2628 restraintsΔρmin = 1.96 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Minor whole molecule disorder was detected for the metallacrown molecule and all organic fragments (excluding the dysprosium and sodium ions), and the disorder was refined. The metallacrown is disordered by clockwise vs counterclockwise rotation orientation of the metallacycle, as are the 2-propylvalerate anion and the interstitial DMF molecule (main moiety and B-moiety). In addition, the alkyl chain of the 2-propylvalerate of the main moiety is disordered over two additional sites, and the interstitial DMF molecule of the main moiety is disordered over one additional site. The Uij components of ADPs for disordered atoms closer to each other than 2.7 Angstrom were restrained to be similar (SIMU command of Shelxl). Occupancies were constrained to sum up to unity for all sites using SUMP commands.

The major and minor (B-moiety) metallacrown units were restrained to have similar geometries. For the B-moiety benzene ring of the salicylhydroximate, the C atoms were restrained to be close to planar (FLAT command of Shelxl).

For the 2-propylvalerate anion, the major (including the additional alkyl chain disorder) and B moieties were restrained to have similar geometries. The C atoms positions 2-propylvalerate were further restrained based on typical carbon-carbon bond distances and angles. The B-moiety carboxylate carbon atom (C8B) was restrained to planarity (CHIV command of Shelxl).

For the interstitial DMF molecule, the N atom was restrained to be equidistant from both carbon atoms of the methyl groups. In addition, the major (including the additional disorder) and B moieties were restrained to have similar geometries.

H atom positions of the water molecule coordinated to the sodium ion were refined and O-H and H···H distances were restrained to 0.84 (2) and 1.36 (2) Angstrom, respectively. The water O and H atom positions were further restrained based on hydrogen bonding considerations to the interstitial DMF molecule and distances of all water H atoms to the sodium ion were restrained to be similar.

All other hydrogen atoms were placed in calculated positions and refined as riding on their carrier atoms with C-H distances of 0.95 Angstrom for sp2 carbon atoms. The Uiso values for hydrogen atoms were set to a multiple of the Ueq value of the carrying carbon atom (1.2 times for sp2 hybridized carbon atoms, 1.5 for water molecules and methyl groups).

Subject to these conditions the occupancy ratios were refined as follows:

main metallacrown unit: 0.9030 (14) B-moiety metallacrown unit: 0.0971 (14)

main alkyl chain of 2-propylvalerate: 0.287 (3): 0.309 (3): 0.307 (3) B-moiety alkyl chain: 0.0971 (14)

