research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structural characterization of three hydride-bridged sodium aluminate compounds

crossmark logo

aWestchem, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, United Kingdom
*Correspondence e-mail: r.e.mulvey@strath.ac.uk

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 1 November 2022; accepted 9 November 2022; online 17 November 2022)

The synthesis and single-crystal structures of three hydride-bridged sodium aluminate compounds containing the utility amide HMDS [N(SiMe3)2 or C6H18NSi2] are reported. Both bis­[bis­(tri­methyl­sil­yl)amido-2κN]-μ-hydrido-hydrido-2κH-(N,N,N′,N′′,N′′-penta­methyl­diethylenetri­amine-1κ3N,N′,N′′)(tetrahydro­furan-1κO)aluminiumsodium, [AlNa(C6H18NSi2)2H2(C4H8O)(C9H23N3)] or (HMDS)2Al(H)2Na(THF)(PMDETA), (1) (THF = tetra­hydro­furan, C4H8O; PMDETA = N,N,N′,N′′,N′′-penta­methyl­diethylenetri­amine, C9H23N3) and tetra­kis­[bis­(tri­methyl­sil­yl)amido]-3κ2N,4κ2N-tetra-μ-hydrido-tetra­kis­(tetra­hydro­furan)-1κ2O,2κ2O-dialuminiumdisodium, [Al2Na2(C6H18NSi2)4H4(C4H8O)4] or [(HMDS)2Al(H)2Na(THF)2]2 (2), are dihydrides. However, 1 is a dinuclear Al—H—Na monomer with one bridging and one terminal hydride ligand whilst in 2 all the hydride ligands bridge between Al and Na atoms to give a dimeric structure with a core (AlHNaH)2 eight-membered ring. In contrast, the structure of bis­[bis­(tri­methyl­sil­yl)amido]-3κN,4κN-dihydrido-3κH,4κH-tetra-μ-hydrido-bis(N,N,N′,N′′,N′′-penta­methyl­diethylenetri­amine)-1κ3N,N′,N′′;2κ3N,N′,N′′-dialuminiumdisodium, [Al2Na2(C6H18NSi2)2H6(C9H23N3)2] or [(HMDS)Al(H)3Na(PMDETA)]2 (3), also contains a (AlHNaH)2 eight-membered ring but is a trihydride with two bridging and one terminal hydride ligand per Al centre. The (AlHNaH)2 eight-membered rings of 2 and 3 differ in their structural details. That of 2 is based around a twofold axis and has a larger Al⋯Al intra-ring distance than that found in centrosymmetric 3.

1. Chemical context

This work merges two topical areas of chemistry, namely sodium organometallic chemistry and mol­ecular main-group hydride chemistry. Though relatively underdeveloped down the years, the former is currently receiving increased attention driven by the fact that sodium is much more earth-abundant and therefore more sustainable than lithium, an aspect exacerbated by lithium's rapidly escalating usage in battery technology (Yoshio et al., 2009[Yoshio, M., Brodd, R. J. & Kozawa, A. (2009). Editors. Lithium Ion Batteries. New York: Springer.]; Lu et al., 2013[Lu, L., Han, X., Li, J., Hua, J. & Ouyang, M. (2013). J. Power Sources, 226, 272-288.]; Wang et al., 2015[Wang, Y., Liu, B., Li, Q., Cartmell, S., Ferrara, S., Deng, Z. D. & Xiao, J. (2015). J. Power Sources, 286, 330-345.]; Zhang, 2006[Zhang, S. S. (2006). J. Power Sources, 162, 1379-1394.]). Recent progress has been reported in the use of sodium in cross-coupling catalysis in organic synthesis (Asako et al., 2019[Asako, S., Nakajima, H. & Takai, K. (2019). Nat. Catal. 2, 297-303.]) and in the reaction and solvation chemistry of sodium organo­amides (Woltornist & Collum, 2021[Woltornist, R. A. & Collum, D. B. (2021). J. Org. Chem. 86, 2406-2422.]; Ma et al., 2021[Ma, Y., Woltornist, R. A., Algera, R. F. & Collum, D. B. (2021). J. Am. Chem. Soc. 143, 13370-13381.]). As evidenced by a recent 181 page review with the vast majority of studies covered appearing in this century, the latter chemistry is unquestionably a topic of great current inter­est (Roy et al., 2021[Roy, M. M. D., Omaña, A. A., Wilson, A. S. S., Hill, M. S., Aldridge, S. & Rivard, E. (2021). Chem. Rev. 121, 12784-12965.]; Aldridge & Downs, 2001[Aldridge, S. & Downs, A. J. (2001). Chem. Rev. 101, 3305-3366.]). Turning to mol­ecular main-group hydrides, compounds have been developed that can mediate a myriad of catalytic reactions that previously were considered the preserve of transition-metal catalysts (Dando et al., 1993[Dando, N. R., Perrotta, A. J., Strohmann, C., Stewart, R. M. & Seyferth, D. (1993). Chem. Mater. 5, 1624-1630.]; Liptrot et al., 2015[Liptrot, D. J., Hill, M. S., Mahon, M. F. & Wilson, A. S. S. (2015). Angew. Chem. 127, 13560-13563.]; Höllerhage et al., 2021[Höllerhage, T., Schuhknecht, D., Mistry, A., Spaniol, T. P., Yang, Y., Maron, L. & Okuda, J. (2021). Chem. Eur. J. 27, 3002-3007.]; Spielmann & Harder, 2007[Spielmann, J. & Harder, S. (2007). Chem. Eur. J. 13, 8928-8938.]; Uhl, 2008[Uhl, W. (2008). Coord. Chem. Rev. 252, 1540-1563.]).