main interstitial DMF: 0.549 (3): 0.354 (3) B-moiety DMF: 0.0971 (14)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Dy10.2500000.2500000.78820 (3)0.05635 (17)
Na10.2500000.2500000.5233 (3)0.0524 (8)
Mn10.14036 (4)0.39036 (4)0.64460 (7)0.0514 (2)0.9030 (14)
O10.23534 (18)0.34977 (18)0.6685 (3)0.0490 (7)0.9030 (14)
O20.19756 (19)0.4788 (2)0.6261 (3)0.0563 (8)0.9030 (14)
O30.4255 (2)0.4468 (2)0.5953 (4)0.0683 (11)0.9030 (14)
N10.2918 (3)0.4000 (2)0.6508 (9)0.0499 (9)0.9030 (14)
C10.2672 (3)0.4663 (3)0.6306 (4)0.0504 (9)0.9030 (14)
C20.3191 (3)0.5252 (3)0.6105 (5)0.0563 (11)0.9030 (14)
C30.2920 (3)0.5972 (3)0.6059 (6)0.0631 (12)0.9030 (14)
H30.2416450.6059350.6187110.076*0.9030 (14)
C40.3373 (4)0.6556 (3)0.5831 (7)0.0696 (15)0.9030 (14)
H40.3180070.7038110.5792810.084*0.9030 (14)
C50.4104 (4)0.6431 (3)0.5662 (7)0.0706 (16)0.9030 (14)
H50.4416140.6831170.5505660.085*0.9030 (14)
C60.4391 (3)0.5732 (3)0.5714 (5)0.0664 (14)0.9030 (14)
H60.4898160.5658430.5590090.080*0.9030 (14)
C70.3947 (3)0.5131 (3)0.5948 (5)0.0581 (11)0.9030 (14)
O40.1581 (3)0.3123 (3)0.8654 (4)0.0740 (12)0.9030 (14)
O50.1146 (3)0.4144 (3)0.7956 (4)0.0773 (12)0.9030 (14)
C80.1192 (5)0.3701 (5)0.8633 (6)0.0876 (18)0.9030 (14)
C90.0809 (12)0.3783 (19)0.9652 (13)0.104 (3)0.287 (3)
H90.0830890.3277580.9936590.125*0.287 (3)
C100.0002 (12)0.3888 (18)0.943 (2)0.107 (4)0.287 (3)
H10A0.0261530.3923951.0075400.128*0.287 (3)
H10B0.0059160.4362070.9085090.128*0.287 (3)
C110.0354 (14)0.3317 (19)0.883 (3)0.112 (4)0.287 (3)
H11A0.0244960.2838240.9141160.135*0.287 (3)
H11B0.0121640.3318050.8164300.135*0.287 (3)
C120.1184 (14)0.336 (2)0.868 (3)0.134 (8)0.287 (3)
H12A0.1347360.2953660.8267350.201*0.287 (3)
H12B0.1429030.3344830.9328440.201*0.287 (3)
H12C0.1305150.3826830.8347130.201*0.287 (3)
C130.1196 (14)0.4221 (16)1.0385 (17)0.110 (3)0.287 (3)
H13A0.1020730.4731931.0322170.132*0.287 (3)
H13B0.1721130.4220041.0203700.132*0.287 (3)
C140.1138 (17)0.401 (2)1.1475 (15)0.118 (4)0.287 (3)
H14A0.0656660.3775461.1598670.142*0.287 (3)
H14B0.1172930.4450421.1895320.142*0.287 (3)
C150.177 (2)0.345 (2)1.177 (2)0.126 (7)0.287 (3)
H15A0.1557960.2981781.1975040.188*0.287 (3)
H15B0.2057570.3653581.2326590.188*0.287 (3)
H15C0.2096320.3372121.1198680.188*0.287 (3)
O60.1794 (2)0.3562 (3)0.4701 (3)0.0613 (9)0.9030 (14)
H6A0.207 (2)0.383 (3)0.433 (5)0.092*0.9030 (14)
H6E0.144 (3)0.343 (3)0.435 (5)0.092*0.9030 (14)
C9C0.0715 (15)0.3936 (16)0.9511 (19)0.101 (3)0.309 (3)
H9C0.1066910.3702990.9985200.122*0.309 (3)
C10C0.0167 (16)0.3347 (15)0.9718 (19)0.109 (4)0.309 (3)
H10C0.0391800.3026121.0228950.131*0.309 (3)
H10D0.0253230.3590391.0044380.131*0.309 (3)
C11C0.0138 (15)0.2868 (18)0.898 (2)0.111 (4)0.309 (3)
H11C0.0099710.2385350.9075500.133*0.309 (3)
H11D0.0028980.3053480.8326150.133*0.309 (3)
C12C0.0956 (15)0.272 (2)0.888 (3)0.122 (7)0.309 (3)
H12D0.1034220.2287170.8466720.183*0.309 (3)
H12E0.1194440.3145010.8572900.183*0.309 (3)
H12F0.1166900.2637790.9544390.183*0.309 (3)
C13C0.0880 (15)0.4648 (13)0.992 (2)0.109 (3)0.309 (3)
H13C0.0479670.4810261.0366520.131*0.309 (3)
H13D0.0935630.5011760.9379930.131*0.309 (3)
C14C0.1596 (16)0.4577 (15)1.051 (2)0.115 (4)0.309 (3)
H14C0.1575640.4852401.1142400.138*0.309 (3)
H14D0.2020820.4747351.0112020.138*0.309 (3)
C15C0.162 (2)0.3702 (17)1.070 (3)0.120 (6)0.309 (3)
H15D0.2120860.3521871.0566240.180*0.309 (3)
H15E0.1279340.3457351.0246150.180*0.309 (3)
H15F0.1490290.3596661.1387770.180*0.309 (3)
C9D0.0619 (11)0.375 (2)0.9491 (15)0.103 (3)0.307 (3)
H9D0.0646600.4284300.9642430.124*0.307 (3)
C10D0.0186 (13)0.3685 (16)0.922 (2)0.105 (4)0.307 (3)
H10E0.0467880.3882080.9791300.126*0.307 (3)
H10F0.0272810.4019420.8653130.126*0.307 (3)
C11D0.0511 (17)0.2995 (18)0.896 (3)0.118 (5)0.307 (3)
H11E0.0348980.2638080.9473760.142*0.307 (3)
H11F0.0287190.2840030.8326060.142*0.307 (3)
C12D0.1338 (17)0.290 (2)0.885 (4)0.132 (8)0.307 (3)
H12G0.1531740.2640010.9432120.198*0.307 (3)
H12H0.1441370.2617310.8246550.198*0.307 (3)
H12I0.1570150.3382280.8800810.198*0.307 (3)
C13D0.0917 (15)0.3450 (15)1.0424 (18)0.108 (3)0.307 (3)
H13E0.1141510.2966431.0293560.130*0.307 (3)
H13F0.0514480.3380781.0909340.130*0.307 (3)
C14D0.1487 (15)0.3961 (19)1.086 (2)0.113 (4)0.307 (3)
H14E0.1745490.4236231.0334580.136*0.307 (3)
H14F0.1849330.3687831.1266390.136*0.307 (3)
C15D0.100 (2)0.4496 (19)1.155 (3)0.130 (7)0.307 (3)
H15G0.0954460.4972421.1217710.194*0.307 (3)
H15H0.1241770.4559431.2193880.194*0.307 (3)
H15I0.0515710.4281701.1643850.194*0.307 (3)
Mn1B0.4210 (3)0.3002 (3)0.6438 (6)0.0469 (15)0.0971 (14)
O1B0.3183 (10)0.3217 (11)0.655 (3)0.050 (4)0.0971 (14)
O2B0.4248 (12)0.4055 (10)0.618 (3)0.052 (3)0.0971 (14)
O3B0.2210 (14)0.5183 (15)0.620 (3)0.058 (4)0.0971 (14)
N1B0.304 (2)0.3966 (16)0.648 (11)0.054 (4)0.0971 (14)
C1B0.3622 (14)0.4357 (11)0.627 (4)0.054 (3)0.0971 (14)
C2B0.3539 (14)0.5138 (11)0.608 (2)0.056 (3)0.0971 (14)
C3B0.4195 (17)0.5499 (18)0.584 (4)0.060 (3)0.0971 (14)
H3B0.4639640.5228610.5828590.073*0.0971 (14)
C4B0.421 (2)0.6238 (19)0.563 (5)0.062 (4)0.0971 (14)
H4B0.4650520.6482910.5461110.074*0.0971 (14)
C5B0.355 (2)0.660 (2)0.567 (5)0.063 (4)0.0971 (14)
H5B0.3550610.7111490.5523980.076*0.0971 (14)
C6B0.290 (2)0.6277 (15)0.591 (4)0.060 (4)0.0971 (14)
H6B0.2466630.6565430.5956480.072*0.0971 (14)
C7B0.2863 (14)0.5516 (15)0.609 (4)0.058 (3)0.0971 (14)
O4B0.249 (3)0.352 (2)0.881 (3)0.090 (5)0.0971 (14)
O5B0.190 (3)0.437 (3)0.793 (3)0.075 (6)0.0971 (14)
C8B0.215 (2)0.414 (2)0.872 (2)0.091 (5)0.0971 (14)
C9B0.212 (3)0.450 (3)0.976 (3)0.105 (4)0.0971 (14)
H9B0.2443920.4937220.9710600.126*0.0971 (14)
C10B0.135 (3)0.480 (4)0.988 (4)0.106 (4)0.0971 (14)
H10G0.1021550.4368960.9903540.127*0.0971 (14)
H10H0.1332320.5029941.0541690.127*0.0971 (14)
C11B0.102 (3)0.531 (4)0.920 (6)0.107 (5)0.0971 (14)
H11G0.1266550.5245950.8548980.128*0.0971 (14)
H11H0.1143770.5804420.9440080.128*0.0971 (14)
C12B0.020 (3)0.531 (5)0.899 (6)0.109 (11)0.0971 (14)
H12J0.0079780.5695670.8509480.163*0.0971 (14)
H12K0.0051710.4832750.8712380.163*0.0971 (14)
H12L0.0072040.5395600.9610480.163*0.0971 (14)
C13B0.245 (3)0.404 (4)1.054 (4)0.107 (5)0.0971 (14)
H13G0.2756330.4347151.0978270.128*0.0971 (14)
H13H0.2770730.3667521.0225370.128*0.0971 (14)
C14B0.187 (4)0.365 (5)1.116 (7)0.112 (5)0.0971 (14)
H14G0.1466560.3478731.0737540.135*0.0971 (14)
H14H0.1671720.3989591.1672250.135*0.0971 (14)
C15B0.227 (6)0.297 (4)1.169 (6)0.115 (10)0.0971 (14)
H15J0.1917480.2704521.2105490.173*0.0971 (14)
H15K0.2468300.2640501.1182370.173*0.0971 (14)
H15L0.2672510.3148981.2112730.173*0.0971 (14)
O6B0.2072 (19)0.383 (3)0.472 (3)0.065 (6)0.0971 (14)
H6C0.178 (4)0.368 (3)0.428 (7)0.097*0.0971 (14)
H6D0.247 (3)0.393 (4)0.443 (7)0.097*0.0971 (14)
O70.2905 (12)0.4390 (12)0.371 (2)0.071 (4)0.549 (3)
C160.3400 (8)0.4850 (8)0.3568 (10)0.086 (3)0.549 (3)
H160.3819010.4821460.3985820.104*0.549 (3)
N20.3391 (8)0.5377 (9)0.2882 (13)0.082 (3)0.549 (3)
C170.4050 (11)0.5828 (11)0.2738 (15)0.120 (5)0.549 (3)
H17A0.4467420.5510470.2583630.179*0.549 (3)
H17B0.4152040.6104330.3348030.179*0.549 (3)
H17C0.3969900.6169540.2185130.179*0.549 (3)
C180.2743 (11)0.5436 (12)0.2230 (15)0.122 (5)0.549 (3)
H18A0.2723510.5927180.1937680.183*0.549 (3)
H18B0.2299110.5348440.2621630.183*0.549 (3)
H18C0.2777330.5070790.1696770.183*0.549 (3)
O7B0.338 (2)0.417 (2)0.366 (4)0.086 (7)0.0971 (14)
C16B0.293 (3)0.467 (3)0.352 (7)0.088 (5)0.0971 (14)
H16B0.2428890.4595120.3703840.105*0.0971 (14)
N2B0.313 (3)0.532 (2)0.311 (5)0.089 (5)0.0971 (14)
C17B0.255 (4)0.588 (3)0.313 (7)0.097 (8)0.0971 (14)
H17D0.2735330.6331740.2830040.145*0.0971 (14)
H17E0.2127370.5702710.2763910.145*0.0971 (14)
H17F0.2414860.5974650.3827690.145*0.0971 (14)
C18B0.392 (3)0.546 (4)0.323 (7)0.095 (7)0.0971 (14)
H18D0.4042400.5933940.2919200.142*0.0971 (14)
H18E0.4043570.5477360.3936830.142*0.0971 (14)
H18F0.4200590.5072290.2901400.142*0.0971 (14)
O7C0.296 (2)0.441 (2)0.386 (4)0.077 (6)0.354 (3)
C16C0.2949 (12)0.4984 (12)0.3350 (17)0.087 (4)0.354 (3)
H16C0.2500260.5228090.3213760.104*0.354 (3)
N2C0.3591 (11)0.5251 (12)0.299 (2)0.080 (4)0.354 (3)
C17C0.3557 (17)0.5992 (13)0.257 (2)0.112 (6)0.354 (3)
H17G0.4043470.6135880.2333490.168*0.354 (3)
H17H0.3211430.5997780.2010640.168*0.354 (3)
H17I0.3391920.6337060.3082160.168*0.354 (3)
C18C0.4231 (14)0.4784 (15)0.303 (2)0.118 (6)0.354 (3)
H18G0.4651490.5045630.2749640.176*0.354 (3)
H18H0.4333990.4651720.3723090.176*0.354 (3)
H18I0.4139160.4339360.2641120.176*0.354 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Dy10.0591 (2)0.0591 (2)0.0508 (3)0.0000.0000.000
Na10.0498 (10)0.0498 (10)0.058 (2)0.0000.0000.000
Mn10.0453 (4)0.0447 (4)0.0641 (5)0.0015 (2)0.0072 (3)0.0063 (3)
O10.0445 (15)0.0446 (15)0.0580 (19)0.0001 (12)0.0063 (13)0.0018 (13)
O20.0482 (16)0.0458 (17)0.075 (2)0.0004 (13)0.0103 (16)0.0038 (16)
O30.0549 (19)0.0484 (18)0.102 (3)0.0038 (15)0.022 (2)0.0030 (19)
N10.049 (2)0.0442 (18)0.057 (2)0.0025 (15)0.009 (3)0.0048 (17)
C10.051 (2)0.0420 (19)0.058 (2)0.0031 (16)0.0111 (18)0.0014 (17)
C20.055 (2)0.046 (2)0.068 (3)0.0066 (18)0.005 (2)0.006 (2)
C30.057 (2)0.048 (2)0.085 (3)0.003 (2)0.007 (2)0.001 (2)
C40.062 (3)0.045 (2)0.101 (4)0.004 (2)0.011 (3)0.001 (3)
C50.066 (3)0.051 (3)0.095 (4)0.011 (2)0.010 (3)0.000 (3)
C60.059 (3)0.050 (2)0.090 (4)0.011 (2)0.018 (3)0.004 (3)
C70.056 (2)0.044 (2)0.074 (3)0.0055 (18)0.016 (2)0.005 (2)
O40.086 (3)0.076 (3)0.060 (2)0.006 (2)0.019 (2)0.006 (2)
O50.087 (3)0.076 (3)0.069 (3)0.003 (2)0.021 (2)0.002 (2)
C80.100 (4)0.095 (4)0.067 (3)0.010 (4)0.026 (3)0.015 (3)
C90.117 (6)0.113 (6)0.083 (5)0.015 (6)0.024 (5)0.012 (5)
C100.115 (7)0.121 (7)0.084 (6)0.015 (6)0.029 (6)0.011 (6)
C110.121 (8)0.123 (8)0.093 (7)0.006 (8)0.026 (7)0.010 (8)
C120.140 (15)0.155 (16)0.107 (14)0.016 (15)0.038 (13)0.003 (14)
C130.121 (6)0.121 (6)0.087 (6)0.011 (6)0.019 (6)0.013 (6)
C140.132 (8)0.128 (8)0.095 (7)0.008 (8)0.023 (7)0.015 (7)
C150.143 (13)0.146 (13)0.088 (11)0.007 (12)0.018 (12)0.011 (12)
O60.057 (2)0.064 (2)0.063 (2)0.0103 (17)0.0029 (18)0.0144 (19)
C9C0.114 (6)0.110 (6)0.080 (5)0.017 (5)0.025 (5)0.013 (5)
C10C0.119 (7)0.122 (7)0.086 (6)0.013 (7)0.026 (6)0.011 (6)
C11C0.109 (8)0.125 (8)0.098 (7)0.019 (7)0.027 (7)0.013 (7)
C12C0.111 (14)0.145 (15)0.110 (13)0.013 (14)0.036 (13)0.011 (13)
C13C0.123 (7)0.118 (7)0.086 (6)0.013 (6)0.024 (6)0.021 (6)