[Scheme 1]

This study focuses on sodium hydridoaluminates. Though less well known than its lithium congener (LiAlH4), the parent sodium compound in this class, sodium aluminium hydride (NaAlH4) has found use as a reductant or metallating agent (Zakharkin & Gavrilenko, 1962[Zakharkin, L. I. & Gavrilenko, V. V. (1962). Russ. Chem. Bull. 10, 2105-2106.]; Walker, 1976[Walker, E. R. H. (1976). Chem. Soc. Rev. 5, 23-50.]; Gavrilenko et al., 1987[Gavrilenko, V. V., Zakharkin, L. I. & Vinnikova, M. I. (1987). Russ. Chem. Bull. 3, 636-641.]; Eisler & Chivers, 2006[Eisler, D. J. & Chivers, T. (2006). Can. J. Chem. 84, 443-452.]), and has been considered for hydrogen-storage applications (Bogdanović et al., 2000[Bogdanović, B., Brand, R. A., Marjanović, A., Schwickardi, M. & Tölle, J. (2000). J. Alloys Compd. 302, 36-58.]; Sheppard et al., 2013[Sheppard, D. A., Jepsen, L. H., Jensen, T. R., Paskevicius, M. & Buckley, C. E. (2013). J. Mater. Chem. A, 1, 12775-12781.]; Fan et al., 2009[Fan, X., Xiao, X., Chen, L., Yu, K., Wu, Z., Li, S. & Wang, Q. (2009). Chem. Commun. pp. 6857-6859.]; Bogdanović et al., 2007[Bogdanović, B., Eberle, U., Felderhoff, M. & Schüth, F. (2007). Scr. Mater. 56, 813-816.]). Since our group has enjoyed success in synthesising lithium amido-hydridoaluminates that exhibit bimetallic cooperativity in performing catalytic hydro­boration and metallation applications (Pollard et al., 2018[Pollard, V. A., Orr, S. A., McLellan, R., Kennedy, A. R., Hevia, E. & Mulvey, R. E. (2018). Chem. Commun. 54, 1233-1236.]), here we set out to synthesize and crystallographically characterize a series of related sodium amido–hydridoaluminates. The structures obtained with just a single amide in the presence of THF and PMDETA are surprisingly diverse.

2. Structural commentary

As shown in Fig. 1[link], aluminate 1 exists as a hydride-bridged monomer with the four-coordinate aluminium centre in a slightly distorted tetra­hedral geometry [bond-angle range 106.2 (15) to 115.12 (10)°; Table 1[link]] and with the geometry of the five-coordinate sodium centre sitting near the centre of the continuum between trigonal–bipyramidal and square-pyrimidal geometries (as shown by a τ5 value of 0.527 using the method of Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). Bond lengths and angles are given in Table 1[link]. Here the dihydride R2AlH2 unit consists of one terminal hydride ligand and one hydride ligand that bridges between Al and Na.

Table 1
Selected geometric parameters (Å, °) for 1[link]

Al1—N2 1.883 (2) Na1—N5 2.477 (3)
Al1—N1 1.885 (2) Na1—N4 2.511 (3)
Al1—H1 1.59 (3) Na1—N3 2.513 (2)
Al1—H2 1.54 (3) Na1—H1 2.19 (3)
Na1—O1 2.334 (2)    
       
N2—Al1—N1 115.12 (10) N5—Na1—N4 73.23 (9)
N2—Al1—H1 110.3 (11) O1—Na1—N3 100.21 (8)
N1—Al1—H1 107.0 (10) N5—Na1—N3 111.63 (9)
N2—Al1—H2 107.5 (11) N4—Na1—N3 73.89 (9)
N1—Al1—H2 110.4 (11) O1—Na1—H1 103.2 (7)
H1—Al1—H2 106.2 (15) N5—Na1—H1 111.1 (8)
O1—Na1—N5 93.00 (9) N4—Na1—H1 94.1 (8)
O1—Na1—N4 161.00 (9) N3—Na1—H1 129.4 (7)
[Figure 1]
Figure 1
The mol­ecular structure of 1 with non-H atoms shown as 50% probability ellipsoids. Hydrogen atoms are shown as small spheres of arbitrary size.

Aluminate 2 is also an R2AlH2 dihydride, but here both hydride ligands bridge between Al and Na centres to give the dimer shown in Fig. 2[link]. The core feature is the eight-membered (AlHNaH)2 ring highlighted in Fig. 3[link]. This has crystallographically imposed twofold symmetry, with the 2 axis passing through both the Na1 and Na2 sites. The aluminium centre and both sodium centres occupy 4-coordinate sites with distorted tetra­hedral geometries, with the sodium centres much more distorted than the aluminium [range of bond angles = 101.6 (18) to 118.28 (11)° for Al1 and 89.9 (8) to 139.9 (8) and 91.72 (13) to 121.3 (2)° for Na1 and Na2, respectively; Table 2[link]]. Selected geometric parameters are given in Table 2[link].