C14C0.127 (7)0.121 (7)0.096 (7)0.007 (7)0.022 (6)0.014 (6)
C15C0.137 (11)0.126 (11)0.098 (10)0.021 (10)0.023 (10)0.014 (10)
C9D0.114 (6)0.113 (6)0.082 (5)0.019 (6)0.025 (5)0.009 (5)
C10D0.115 (7)0.118 (7)0.083 (7)0.012 (7)0.031 (6)0.013 (7)
C11D0.127 (9)0.131 (9)0.096 (8)0.010 (9)0.025 (9)0.004 (8)
C12D0.136 (16)0.130 (16)0.130 (15)0.016 (15)0.020 (15)0.022 (15)
C13D0.120 (6)0.123 (7)0.082 (6)0.011 (6)0.025 (6)0.011 (6)
C14D0.127 (7)0.121 (7)0.091 (7)0.014 (7)0.022 (6)0.012 (6)
C15D0.140 (13)0.131 (13)0.118 (12)0.018 (12)0.035 (11)0.004 (12)
Mn1B0.036 (3)0.038 (3)0.066 (4)0.001 (2)0.001 (2)0.002 (2)
O1B0.042 (7)0.032 (7)0.075 (8)0.003 (6)0.009 (7)0.007 (7)
O2B0.048 (6)0.035 (6)0.073 (7)0.002 (6)0.006 (6)0.001 (6)
O3B0.054 (7)0.047 (7)0.074 (7)0.004 (7)0.009 (7)0.005 (7)
N1B0.052 (7)0.040 (7)0.070 (7)0.006 (6)0.010 (7)0.000 (7)
C1B0.055 (6)0.037 (6)0.072 (6)0.004 (6)0.012 (6)0.000 (6)
C2B0.052 (5)0.040 (5)0.076 (5)0.006 (5)0.012 (5)0.001 (5)
C3B0.056 (6)0.043 (6)0.083 (6)0.004 (6)0.012 (6)0.002 (6)
C4B0.057 (7)0.045 (7)0.084 (7)0.007 (7)0.011 (7)0.002 (7)
C5B0.058 (7)0.046 (7)0.085 (7)0.012 (7)0.015 (7)0.002 (7)
C6B0.055 (7)0.043 (7)0.081 (7)0.007 (7)0.013 (7)0.001 (7)
C7B0.055 (6)0.042 (6)0.078 (6)0.007 (6)0.010 (6)0.003 (6)
O4B0.104 (10)0.094 (9)0.071 (9)0.012 (9)0.012 (9)0.019 (9)
O5B0.076 (12)0.081 (12)0.068 (12)0.001 (11)0.006 (11)0.009 (11)
C8B0.103 (8)0.097 (8)0.072 (8)0.011 (8)0.019 (8)0.015 (8)
C9B0.118 (7)0.112 (7)0.083 (7)0.012 (7)0.020 (7)0.016 (7)
C10B0.118 (7)0.115 (7)0.084 (6)0.014 (6)0.023 (6)0.015 (6)
C11B0.120 (9)0.115 (10)0.086 (9)0.013 (9)0.023 (9)0.015 (9)
C12B0.12 (2)0.12 (2)0.084 (19)0.02 (2)0.038 (19)0.017 (19)
C13B0.120 (8)0.116 (8)0.085 (8)0.011 (8)0.019 (8)0.014 (8)
C14B0.126 (9)0.122 (9)0.088 (8)0.011 (8)0.023 (8)0.015 (8)
C15B0.132 (19)0.131 (19)0.082 (18)0.005 (19)0.019 (18)0.010 (18)
O6B0.058 (11)0.070 (12)0.066 (12)0.008 (11)0.004 (11)0.012 (11)
O70.071 (6)0.071 (6)0.070 (9)0.005 (5)0.001 (5)0.021 (6)
C160.098 (7)0.089 (6)0.072 (5)0.030 (6)0.022 (5)0.010 (5)
N20.114 (7)0.071 (5)0.062 (6)0.032 (5)0.007 (6)0.012 (4)
C170.133 (11)0.110 (9)0.116 (10)0.054 (9)0.015 (9)0.025 (8)
C180.139 (11)0.117 (10)0.111 (10)0.006 (9)0.001 (9)0.014 (8)
O7B0.100 (13)0.080 (12)0.077 (12)0.026 (12)0.005 (12)0.019 (12)
C16B0.106 (9)0.083 (9)0.074 (9)0.026 (9)0.002 (9)0.013 (9)
N2B0.108 (9)0.083 (8)0.076 (9)0.026 (8)0.003 (8)0.012 (8)
C17B0.118 (15)0.094 (14)0.078 (14)0.025 (14)0.003 (14)0.007 (13)
C18B0.113 (13)0.089 (12)0.082 (12)0.027 (12)0.008 (12)0.018 (12)
O7C0.082 (10)0.075 (9)0.075 (12)0.007 (8)0.001 (9)0.018 (8)
C16C0.110 (8)0.075 (7)0.076 (7)0.016 (7)0.012 (7)0.017 (6)
N2C0.102 (8)0.076 (7)0.062 (7)0.033 (7)0.004 (7)0.004 (6)
C17C0.136 (12)0.095 (11)0.105 (11)0.018 (11)0.012 (11)0.014 (10)
C18C0.126 (11)0.116 (11)0.110 (11)0.026 (10)0.001 (10)0.017 (10)
Geometric parameters (Å, º) top
Dy1—O4B2.24 (4)C10D—C11D1.43 (2)
Dy1—O4i2.277 (5)C10D—H10E0.9900
Dy1—O4ii2.277 (5)C10D—H10F0.9900
Dy1—O4iii2.277 (5)C11D—C12D1.53 (2)
Dy1—O42.277 (5)C11D—H11E0.9900
Dy1—O12.444 (3)C11D—H11F0.9900
Dy1—O1ii2.444 (3)C12D—H12G0.9800
Dy1—O1iii2.444 (3)C12D—H12H0.9800
Dy1—O1i2.444 (3)C12D—H12I0.9800
Dy1—O1Biii2.54 (3)C13D—C14D1.52 (2)
Dy1—O1Bii2.54 (3)C13D—H13E0.9900
Dy1—O1Bi2.54 (3)C13D—H13F0.9900
Na1—O62.436 (5)C14D—C15D1.61 (2)
Na1—O6ii2.436 (5)C14D—H14E0.9900
Na1—O6i2.436 (5)C14D—H14F0.9900
Na1—O6iii2.436 (5)C15D—H15G0.9800
Na1—O1Bi2.53 (3)C15D—H15H0.9800
Na1—O1Bii2.53 (3)C15D—H15I0.9800
Na1—O1Biii2.53 (3)Mn1B—O3Bi1.85 (3)
Na1—O1B2.53 (3)Mn1B—O1B1.923 (17)
Na1—O6Bii2.64 (5)Mn1B—N1Bi1.95 (4)
Na1—O6Bi2.64 (5)Mn1B—O2B1.955 (17)
Na1—O6Biii2.64 (5)Mn1B—O6Bi2.41 (4)
Na1—O6B2.64 (5)O1B—N1B1.397 (18)
Mn1—O3ii1.840 (4)O2B—C1B1.275 (18)
Mn1—O11.914 (3)O3B—C7B1.349 (19)
Mn1—O21.939 (4)N1B—C1B1.317 (19)
Mn1—N1ii1.946 (5)C1B—C2B1.459 (17)
Mn1—O52.126 (5)C2B—C3B1.404 (19)
Mn1—O62.527 (5)C2B—C7B1.414 (19)
O1—N11.401 (5)C3B—C4B1.38 (2)
O2—C11.294 (6)C3B—H3B0.9500
O3—C71.335 (7)C4B—C5B1.37 (2)
N1—C11.319 (7)C4B—H4B0.9500
C1—C21.459 (7)C5B—C6B1.37 (2)
C2—C31.406 (8)C5B—H5B0.9500
C2—C71.415 (8)C6B—C7B1.412 (19)
C3—C41.384 (8)C6B—H6B0.9500
C3—H30.9500O4B—C8B1.29 (2)
C4—C51.373 (9)O5B—C8B1.23 (2)
C4—H40.9500C8B—C9B1.54 (2)
C5—C61.383 (9)C9B—C13B1.47 (2)
C5—H50.9500C9B—C10B1.52 (2)
C6—C71.402 (7)C9B—H9B1.0000
C6—H60.9500C10B—C11B1.44 (2)
O4—C81.274 (10)C10B—H10G0.9900
O5—C81.220 (10)C10B—H10H0.9900
C8—C9C1.526 (16)C11B—C12B1.53 (2)
C8—C91.543 (16)C11B—H11G0.9900
C8—C9D1.558 (16)C11B—H11H0.9900
C9—C131.452 (16)C12B—H12J0.9800
C9—C101.515 (15)C12B—H12K0.9800
C9—H91.0000C12B—H12L0.9800
C10—C111.470 (16)C13B—C14B1.52 (2)
C10—H10A0.9900C13B—H13G0.9900
C10—H10B0.9900C13B—H13H0.9900
C11—C121.530 (16)C14B—C15B1.61 (2)
C11—H11A0.9900C14B—H14G0.9900
C11—H11B0.9900C14B—H14H0.9900
C12—H12A0.9800C15B—H15J0.9800
C12—H12B0.9800C15B—H15K0.9800
C12—H12C0.9800C15B—H15L0.9800
C13—C141.517 (17)O6B—H6C0.84 (2)
C13—H13A0.9900O6B—H6D0.850 (18)
C13—H13B0.9900O7—C161.248 (18)
C14—C151.594 (17)C16—N21.333 (15)
C14—H14A0.9900C16—H160.9500
C14—H14B0.9900N2—C171.472 (14)
C15—H15A0.9800N2—C181.475 (16)
C15—H15B0.9800C17—H17A0.9800