Table 2
Selected geometric parameters (Å, °) for 2[link]

Al1—N2 1.872 (2) Na1—O1 2.279 (2)
Al1—N1 1.876 (2) Na1—H1 2.21 (3)
Al1—H1 1.55 (3) Na2—O2 2.264 (2)
Al1—H2 1.53 (3) Na2—O2i 2.264 (2)
Na1—O1i 2.279 (2) Na2—H2 2.21 (3)
       
N2—Al1—N1 118.28 (11) O1i—Na1—O1 96.84 (12)
N2—Al1—H1 110.6 (12) O1i—Na1—H1 89.9 (8)
N1—Al1—H1 106.6 (12) O1—Na1—H1 139.9 (8)
N2—Al1—H2 110.3 (13) O2—Na2—O2i 91.72 (13)
N1—Al1—H2 108.1 (13) O2—Na2—H2 100.9 (9)
H1—Al1—H2 101.6 (18) O2i—Na2—H2 119.6 (9)
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The mol­ecular structure of 2 with non-H atoms shown as 50% probability ellipsoids. Hydrogen atoms are shown as small spheres of arbitrary size.
[Figure 3]
Figure 3
View of structure 2 highlighting the core (AlHNaH)2 eight-membered ring.

Finally, the hydrido-rich RAlH3 aluminate trihydride 3 also exists as a hydride-bridged dimer with the same skeleton of an eight-membered (AlHNaH)2 ring as seen for 2, see Figs. 4[link] and 5[link]. Structure 3 thus features two bridging hydride ligands and one terminal hydride ligand per Al centre, see Table 3[link] for selected geometric parameters. Differences between the (AlHNaH)2 rings of compounds 2 and 3 are that the ring of 3 is crystallographically centrosymmetric rather than having the twofold symmetry of 2, and that the Al—H—Na angles of 2 are much closer to linear than the more bent angles found in 3 (compare 154.3 and 163.5° with 109.6 and 132.1°). The near linear and bent geometries result in very different Al⋯Al separation distances for the two compounds [compare 5.6436 (15) and 4.7666 (9) Å for 2 and 3, respectively]. This greater distance is presumably related to the Al centres of 2 each bearing two bulky HMDS ligands whilst the Al centres of 3 each bear only one HMDS ligand. As with 1 and 2, aluminate 3 also contains a four-coordinate, distorted tetra­hedral aluminium centre [bond angle range = 102.9 (12)–115.9 (8)°]. Like 1, 3 also features a five-coordinate sodium centre, but here the geometry is closer to square-pyramidal as shown by a τ5 value of 0.077. It is worth noting that Stalke previously reported an Li compound that is analogous with 3. This contained the equivalent eight-membered ring but had two mol­ecules of diethyl ether solvating each lithium centre rather than the chelated PMDETA found here on Na (Heine & Stalke, 1992[Heine, A. & Stalke, D. (1992). Angew. Chem. Int. Ed. Engl. 31, 854-855.]).

Table 3
Selected geometric parameters (Å, °) for 3[link]

Al1—N1 1.8621 (12) Na1—N4 2.4651 (14)
Al1—H1 1.59 (2) Na1—N3 2.5046 (14)
Al1—H2 1.57 (3) Na1—H1 2.25 (2)
Al1—H3 1.58 (2) H3—Na1i 2.20 (2)
Na1—N2 2.4639 (15)    
       
N1—Al1—Na1i 138.06 (4) N2—Na1—N4 109.15 (5)
N1—Al1—H1 115.9 (8) N2—Na1—N3 74.35 (5)
N1—Al1—H2 111.6 (9) N4—Na1—N3 74.05 (5)
H1—Al1—H2 102.9 (12) N2—Na1—H1 154.8 (6)
N1—Al1—H3 112.5 (8) N4—Na1—H1 93.8 (6)
H1—Al1—H3 105.5 (11) N3—Na1—H1 103.3 (6)
H2—Al1—H3 107.7 (12)    
Symmetry code: (i) [-x, -y+1, -z+2].
[Figure 4]
Figure 4
The mol­ecular structure of 3 with non-H atoms shown as 50% probability ellipsoids. Hydrogen atoms are shown as small spheres of arbitrary size.
[Figure 5]
Figure 5
View of structure 3 highlighting the core (AlHNaH)2 eight-membered ring. This core is a variation of that of structure 2 as highlighted in Fig. 3[link].

For 1, the bridging Al1—H1 bond may initially appear to be slightly longer than the terminal Al1—H2 bond [1.59 (3) and 1.54 (3) Å, respectively]. However, the large s.u. values and the general lack of accuracy of H atom positions derived from X-ray data should be kept in mind. Additionally, 3 does not show the expected difference in bridging versus terminal bond lengths, with all Al—H distances essentially equivalent [1.57 (3) Å for the terminal ligand and 1.59 (2) and 1.58 (2) Å for the bridging ligands], whilst the bridging hydrides of 2 are just as short as the terminal bond of 1 [1.53 (3) and 1.55 (3) Å]. Thus there is no reliable experimental evidence herein to support the notion that the bridging Al-hydride bonds should be longer than the terminal ones. All the Na—H bonds in the three compounds are bridging: they have a bond length range from 2.19 (3) Å in 1 to 2.25 (2) Å in 3.

3. Supra­molecular features

There are no inter­molecular inter­actions significantly shorter than the sum of van der Waals radii. In all three compounds, the closest contacts are H⋯H contacts between methyl groups or between methyl and CH2 groups. None of the hydride ligands show any significant inter­molecular contacts, thus the monomer of 1 and the dimers of 2 and 3 can be described as discrete.

4. Database survey

A search of the Cambridge Structural Database (CSD version 2021.3, update of December 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for [NaXAlX′]2 eight-membered rings similar to that of structures 2 and 3, returned eleven hits; six of these had oxygen as the bridging atom (Muñoz et al., 2014[Muñoz, M. T., Cuenca, T. & Mosquera, M. E. G. (2014). Dalton Trans. 43, 14377-14385.]; Wu et al., 2010[Wu, J., Pan, X., Tang, N. & Lin, C.-C. (2010). Inorg. Chem. 49, 5362-5364.]; Huang et al., 2009[Huang, S., Wang, X. & Richmond, M. G. (2009). J. Chem. Crystallogr. 39, 428-432.]; Veith et al., 2008[Veith, M., Smail, H. & Huch, V. (2008). Z. Anorg. Allg. Chem. 634, 2867-2872.]; Nöth et al., 2001[Nöth, H., Schlegel, A. & Lima, S. R. (2001). Z. Anorg. Allg. Chem. 627, 1793-1800.]), two had nitro­gen (Eisler & Chivers, 2006[Eisler, D. J. & Chivers, T. (2006). Can. J. Chem. 84, 443-452.]; Böttcher et al., 2001[Böttcher, P., Roesky, H. W., Walawalkar, M. G. & Schmidt, H.-G. (2001). Organometallics, 20, 790-793.]), one had fluorine (Hatop et al., 2000[Hatop, H., Roesky, H. W., Labahn, T., Fischer, A., Schmidt, H.-G. & Noltemeyer, M. (2000). Organometallics, 19, 937-940.]), one had a mix of carbon and oxygen (Huang et al., 2009[Huang, S., Wang, X. & Richmond, M. G. (2009). J. Chem. Crystallogr. 39, 428-432.]) and the last hit had a mixture of nitro­gen and carbon (Cortes-Llamas & Muñoz-Hernández, 2007[Cortes-Llamas, S. A. & Muñoz-Hernández, M. (2007). Organometallics, 26, 6844-6851.]).

Searching the CSD for the `Na—H—Al' bridging unit returned just nine hits, with two of these results being NaAlH4 with 15-crown-5 solvating the sodium atom (Sirsch et al., 2010[Sirsch, P., Clark, N. L. N., Onuţ, L., Burchell, R. P. L., Decken, A., McGrady, G. S., Daoud-Aladine, A. & Gutmann, M. J. (2010). Inorg. Chem. 49, 11395-11402.]; Olbrich & Trzaska, 2005[Olbrich, F. & Trzaska, S. (2005). CSD Communication (refcode PAPNOK). CCDC, Cambridge, England.]). This small number of structural precedents showcases the relative novelty of the newly reported structures. The Al—H bonds in these existing compounds have an average length of 1.54 Å for the terminal bonds and 1.57 Å for the bridging inter­actions; the Na—H bonds are all bridging and have an average length of 2.32 Å. This demonstrates that our results are generally in good agreement with those already reported in literature, although we note that the Na—H bonds reported herein are slightly shorter than the literature average.

There are 87 hits returned in the CSD when a search is carried out for the `Na—HMDS' fragment; this reduces to 78 when only heterobimetallic compounds are considered and reduces to just two hits when `H—Na—HMDS' is searched with one structure being a titanium-hydride compound (Stennett & Power, 2021[Stennett, C. R. & Power, P. P. (2021). Inorg. Chem. 60, 18503-18511.]), and the other a sodium-hydrido magnesiate (Liptrot et al., 2014[Liptrot, D. J., Hill, M. S. & Mahon, M. F. (2014). Chem. Eur. J. 20, 9871-9874.]). When the CSD is searched for `Al—HMDS' it returns 78 results; when only heterobimetallic species are considered this reduces to 46 hits (with 10 of these involving alkali metals) and 29 hits are returned when the `H—Al—HMDS' fragment is searched. These relatively high numbers emphasise the importance of HMDS as a utility ligand in main-group chemistry (Mulvey & Robertson, 2013[Mulvey, R. E. & Robertson, S. D. (2013). Angew. Chem. Int. Ed. 52, 11470-11487.]; Westerhausen, 1998[Westerhausen, M. (1998). Coord. Chem. Rev. 176, 157-210.]).