C15—H15C0.9800C17—H17B0.9800
O6—H6A0.857 (17)C17—H17C0.9800
O6—H6E0.832 (18)C18—H18A0.9800
C9C—C13C1.44 (2)C18—H18B0.9800
C9C—C10C1.50 (2)C18—H18C0.9800
C9C—H9C1.0000O7B—C16B1.25 (2)
C10C—C11C1.43 (2)C16B—N2B1.36 (2)
C10C—H10C0.9900C16B—H16B0.9500
C10C—H10D0.9900N2B—C18B1.47 (2)
C11C—C12C1.53 (2)N2B—C17B1.47 (2)
C11C—H11C0.9900C17B—H17D0.9800
C11C—H11D0.9900C17B—H17E0.9800
C12C—H12D0.9800C17B—H17F0.9800
C12C—H12E0.9800C18B—H18D0.9800
C12C—H12F0.9800C18B—H18E0.9800
C13C—C14C1.53 (2)C18B—H18F0.9800
C13C—H13C0.9900O7C—C16C1.25 (2)
C13C—H13D0.9900C16C—N2C1.358 (18)
C14C—C15C1.62 (2)C16C—H16C0.9500
C14C—H14C0.9900N2C—C18C1.448 (18)
C14C—H14D0.9900N2C—C17C1.469 (17)
C15C—H15D0.9800C17C—H17G0.9800
C15C—H15E0.9800C17C—H17H0.9800
C15C—H15F0.9800C17C—H17I0.9800
C9D—C13D1.47 (2)C18C—H18G0.9800
C9D—C10D1.52 (2)C18C—H18H0.9800
C9D—H9D1.0000C18C—H18I0.9800
O4B—Dy1—O4ii111.0 (14)C10C—C9C—C8108.9 (16)
O4i—Dy1—O4ii125.9 (3)C13C—C9C—H9C90.3
O4B—Dy1—O4iii99.8 (12)C10C—C9C—H9C90.3
O4i—Dy1—O4iii78.06 (11)C8—C9C—H9C90.3
O4ii—Dy1—O4iii78.06 (11)C11C—C10C—C9C125 (2)
O4i—Dy1—O478.06 (11)C11C—C10C—H10C106.1
O4ii—Dy1—O478.06 (11)C9C—C10C—H10C106.1
O4iii—Dy1—O4125.9 (3)C11C—C10C—H10D106.1
O4i—Dy1—O178.69 (16)C9C—C10C—H10D106.1
O4ii—Dy1—O1142.57 (15)H10C—C10C—H10D106.3
O4iii—Dy1—O1138.77 (16)C10C—C11C—C12C123 (2)
O4—Dy1—O181.14 (15)C10C—C11C—H11C106.5
O4B—Dy1—O1ii116.6 (12)C12C—C11C—H11C106.5
O4i—Dy1—O1ii138.77 (16)C10C—C11C—H11D106.5
O4ii—Dy1—O1ii81.14 (15)C12C—C11C—H11D106.5
O4iii—Dy1—O1ii142.57 (15)H11C—C11C—H11D106.5
O4—Dy1—O1ii78.69 (16)C11C—C12C—H12D109.5
O1—Dy1—O1ii64.39 (9)C11C—C12C—H12E109.5
O4B—Dy1—O1iii170.3 (14)H12D—C12C—H12E109.5
O4i—Dy1—O1iii142.57 (15)C11C—C12C—H12F109.5
O4ii—Dy1—O1iii78.69 (16)H12D—C12C—H12F109.5
O4iii—Dy1—O1iii81.14 (15)H12E—C12C—H12F109.5
O4—Dy1—O1iii138.77 (16)C9C—C13C—C14C107.4 (19)
O1—Dy1—O1iii97.80 (17)C9C—C13C—H13C110.2
O1ii—Dy1—O1iii64.40 (9)C14C—C13C—H13C110.2
O4B—Dy1—O1i106.2 (15)C9C—C13C—H13D110.2
O4i—Dy1—O1i81.14 (15)C14C—C13C—H13D110.2
O4ii—Dy1—O1i138.77 (16)H13C—C13C—H13D108.5
O4iii—Dy1—O1i78.69 (16)C13C—C14C—C15C101.0 (19)
O4—Dy1—O1i142.57 (15)C13C—C14C—H14C111.6
O1—Dy1—O1i64.40 (9)C15C—C14C—H14C111.6
O1ii—Dy1—O1i97.80 (17)C13C—C14C—H14D111.6
O1iii—Dy1—O1i64.40 (9)C15C—C14C—H14D111.6
O4B—Dy1—O1Biii144.4 (13)H14C—C14C—H14D109.4
O4i—Dy1—O1Biii160.8 (7)C14C—C15C—H15D109.5
O4ii—Dy1—O1Biii72.2 (7)C14C—C15C—H15E109.5
O4iii—Dy1—O1Biii115.1 (5)H15D—C15C—H15E109.5
O4—Dy1—O1Biii102.4 (5)C14C—C15C—H15F109.5
O1—Dy1—O1Biii82.4 (7)H15D—C15C—H15F109.5
O1ii—Dy1—O1Biii27.9 (4)H15E—C15C—H15F109.5
O1iii—Dy1—O1Biii37.6 (4)C13D—C9D—C10D122 (2)
O1i—Dy1—O1Biii87.7 (7)C13D—C9D—C8111.2 (19)
O4B—Dy1—O1Bii88.6 (13)C10D—C9D—C8118.0 (18)
O4i—Dy1—O1Bii102.4 (5)C13D—C9D—H9D99.9
O4ii—Dy1—O1Bii115.1 (5)C10D—C9D—H9D99.9
O4iii—Dy1—O1Bii160.8 (7)C8—C9D—H9D99.9
O4—Dy1—O1Bii72.2 (7)C11D—C10D—C9D122 (2)
O1—Dy1—O1Bii27.9 (4)C11D—C10D—H10E106.9
O1ii—Dy1—O1Bii37.6 (4)C9D—C10D—H10E106.9
O1iii—Dy1—O1Bii87.7 (7)C11D—C10D—H10F106.9
O1i—Dy1—O1Bii82.4 (7)C9D—C10D—H10F106.9
O1Biii—Dy1—O1Bii60.4 (9)H10E—C10D—H10F106.7
O4B—Dy1—O1Bi143.3 (15)C10D—C11D—C12D122 (2)
O4i—Dy1—O1Bi115.1 (5)C10D—C11D—H11E106.8
O4ii—Dy1—O1Bi102.4 (5)C12D—C11D—H11E106.8
O4iii—Dy1—O1Bi72.2 (7)C10D—C11D—H11F106.8
O4—Dy1—O1Bi160.8 (7)C12D—C11D—H11F106.8
O1—Dy1—O1Bi87.7 (7)H11E—C11D—H11F106.6
O1ii—Dy1—O1Bi82.4 (7)C11D—C12D—H12G109.5
O1iii—Dy1—O1Bi27.9 (4)C11D—C12D—H12H109.5
O1i—Dy1—O1Bi37.6 (4)H12G—C12D—H12H109.5
O1Biii—Dy1—O1Bi60.4 (9)C11D—C12D—H12I109.5
O1Bii—Dy1—O1Bi90.7 (15)H12G—C12D—H12I109.5
O6—Na1—O6ii85.06 (8)H12H—C12D—H12I109.5
O6—Na1—O6i85.06 (8)C9D—C13D—C14D111 (2)
O6ii—Na1—O6i145.9 (3)C9D—C13D—H13E109.5
O6—Na1—O6iii145.9 (3)C14D—C13D—H13E109.5
O6ii—Na1—O6iii85.06 (8)C9D—C13D—H13F109.5
O6i—Na1—O6iii85.06 (8)C14D—C13D—H13F109.5
O6—Na1—O1Bi150.7 (6)H13E—C13D—H13F108.1
O6ii—Na1—O1Bi110.9 (4)C13D—C14D—C15D103 (2)
O6i—Na1—O1Bi93.1 (5)C13D—C14D—H14E111.2
O6iii—Na1—O1Bi62.5 (6)C15D—C14D—H14E111.2
O6—Na1—O1Bii62.5 (6)C13D—C14D—H14F111.2
O6ii—Na1—O1Bii93.1 (5)C15D—C14D—H14F111.2
O6i—Na1—O1Bii110.9 (4)H14E—C14D—H14F109.2
O6iii—Na1—O1Bii150.7 (6)C14D—C15D—H15G109.5
O1Bi—Na1—O1Bii91.4 (12)C14D—C15D—H15H109.5
O6—Na1—O1Biii110.9 (4)H15G—C15D—H15H109.5
O6ii—Na1—O1Biii62.5 (6)C14D—C15D—H15I109.5
O6i—Na1—O1Biii150.7 (6)H15G—C15D—H15I109.5
O6iii—Na1—O1Biii93.1 (5)H15H—C15D—H15I109.5
O1Bi—Na1—O1Biii60.8 (7)O3Bi—Mn1B—O1B174.4 (18)
O1Bii—Na1—O1Biii60.8 (7)O3Bi—Mn1B—O2B98.1 (10)
O1Bi—Na1—O1B60.8 (7)O1B—Mn1B—O2B81.2 (8)
O1Bii—Na1—O1B60.8 (7)N1Bi—Mn1B—O2B166 (3)
O1Biii—Na1—O1B91.4 (12)O3Bi—Mn1B—O6Bi95.9 (17)
O6—Na1—O6Bii71.0 (7)O1B—Mn1B—O6Bi78.5 (16)
O6ii—Na1—O6Bii15.2 (7)N1Bi—Mn1B—O6Bi85 (4)
O6i—Na1—O6Bii144.3 (8)O2B—Mn1B—O6Bi84.1 (14)
O6iii—Na1—O6Bii100.0 (8)O3Bi—Mn1B—Na1134.2 (11)
O1Bi—Na1—O6Bii120.7 (9)O1B—Mn1B—Na141.2 (10)
O1Bii—Na1—O6Bii81.5 (10)N1Bi—Mn1B—Na165 (3)
O1Biii—Na1—O6Bii64.8 (10)O2B—Mn1B—Na1101.6 (9)
O1B—Na1—O6Bii142.0 (10)O6Bi—Mn1B—Na146.4 (12)
O6—Na1—O6Bi100.0 (8)N1B—O1B—Mn1B112.6 (15)
O6ii—Na1—O6Bi144.3 (8)N1B—O1B—Na1112 (6)
O6i—Na1—O6Bi15.2 (7)Mn1B—O1B—Na1108.7 (13)
O6iii—Na1—O6Bi71.0 (7)N1B—O1B—Dy1117 (4)
O1Bi—Na1—O6Bi81.5 (10)Mn1B—O1B—Dy1115.3 (12)