5. Synthesis and crystallization

The synthesis of these new sodium aluminium hydride compounds was carried out by metallation via reaction of NaAlH4 with the amine 1,1,1,3,3,3-hexa­methyl­disilazane in a 1:2 stoichiometric ratio in THF (tetra­hydro­furan) solution. After three hours at 313 K, the reaction mixture was left at room temperature for 24 hours. Filtration of the grey suspension that formed resulted in a clear, homogeneous solution. Removal of the solvent in vacuo followed by re-suspension of the residue in hexane, then introduction of a stoichiometric qu­antity of the Lewis base donor ligand PMDETA (N,N,N′,N′′,N′′-penta­methyl­diethylenetri­amine), or THF, resulted in the formation of crystals suitable for single-crystal X-ray diffraction analysis. This analysis established their identities as the dihydrides (HMDS)2Al(H)(H)Na·(THF)(PMDETA), (1), and [{(HMDS)2Al(H)(H)Na·(THF)2}2], (2), respectively. Attempting to repeat the synthesis of 1, but reducing the room-temperature period from 24hours to 1 hour resulted in the formation of a trihydride product [(HMDS)Al(H)(H)Na·PMDETA]2, (3). The three crystalline products were obtained in yields of 56, 57 and 61%, respectively.

Compound 1: 1H NMR (400.03 MHz, d8-toluene, 300 K): δ 0.48 (s, 36H, CH3 of HMDS); 1.45 (m, J = 3.30 Hz, 8H, CH2 of THF); 1.72 (s, 8H, CH2 of PMDETA); 1.86 (s, 3H, CH3 of PMDETA); 1.94 (s, 12H, CH3 of PMDETA); 3.54 (m, J = 2.25 Hz, 8H, CH2 of THF) ppm. 27Al NMR (104.23 MHz, d8-toluene, 300 K): δ 105.0 (t, J = 164.24) ppm. 13C{1H} NMR (100.59 MHz, d8-toluene, 300 K): δ 6.3 (s, CH3 of HMDS); 25.8 (s, CH2 of THF); 43.6 (s, CH3 of PMDETA); 45.4 (s, CH3 of PMDETA); 54.2 (s, CH2 of PMDETA); 57.0 (s, CH2 of PMDETA); 67.8 (s, CH2 of THF) ppm.

Compound 2: 1H NMR (400.03 MHz, C6D6, 300 K): δ 0.49 (s, 36H, CH3 of HMDS); 1.38 (m, J = 3.47 Hz, 8H, CH2 of THF); 3.50 (m, J = 2.48 Hz, 8H, CH2 of THF) ppm. 27Al NMR (104.23 MHz, C6D6, 300 K); δ 105.4 (s) ppm. 29Si NMR (79.47 MHz, C6D6, 300 K); δ 300 K): δ −3.1 (s) ppm. 13C{1H} NMR (100.59 MHz, C6D6, 300 K); δ 6.3 (s, CH3 of HMDS); 25.5 (s, CH2 of THF); 68.3 (s, CH2 of THF) ppm.

Compound 3: 1H NMR (400.13 MHz, d8-toluene, 300 K): δ 0.45 (s, 18H, CH3 of HMDS); 1.85 (s, 8H, CH2 of PMDETA); 2.09 (s, 3H, CH3 of PMDETA); 2.10 (s, 12H, CH3 of PMDETA) ppm. 27Al NMR (104.23 MHz, d8-toluene, 300 K): δ 106.9 (q, J = 172.62 Hz) ppm. 13C{1H} NMR (100.59 MHz, d8-toluene, 300 K): δ 5.5 (s, CH3 of HMDS); 43.4 (s, CH3 of PMDETA); 45.4 (s, CH3 of PMDETA); 54.8 (s, CH2 of PMDETA); 57.1 (s, CH2 of PMDETA) ppm.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. For all structures, H atoms bound to C atoms were placed in the expected geometric positions and treated in riding modes. For CH3 groups, C—H = 0.98 Å with Uiso(H) = 1.25Ueq(C) and for CH2 groups, C—H = 0.99 Å with Uiso(H) = 1.2Ueq(C). All hydride H atoms were refined freely and isotropically.

Table 4
Experimental details

  1 2 3
Crystal data
Chemical formula [AlNa(C6H18NSi2)2H2(C4H8O)(C9H23N3)] [Al2Na2(C6H18NSi2)4H4(C4H8O)4] [Al2Na2(C6H18NSi2)2H6(C9H23N3)2]
Mr 618.18 1033.96 773.38
Crystal system, space group Monoclinic, P21/n Monoclinic, C2/c Triclinic, P[\overline{1}]
Temperature (K) 200 100 123
a, b, c (Å) 11.9127 (9), 18.1837 (12), 18.4076 (13) 22.4151 (4), 17.2323 (2), 17.4649 (3) 9.2634 (5), 11.7188 (7), 12.6742 (7)
α, β, γ (°) 90, 94.420 (7), 90 90, 110.674 (2), 90 84.811 (5), 76.840 (5), 73.485 (5)
V3) 3975.5 (5) 6311.64 (19) 1283.97 (13)
Z 4 4 1
Radiation type Mo Kα Cu Kα Cu Kα
μ (mm−1) 0.21 2.29 1.77
Crystal size (mm) 0.30 × 0.20 × 0.20 0.25 × 0.20 × 0.10 0.44 × 0.20 × 0.10
 
Data collection
Diffractometer Oxford Diffraction Gemini E Rigaku Synergy-i Oxford Diffraction Gemini S
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD, (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD, (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD, (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.763, 1.000 0.121, 1.000 0.256, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 29795, 8563, 5685 40833, 6268, 5781 14891, 5082, 4511
Rint 0.063 0.063 0.028
(sin θ/λ)max−1) 0.639 0.620 0.620
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.155, 1.05 0.053, 0.160, 1.13 0.040, 0.112, 1.02
No. of reflections 8563 6268 5082
No. of parameters 359 293 231
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.24 0.36, −0.42 0.46, −0.21
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD, (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

The chosen crystal for structure 2 was treated as a two-component twin and was refined against a hklf 5 formatted reflection file. The twin matrix used was (0 −0.989 0.046 / 0 0.497 0.989 / −1 −0.004 −0.016) and the relative contributions for the twin components refined to 0.841 (4):0.159 (4).

Supporting information


Computing details top

For all structures, data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021). Program(s) used to solve structure: SHELXT (Sheldrick, 2015a) for (1), (2); SHELXS (Sheldrick, 2008) for (3). For all structures, program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL (Sheldrick, 2015b).

Bis[bis(trimethylsilyl)amido-2κN]-µ-hydrido-hydrido-2κH-(N,N,N',N'',N''-pentamethyldiethylenetriamine-1κ3N,N',N'')(tetrahydrofuran-1κO)aluminiumsodium (1) top
Crystal data top
[AlNa(C6H18NSi2)2H2(C4H8O)(C9H23N3)]F(000) = 1368
Mr = 618.18Dx = 1.033 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.9127 (9) ÅCell parameters from 5988 reflections
b = 18.1837 (12) Åθ = 3.6–26.2°
c = 18.4076 (13) ŵ = 0.21 mm1
β = 94.420 (7)°T = 200 K
V = 3975.5 (5) Å3Block, colourless
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Oxford Diffraction Gemini E
diffractometer
5685 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.063
ω scansθmax = 27.0°, θmin = 3.4°
Absorption correction: multi-scan
(CrysalisPro; Rigaku OD, 2021)
h = 1414
Tmin = 0.763, Tmax = 1.000k = 2123
29795 measured reflectionsl = 2323
8563 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.0595P)2 + 1.3148P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
8563 reflectionsΔρmax = 0.28 e Å3
359 parametersΔρmin = 0.24 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.63956 (7)0.59440 (4)0.80712 (4)0.0331 (2)
Na10.55685 (8)0.72504 (5)0.94113 (5)0.0348 (2)
Si10.44880 (7)0.52445 (5)0.70025 (4)0.0448 (2)
Si20.60346 (7)0.63621 (4)0.64509 (4)0.0381 (2)
Si30.85525 (7)0.50748 (4)0.80247 (4)0.0397 (2)
Si40.88537 (7)0.66751 (5)0.82632 (5)0.0437 (2)
O10.68222 (18)0.67243 (11)1.03006 (11)0.0518 (5)
N10.56066 (18)0.58335 (12)0.71501 (11)0.0343 (5)
N20.79757 (18)0.59425 (11)0.80660 (11)0.0344 (5)
N30.5768 (2)0.85845 (12)0.97529 (13)0.0423 (6)
N40.3864 (2)0.78852 (14)0.88184 (12)0.0466 (6)
N50.3906 (2)0.66856 (13)0.99193 (13)0.0438 (6)
C10.4592 (4)0.4664 (2)0.6168 (2)0.0799 (12)
H1A0.4531650.4978880.5734650.120*
H1B0.3979620.4302760.6134770.120*
H1C0.5317330.4408050.6199120.120*
C20.4317 (3)0.4567 (2)0.7748 (2)0.0759 (12)
H2A0.4990700.4257620.7813340.114*
H2B0.3657730.4256880.7620000.114*
H2C0.4211130.4829910.8202500.114*
C30.3115 (3)0.5748 (3)0.6918 (2)0.0854 (13)
H3A0.3008330.6006890.7374340.128*
H3B0.2499100.5396930.6815270.128*
H3C0.3117540.6105120.6518710.128*
C40.4936 (3)0.6539 (2)0.56844 (18)0.0660 (10)
H4A0.4723000.6073750.5443160.099*
H4B0.5238760.6874880.5331800.099*
H4C0.4271180.6761490.5878110.099*
C50.7243 (3)0.59371 (19)0.60198 (18)0.0623 (10)
H5A0.7878430.5878710.6385920.093*
H5B0.7465980.6254670.5625700.093*
H5C0.7018650.5454310.5821200.093*
C60.6453 (3)0.73071 (16)0.67637 (18)0.0565 (8)
H6A0.5809920.7550890.6962180.085*
H6B0.6692840.7591560.6350730.085*
H6C0.7076290.7274560.7142230.085*
C70.7618 (3)0.44199 (16)0.74853 (18)0.0561 (8)
H7A0.6899970.4376730.7707790.084*
H7B0.7981400.3936560.7479100.084*
H7C0.7482430.4602030.6985140.084*
C80.9917 (3)0.50652 (19)0.75711 (18)0.0598 (9)
H8A0.9786530.5249170.7071260.090*
H8B1.0206490.4561140.7561740.090*
H8C1.0467380.5380370.7844160.090*