O1Bii—Na1—O6Bi120.7 (9)Na1—O1B—Dy189.0 (6)
O1Biii—Na1—O6Bi142.0 (10)C1B—O2B—Mn1B112.2 (14)
O1B—Na1—O6Bi64.8 (10)C7B—O3B—Mn1Bii130 (2)
O6Bii—Na1—O6Bi149.9 (18)C1B—N1B—O1B113 (2)
O6—Na1—O6Biii144.3 (8)C1B—N1B—Mn1Bii131 (3)
O6ii—Na1—O6Biii71.0 (7)O1B—N1B—Mn1Bii114 (2)
O6i—Na1—O6Biii100.0 (8)O2B—C1B—N1B121.0 (18)
O6iii—Na1—O6Biii15.2 (7)O2B—C1B—C2B119.9 (18)
O1Bi—Na1—O6Biii64.8 (10)N1B—C1B—C2B118.9 (19)
O1Bii—Na1—O6Biii142.0 (10)C3B—C2B—C7B121.2 (19)
O1Biii—Na1—O6Biii81.5 (10)C3B—C2B—C1B114.3 (19)
O1B—Na1—O6Biii120.7 (9)C7B—C2B—C1B124.5 (19)
O6Bii—Na1—O6Biii86.1 (4)C4B—C3B—C2B121 (2)
O6Bi—Na1—O6Biii86.1 (4)C4B—C3B—H3B119.3
O1Bi—Na1—O6B142.0 (10)C2B—C3B—H3B119.3
O1Bii—Na1—O6B64.8 (10)C5B—C4B—C3B117 (3)
O1Biii—Na1—O6B120.7 (9)C5B—C4B—H4B121.6
O1B—Na1—O6B81.5 (10)C3B—C4B—H4B121.6
O6Bii—Na1—O6B86.1 (4)C4B—C5B—C6B124 (3)
O6Bi—Na1—O6B86.1 (4)C4B—C5B—H5B118.0
O6Biii—Na1—O6B149.9 (18)C6B—C5B—H5B118.0
O3ii—Mn1—O1168.5 (2)C5B—C6B—C7B120 (2)
O3ii—Mn1—O297.45 (17)C5B—C6B—H6B119.8
O1—Mn1—O281.70 (15)C7B—C6B—H6B119.8
O3ii—Mn1—N1ii90.57 (19)O3B—C7B—C6B120 (2)
O1—Mn1—N1ii88.75 (16)O3B—C7B—C2B124 (2)
O2—Mn1—N1ii168.3 (3)C6B—C7B—C2B116.1 (19)
O3ii—Mn1—O594.6 (2)C8B—O4B—Dy1133 (3)
O1—Mn1—O596.9 (2)O5B—C8B—O4B124 (3)
O2—Mn1—O594.0 (2)O5B—C8B—C9B128 (3)
N1ii—Mn1—O593.8 (4)O4B—C8B—C9B108 (2)
O3ii—Mn1—O689.8 (2)C13B—C9B—C10B121 (3)
O1—Mn1—O678.68 (15)C13B—C9B—C8B113 (3)
O2—Mn1—O686.28 (16)C10B—C9B—C8B106 (3)
N1ii—Mn1—O685.3 (4)C13B—C9B—H9B105.3
O5—Mn1—O6175.52 (19)C10B—C9B—H9B105.3
O3ii—Mn1—Na1124.15 (18)C8B—C9B—H9B105.3
O1—Mn1—Na145.80 (12)C11B—C10B—C9B124 (3)
O2—Mn1—Na1103.48 (11)C11B—C10B—H10G106.3
N1ii—Mn1—Na164.9 (3)C9B—C10B—H10G106.3
O5—Mn1—Na1133.91 (17)C11B—C10B—H10H106.2
O6—Mn1—Na141.91 (11)C9B—C10B—H10H106.2
N1—O1—Mn1112.7 (3)H10G—C10B—H10H106.4
N1—O1—Dy1121.3 (4)C10B—C11B—C12B122 (3)
Mn1—O1—Dy1119.88 (15)C10B—C11B—H11G106.8
N1—O1—Na1104.4 (4)C12B—C11B—H11G106.8
Mn1—O1—Na1103.43 (15)C10B—C11B—H11H106.8
Dy1—O1—Na187.70 (12)C12B—C11B—H11H106.8
C1—O2—Mn1112.1 (3)H11G—C11B—H11H106.6
C7—O3—Mn1i129.8 (3)C11B—C12B—H12J109.5
C1—N1—O1112.6 (5)C11B—C12B—H12K109.5
C1—N1—Mn1i130.9 (4)H12J—C12B—H12K109.5
O1—N1—Mn1i116.1 (3)C11B—C12B—H12L109.5
O2—C1—N1120.4 (4)H12J—C12B—H12L109.5
O2—C1—C2120.0 (4)H12K—C12B—H12L109.5
N1—C1—C2119.6 (5)C9B—C13B—C14B112 (3)
C3—C2—C7118.8 (5)C9B—C13B—H13G109.2
C3—C2—C1118.0 (5)C14B—C13B—H13G109.2
C7—C2—C1123.1 (5)C9B—C13B—H13H109.2
C4—C3—C2121.4 (6)C14B—C13B—H13H109.2
C4—C3—H3119.3H13G—C13B—H13H107.9
C2—C3—H3119.3C13B—C14B—C15B107 (3)
C5—C4—C3119.3 (6)C13B—C14B—H14G110.4
C5—C4—H4120.3C15B—C14B—H14G110.4
C3—C4—H4120.3C13B—C14B—H14H110.4
C4—C5—C6120.9 (6)C15B—C14B—H14H110.4
C4—C5—H5119.5H14G—C14B—H14H108.6
C6—C5—H5119.5C14B—C15B—H15J109.5
C5—C6—C7121.0 (6)C14B—C15B—H15K109.5
C5—C6—H6119.5H15J—C15B—H15K109.5
C7—C6—H6119.5C14B—C15B—H15L109.5
O3—C7—C6117.9 (5)H15J—C15B—H15L109.5
O3—C7—C2123.5 (5)H15K—C15B—H15L109.5
C6—C7—C2118.5 (5)Mn1Bii—O6B—Na192.1 (13)
C8—O4—Dy1144.7 (5)Mn1Bii—O6B—H6C137 (7)
C8—O5—Mn1124.0 (5)Na1—O6B—H6C95 (6)
O5—C8—O4127.1 (7)Mn1Bii—O6B—H6D115 (7)
O5—C8—C9C110.5 (16)Na1—O6B—H6D95 (6)
O4—C8—C9C122.3 (16)H6C—O6B—H6D107 (3)
O5—C8—C9124.4 (14)O7—C16—N2125.5 (16)
O4—C8—C9108.3 (14)O7—C16—H16117.2
O5—C8—C9D117.9 (15)N2—C16—H16117.2
O4—C8—C9D113.9 (16)C16—N2—C17119.0 (13)
C13—C9—C10122.4 (16)C16—N2—C18118.2 (12)
C13—C9—C8115.7 (17)C17—N2—C18122.5 (13)
C10—C9—C8106.3 (18)N2—C17—H17A109.5
C13—C9—H9103.3N2—C17—H17B109.5
C10—C9—H9103.3H17A—C17—H17B109.5
C8—C9—H9103.3N2—C17—H17C109.5
C11—C10—C9116.6 (15)H17A—C17—H17C109.5
C11—C10—H10A108.1H17B—C17—H17C109.5
C9—C10—H10A108.1N2—C18—H18A109.5
C11—C10—H10B108.1N2—C18—H18B109.5
C9—C10—H10B108.1H18A—C18—H18B109.5
H10A—C10—H10B107.3N2—C18—H18C109.5
C10—C11—C12118.1 (17)H18A—C18—H18C109.5
C10—C11—H11A107.8H18B—C18—H18C109.5
C12—C11—H11A107.8O7B—C16B—N2B120 (3)
C10—C11—H11B107.8O7B—C16B—H16B119.8
C12—C11—H11B107.8N2B—C16B—H16B119.8
H11A—C11—H11B107.1C16B—N2B—C18B113 (3)
C11—C12—H12A109.5C16B—N2B—C17B113 (3)
C11—C12—H12B109.5C18B—N2B—C17B125 (3)
H12A—C12—H12B109.5N2B—C17B—H17D109.5
C11—C12—H12C109.5N2B—C17B—H17E109.5
H12A—C12—H12C109.5H17D—C17B—H17E109.5
H12B—C12—H12C109.5N2B—C17B—H17F109.5
C9—C13—C14118.5 (17)H17D—C17B—H17F109.5
C9—C13—H13A107.7H17E—C17B—H17F109.5
C14—C13—H13A107.7N2B—C18B—H18D109.5
C9—C13—H13B107.7N2B—C18B—H18E109.5
C14—C13—H13B107.7H18D—C18B—H18E109.5
H13A—C13—H13B107.1N2B—C18B—H18F109.5
C13—C14—C15110.9 (15)H18D—C18B—H18F109.5
C13—C14—H14A109.5H18E—C18B—H18F109.5
C15—C14—H14A109.5O7C—C16C—N2C119 (2)
C13—C14—H14B109.5O7C—C16C—H16C120.5
C15—C14—H14B109.5N2C—C16C—H16C120.5
H14A—C14—H14B108.1C16C—N2C—C18C118.3 (16)
C14—C15—H15A109.5C16C—N2C—C17C115.5 (18)
C14—C15—H15B109.5C18C—N2C—C17C126.2 (19)
H15A—C15—H15B109.5N2C—C17C—H17G109.5
C14—C15—H15C109.5N2C—C17C—H17H109.5
H15A—C15—H15C109.5H17G—C17C—H17H109.5
H15B—C15—H15C109.5N2C—C17C—H17I109.5
Na1—O6—Mn194.24 (17)H17G—C17C—H17I109.5
Na1—O6—H6A109 (4)H17H—C17C—H17I109.5
Mn1—O6—H6A124 (6)N2C—C18C—H18G109.5
Na1—O6—H6E110 (4)N2C—C18C—H18H109.5
Mn1—O6—H6E112 (5)H18G—C18C—H18H109.5
H6A—O6—H6E107 (3)N2C—C18C—H18I109.5
C13C—C9C—C10C135.8 (18)H18G—C18C—H18I109.5
C13C—C9C—C8115.4 (18)H18H—C18C—H18I109.5