C90.8824 (3)0.46502 (17)0.89489 (17)0.0515 (8)
H9A0.9410490.4930060.9230960.077*
H9B0.9074080.4140710.8896850.077*
H9C0.8130400.4657720.9202270.077*
C100.8152 (3)0.74902 (17)0.8652 (2)0.0608 (9)
H10A0.7507590.7639140.8322320.091*
H10B0.8690080.7897670.8710640.091*
H10C0.7891720.7360680.9128080.091*
C111.0014 (3)0.6463 (2)0.8979 (2)0.0668 (10)
H11A0.9689600.6282490.9418360.100*
H11B1.0450020.6910430.9095270.100*
H11C1.0507980.6085930.8796380.100*
C120.9562 (3)0.7009 (2)0.7452 (2)0.0727 (11)
H12A1.0073830.6628410.7296020.109*
H12B0.9989830.7456480.7581260.109*
H12C0.8991800.7116850.7053380.109*
C130.7129 (4)0.59808 (19)1.0185 (2)0.0794 (13)
H13A0.7392480.5923840.9690870.095*
H13B0.6468530.5656641.0223770.095*
C140.8028 (3)0.5774 (2)1.0734 (2)0.0657 (10)
H14A0.8660770.5539111.0503960.079*
H14B0.7744720.5430601.1094730.079*
C150.8383 (4)0.6473 (2)1.1081 (2)0.0865 (14)
H15A0.9035770.6682961.0850610.104*
H15B0.8590960.6403191.1607680.104*
C160.7383 (3)0.6958 (2)1.0963 (2)0.0650 (10)
H16A0.6887690.6906861.1368200.078*
H16B0.7615390.7479281.0930890.078*
C170.6899 (3)0.89006 (19)0.9743 (2)0.0654 (10)
H17A0.7420780.8629041.0082470.098*
H17B0.6881100.9418000.9890760.098*
H17C0.7150790.8865810.9249990.098*
C180.5413 (3)0.86402 (18)1.04925 (17)0.0578 (9)
H18A0.4679860.8400961.0516050.087*
H18B0.5352600.9159541.0626220.087*
H18C0.5969650.8397441.0831830.087*
C190.5011 (3)0.89715 (17)0.92279 (18)0.0578 (9)
H19A0.5354410.8985170.8755050.069*
H19B0.4933230.9485540.9393880.069*
C200.3867 (3)0.86384 (18)0.91131 (19)0.0594 (9)
H20A0.3517780.8631520.9584110.071*
H20B0.3395170.8953940.8774080.071*
C210.3929 (3)0.7908 (2)0.80280 (17)0.0719 (11)
H21A0.4591660.8192210.7913750.108*
H21B0.3248470.8141490.7799880.108*
H21C0.3989000.7406250.7841080.108*
C220.2871 (3)0.7477 (2)0.89959 (19)0.0603 (9)
H22A0.2752530.7061680.8650930.072*
H22B0.2205620.7803580.8928140.072*
C230.2948 (3)0.71804 (19)0.97632 (17)0.0553 (8)
H23A0.3011650.7597691.0109310.066*
H23B0.2244320.6912650.9843410.066*
C240.4038 (3)0.6565 (2)1.07060 (19)0.0701 (10)
H24A0.4691780.6248091.0825200.105*
H24B0.3360090.6328141.0864920.105*
H24C0.4151600.7038491.0955510.105*
C250.3733 (4)0.5992 (2)0.9539 (2)0.0809 (12)
H25A0.3761040.6070810.9014330.121*
H25B0.2995680.5790440.9635890.121*
H25C0.4324340.5644430.9710500.121*
H10.598 (2)0.6691 (15)0.8409 (15)0.052 (8)*
H20.607 (2)0.5328 (15)0.8589 (15)0.052 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0318 (4)0.0404 (5)0.0275 (4)0.0016 (3)0.0042 (3)0.0022 (3)
Na10.0359 (6)0.0337 (6)0.0350 (5)0.0033 (4)0.0037 (4)0.0001 (4)
Si10.0394 (5)0.0590 (5)0.0357 (4)0.0115 (4)0.0002 (4)0.0008 (4)
Si20.0414 (5)0.0422 (5)0.0314 (4)0.0027 (3)0.0065 (3)0.0047 (3)
Si30.0384 (4)0.0408 (4)0.0400 (4)0.0079 (3)0.0036 (3)0.0035 (3)
Si40.0397 (5)0.0446 (5)0.0469 (5)0.0087 (4)0.0047 (4)0.0040 (4)
O10.0556 (13)0.0492 (13)0.0482 (12)0.0099 (10)0.0120 (10)0.0016 (10)
N10.0322 (12)0.0434 (13)0.0275 (11)0.0004 (10)0.0045 (9)0.0001 (9)
N20.0336 (12)0.0350 (12)0.0349 (12)0.0023 (9)0.0032 (10)0.0022 (10)
N30.0510 (15)0.0330 (13)0.0439 (13)0.0007 (11)0.0094 (12)0.0015 (10)
N40.0460 (15)0.0570 (16)0.0367 (13)0.0075 (12)0.0030 (11)0.0063 (12)