Mn1—O1—N1—C16.0 (10)O5—C8—C9D—C13D153.5 (19)
Dy1—O1—N1—C1146.3 (6)O4—C8—C9D—C13D37 (3)
Na1—O1—N1—C1117.5 (7)O5—C8—C9D—C10D58 (3)
Mn1—O1—N1—Mn1i167.2 (5)O4—C8—C9D—C10D111 (2)
Dy1—O1—N1—Mn1i40.4 (9)C13D—C9D—C10D—C11D70 (4)
Na1—O1—N1—Mn1i55.7 (8)C8—C9D—C10D—C11D75 (4)
Mn1—O2—C1—N13.1 (9)C9D—C10D—C11D—C12D170 (3)
Mn1—O2—C1—C2175.1 (4)C10D—C9D—C13D—C14D141 (3)
O1—N1—C1—O21.9 (12)C8—C9D—C13D—C14D72 (3)
Mn1i—N1—C1—O2170.1 (7)C9D—C13D—C14D—C15D89 (3)
O1—N1—C1—C2179.9 (6)Mn1B—O1B—N1B—C1B5 (12)
Mn1i—N1—C1—C28.2 (14)Na1—O1B—N1B—C1B117 (9)
O2—C1—C2—C312.2 (9)Dy1—O1B—N1B—C1B143 (7)
N1—C1—C2—C3169.5 (8)Mn1B—O1B—N1B—Mn1Bii173 (5)
O2—C1—C2—C7167.2 (6)Na1—O1B—N1B—Mn1Bii51 (9)
N1—C1—C2—C711.0 (11)Dy1—O1B—N1B—Mn1Bii50 (10)
C7—C2—C3—C42.2 (11)Mn1B—O2B—C1B—N1B2 (9)
C1—C2—C3—C4177.3 (7)Mn1B—O2B—C1B—C2B178 (2)
C2—C3—C4—C51.0 (12)O1B—N1B—C1B—O2B2 (14)
C3—C4—C5—C60.1 (13)Mn1Bii—N1B—C1B—O2B167 (8)
C4—C5—C6—C70.4 (12)O1B—N1B—C1B—C2B173 (6)
Mn1i—O3—C7—C6166.9 (5)Mn1Bii—N1B—C1B—C2B8 (15)
Mn1i—O3—C7—C217.1 (10)O2B—C1B—C2B—C3B3 (4)
C5—C6—C7—O3177.8 (7)N1B—C1B—C2B—C3B179 (8)
C5—C6—C7—C21.5 (11)O2B—C1B—C2B—C7B175 (5)
C3—C2—C7—O3178.4 (6)N1B—C1B—C2B—C7B0 (8)
C1—C2—C7—O31.0 (10)C7B—C2B—C3B—C4B1 (3)
C3—C2—C7—C62.4 (10)C1B—C2B—C3B—C4B180 (3)
C1—C2—C7—C6177.0 (6)C2B—C3B—C4B—C5B1 (5)
Mn1—O5—C8—O422.3 (14)C3B—C4B—C5B—C6B0 (7)
Mn1—O5—C8—C9C158.7 (11)C4B—C5B—C6B—C7B3 (7)
Mn1—O5—C8—C9161.6 (12)Mn1Bii—O3B—C7B—C6B180 (3)
Mn1—O5—C8—C9D145.4 (13)Mn1Bii—O3B—C7B—C2B4 (7)
Dy1—O4—C8—O512.0 (18)C5B—C6B—C7B—O3B172 (5)
Dy1—O4—C8—C9C166.8 (12)C5B—C6B—C7B—C2B5 (6)
Dy1—O4—C8—C9164.6 (11)C3B—C2B—C7B—O3B172 (5)
Dy1—O4—C8—C9D179.9 (12)C1B—C2B—C7B—O3B6 (5)
O5—C8—C9—C1384 (2)C3B—C2B—C7B—C6B4 (4)
O4—C8—C9—C1392 (2)C1B—C2B—C7B—C6B178 (3)
O5—C8—C9—C1055 (2)Dy1—O4B—C8B—O5B22 (5)
O4—C8—C9—C10128.2 (18)Dy1—O4B—C8B—C9B158 (4)
C13—C9—C10—C11168 (3)O5B—C8B—C9B—C13B178 (4)
C8—C9—C10—C1156 (4)O4B—C8B—C9B—C13B3 (4)
C9—C10—C11—C12174 (3)O5B—C8B—C9B—C10B43 (5)
C10—C9—C13—C1482 (3)O4B—C8B—C9B—C10B137 (4)
C8—C9—C13—C14146 (2)C13B—C9B—C10B—C11B174 (7)
C9—C13—C14—C1590 (3)C8B—C9B—C10B—C11B57 (8)
O5—C8—C9C—C13C58 (3)C9B—C10B—C11B—C12B148 (7)
O4—C8—C9C—C13C121 (2)C10B—C9B—C13B—C14B25 (8)
O5—C8—C9C—C10C121 (2)C8B—C9B—C13B—C14B102 (6)
O4—C8—C9C—C10C60 (3)C9B—C13B—C14B—C15B160 (6)
C13C—C9C—C10C—C11C148 (4)O7—C16—N2—C17173 (3)
C8—C9C—C10C—C11C31 (4)O7—C16—N2—C180 (4)
C9C—C10C—C11C—C12C131 (4)O7B—C16B—N2B—C18B22 (11)
C10C—C9C—C13C—C14C108 (4)O7B—C16B—N2B—C17B172 (9)
C8—C9C—C13C—C14C74 (3)O7C—C16C—N2C—C18C13 (5)
C9C—C13C—C14C—C15C20 (3)O7C—C16C—N2C—C17C169 (4)
Symmetry codes: (i) y, x+1/2, z; (ii) y+1/2, x, z; (iii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O70.86 (2)2.02 (2)2.860 (15)165 (5)
O6—H6E···O7ii0.83 (2)1.99 (2)2.809 (19)167 (5)
O6B—H6C···O7Bii0.84 (2)2.00 (2)2.80 (3)159 (10)
O6B—H6D···O7B0.85 (2)2.01 (2)2.859 (19)177 (10)
Symmetry code: (ii) y+1/2, x, z.
Average bond length (Å) and bond-valence-sum (BVS) values (v.u.) used to support assigned oxidation states of the dysprosium and manganese ions of 1 top
Avg. Bond lengthBVS valueAssigned oxidation state
Dy12.3613.143+
Mn11.9533.023+
Continuous Shape Measure (CShM) values for the geometry about the eight-coordinate central DyIII and Na+ ions of 1 top
ShapeDyIIINa+
Octagon (D8h)32.05632.142
Heptagonal pyramid (C7v)23.66626.075
Hexagonal bipyramid (D6h)16.87013.023
Cube (Oh)9.2535.054
Square antiprism (D4d)0.7473.803
Triangular dodecahedron (D2d)2.7304.048
Johnson gyrobifastigium (J26; D2s)17.55316.887
Johnson elongated triangular bipyramid (J14; D3h)30.39528.728
Johnson biaugmented trigonal prism (J50; C2v)3.0365.420
Biaugmented trigonal prism (C2v)1.9913.667
Johnson snub diphenoid (J84; D2d)5.9718.256
Triakis tetrahedron (Td)10.1185.959
Elongated trigonal bipyramid (D3h)25.70825.581
Continuous Shape Measure (CShM) values for the geometry about the five-coordinate ring MnIII ion of 1 top
ShapePentagon (D5h)Vacant octahedron (C4v)Trigonal bipyramid (D3h)Spherical square pyramid (C4v)Johnson trigonal bipyramid (J12; D3h)
Mn130.5150.8325.4220.7397.504
Structural Feature Comparison of 1 and other DyNa(carboxylate)4[12-MCMnIIIN(shi)-4] compounds (Å, °) top
CompoundMC cavity radiusaAvg. cross cavity MnIII—MnIII distanceaAvg. adjacent MnIII—MnIII DistanceaAvg. cross-cavity Ooxime—Ooxime distanceaDyIII–oxime oxygen mean plane distanceb
DyNa(2-PV)4[12-MC-4], 10.546.514.603.681.6069 (37)
DyNa(OAc)4[12-MC-4]0.556.524.613.711.5918 (7)
DyNa(TMA)4[12-MC-4]0.566.514.603.731.5790 (19)
DyNa(ben)4[12-MC-4]0.546.514.603.691.5811 (18)
DyNa(2-OHben)4[12-MC-4]0.546.474.573.681.5094 (46)
DyNa(3-OHben)4[12-MC-4]0.566.534.623.721.5463 (25)
DyNa(4-OHben)4[12-MC-4]0.546.494.593.691.5925 (66)
DyNa(2-Fben)4[12-MC-4]0.556.514.603.711.5424 (52)
DyNa(3-Fben)4[12-MC-4]0.566.514.603.721.5567 (34)
DyNa(4-Fben)4[12-MC-4]0.546.524.613.681.5589 (45)
DyNa(2-Clben)4[12-MC-4]0.536.504.603.671.5883 (79)
DyNa(4-Clben)4[12-MC-4]0.556.544.623.711.5593 (13)
DyNa(3-Brben)4[12-MC-4]0.566.514.603.711.5685 (13)
DyNa(2-Iben)4[12-MC-4]0.546.504.593.681.5764 (117)
Notes: (a) Measured with Mercury (Macrae et al., 2020); (b) measured with SHELXL (Sheldrick, 2015b).
 