N50.0441 (14)0.0431 (14)0.0447 (14)0.0069 (11)0.0059 (11)0.0040 (11)
C10.101 (3)0.083 (3)0.055 (2)0.034 (2)0.007 (2)0.023 (2)
C20.073 (3)0.090 (3)0.062 (2)0.041 (2)0.0040 (19)0.017 (2)
C30.039 (2)0.120 (3)0.096 (3)0.005 (2)0.003 (2)0.011 (3)
C40.075 (3)0.074 (2)0.0466 (19)0.0054 (19)0.0068 (18)0.0160 (17)
C50.072 (2)0.064 (2)0.055 (2)0.0109 (18)0.0310 (18)0.0117 (17)
C60.073 (2)0.0442 (18)0.0532 (19)0.0041 (16)0.0105 (17)0.0077 (15)
C70.070 (2)0.0357 (17)0.061 (2)0.0084 (15)0.0011 (17)0.0102 (15)
C80.051 (2)0.070 (2)0.061 (2)0.0158 (17)0.0163 (17)0.0086 (17)
C90.0486 (19)0.0513 (19)0.0542 (19)0.0080 (14)0.0006 (15)0.0055 (15)
C100.067 (2)0.0426 (18)0.072 (2)0.0112 (16)0.0024 (19)0.0153 (16)
C110.050 (2)0.076 (2)0.072 (2)0.0141 (17)0.0112 (18)0.011 (2)
C120.069 (2)0.079 (3)0.073 (2)0.020 (2)0.019 (2)0.010 (2)
C130.095 (3)0.052 (2)0.084 (3)0.0189 (19)0.041 (2)0.018 (2)
C140.063 (2)0.067 (2)0.065 (2)0.0156 (18)0.0102 (19)0.0038 (19)
C150.080 (3)0.081 (3)0.091 (3)0.026 (2)0.043 (2)0.029 (2)
C160.065 (2)0.058 (2)0.068 (2)0.0061 (17)0.0147 (19)0.0146 (18)
C170.068 (2)0.057 (2)0.073 (2)0.0197 (18)0.016 (2)0.0072 (18)
C180.078 (2)0.0506 (19)0.0462 (18)0.0016 (17)0.0128 (17)0.0060 (15)
C190.079 (3)0.0402 (18)0.0543 (19)0.0095 (17)0.0064 (18)0.0056 (15)
C200.061 (2)0.055 (2)0.062 (2)0.0246 (17)0.0062 (18)0.0155 (17)
C210.082 (3)0.092 (3)0.0418 (18)0.011 (2)0.0010 (18)0.0126 (19)
C220.0409 (18)0.077 (2)0.062 (2)0.0038 (16)0.0059 (16)0.0061 (18)
C230.0389 (18)0.071 (2)0.0568 (19)0.0030 (16)0.0111 (15)0.0008 (17)
C240.071 (2)0.084 (3)0.056 (2)0.017 (2)0.0095 (18)0.0195 (19)
C250.087 (3)0.059 (2)0.099 (3)0.016 (2)0.026 (3)0.014 (2)
Geometric parameters (Å, º) top
Al1—N21.883 (2)C7—H7A0.9800
Al1—N11.885 (2)C7—H7B0.9800
Al1—H11.59 (3)C7—H7C0.9800
Al1—H21.54 (3)C8—H8A0.9800
Na1—O12.334 (2)C8—H8B0.9800
Na1—N52.477 (3)C8—H8C0.9800
Na1—N42.511 (3)C9—H9A0.9800
Na1—N32.513 (2)C9—H9B0.9800
Na1—H12.19 (3)C9—H9C0.9800
Si1—N11.715 (2)C10—H10A0.9800
Si1—C21.868 (3)C10—H10B0.9800
Si1—C31.871 (4)C10—H10C0.9800
Si1—C11.875 (4)C11—H11A0.9800
Si2—N11.715 (2)C11—H11B0.9800
Si2—C51.864 (3)C11—H11C0.9800
Si2—C61.868 (3)C12—H12A0.9800
Si2—C41.877 (3)C12—H12B0.9800
Si3—N21.725 (2)C12—H12C0.9800
Si3—C71.863 (3)C13—C141.464 (5)
Si3—C91.873 (3)C13—H13A0.9900
Si3—C81.884 (3)C13—H13B0.9900
Si4—N21.715 (2)C14—C151.470 (5)
Si4—C101.871 (3)C14—H14A0.9900
Si4—C121.872 (3)C14—H14B0.9900
Si4—C111.874 (4)C15—C161.485 (5)
O1—C161.411 (4)C15—H15A0.9900
O1—C131.421 (4)C15—H15B0.9900
N3—C191.451 (4)C16—H16A0.9900
N3—C181.460 (4)C16—H16B0.9900
N3—C171.466 (4)C17—H17A0.9800
N4—C221.455 (4)C17—H17B0.9800
N4—C211.463 (4)C17—H17C0.9800
N4—C201.473 (4)C18—H18A0.9800
N5—C251.450 (4)C18—H18B0.9800
N5—C241.461 (4)C18—H18C0.9800
N5—C231.464 (4)C19—C201.492 (5)
C1—H1A0.9800C19—H19A0.9900
C1—H1B0.9800C19—H19B0.9900
C1—H1C0.9800C20—H20A0.9900
C2—H2A0.9800C20—H20B0.9900
C2—H2B0.9800C21—H21A0.9800
C2—H2C0.9800C21—H21B0.9800
C3—H3A0.9800C21—H21C0.9800
C3—H3B0.9800C22—C231.508 (4)
C3—H3C0.9800C22—H22A0.9900
C4—H4A0.9800C22—H22B0.9900
C4—H4B0.9800C23—H23A0.9900
C4—H4C0.9800C23—H23B0.9900
C5—H5A0.9800C24—H24A0.9800