Acknowledgements

CMZ thanks the Department of Chemistry and Biochemistry at Shippensburg University for continued support.

Funding information

Funding for this research was provided by: National Science Foundation, Major Research Instrumentation Program (award No. CHE 1625543 to M. Zeller); Shippensburg University Student Faculty Research Engagement (SFRE) Program (grant to O. A. Aziz, C. M. Zaleski).

References

First citationAnthanasopoulou, A. A., Carrella, L. M. & Rentschler, E. (2018). Inorganics 6, 66.  Google Scholar
First citationAzar, M. R., Boron, T. T. III, Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729–1742.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBoron, T. T. III (2022). Advances in Metallacrown Chemistry, edited by C. M. Zaleski, pp. 157–219. Cham: Springer Nature.  Google Scholar
First citationBoron, T. T. III, Lutter, J. C., Daly, C. I., Chow, C. Y., Davis, A. H., Nimthong-Roldán, A., Zeller, M., Kampf, J. W., Zaleski, C. M. & Pecoraro, V. L. (2016). Inorg. Chem. 55, 10597–10607.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2022). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, F., Wei, R.-M., Li, J., Yang, L., Han, Y., Song, Y. & Dou, J.-M. (2016). Inorg. Chem. 55, 5914–5923.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCasanova, D., Llunell, M., Alemany, P. & Alvarez, S. (2005). Chem. Eur. J. 11, 1479–1494.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChow, C. Y., Eliseeva, S. V., Trivedi, E. R., Nguyen, T. N., Kampf, J. W., Petoud, S. & Pecoraro, V. L. (2016). J. Am. Chem. Soc. 138, 5100–5109.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCirera, J., Ruiz, E. & Alvarez, S. (2005). Organometallics, 24, 1556–1562.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHaynes, W. M. (2010). CRC Handbook of Chemistry and Physics, 91st ed., pp. 8-42–8-51. Boca Raton, FL: CRC Press.  Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLiu, K., Shi, W. & Cheng, P. (2015). Coord. Chem. Rev. 289–290, 74–122.  Web of Science CrossRef CAS Google Scholar
First citationLiu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102–4105.  CrossRef CAS Web of Science Google Scholar
First citationLlunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. Shape Software, Barcelona, Spain.  Google Scholar
First citationLun, H. J., Xu, L., Kong, X. J., Long, L. S. & Zheng, L. S. (2021). Inorg. Chem. 60, 10079–10083.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLutter, J. C., Boron, T. T. III, Chadwick, K. E., Davis, A. H., Kleinhaus, S., Kampf, J. W., Zaleski, C. M. & Pecoraro, V. L. (2021). Polyhedron, 202, 115190.  Web of Science CSD CrossRef Google Scholar
First citationLutter, J. C., Zaleski, C. M. & Pecoraro, V. L. (2018). Advances in Inorganic Chemistry, edited by R. van Eldik & R. Puchta, pp. 177–246. Amsterdam: Elsevier.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationManickas, E. C., Zeller, M. & Zaleski, C. M. (2020). Acta Cryst. E76, 1213–1221.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933–5003.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMichael, C. H., Zeller, M. & Zaleski, C. M. (2021). J. Chem. Crystallogr. 51, 562–574.  Web of Science CSD CrossRef CAS Google Scholar
First citationPinsky, M. & Avnir, D. (1998). Inorg. Chem. 37, 5575–5582.  Web of Science CrossRef PubMed CAS Google Scholar
First citationQin, Y., Gao, Q., Chen, Y., Liu, W., Lin, F., Zhang, X., Dong, Y. & Li, Y. (2017). J. Clust Sci. 28, 891–903.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaha, S., Das, K. S., Sharma, T., Bala, S., Adhikary, A., Huang, G. Z., Tong, M. L., Ghosh, A., Das, B., Rajaraman, G. & Mondal, R. (2022). Inorg. Chem. 61, 2141–2153.  CSD CrossRef CAS PubMed Google Scholar
First citationSalerno, E. V., Kampf, J. W., Pecoraro, V. L. & Mallah, T. (2021). Inorg. Chem. Front. 8, 2611–2623.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTravis, J. R., Zeller, M. & Zaleski, C. M. (2015). Acta Cryst. E71, 1300–1306.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTravis, J. R., Zeller, M. & Zaleski, C. M. (2016). Polyhedron, 114, 29–36.  Web of Science CSD CrossRef CAS Google Scholar
First citationTrzesowska, A., Kruszynski, R. & Bartczak, T. J. (2004). Acta Cryst. B60, 174–178.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z. X., Zhang, X., Zhang, Y. Z., Li, M. X., Zhao, H., Andruh, M. & Dunbar, K. R. (2014). Angew. Chem. Int. Ed. 53, 11567–11570.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds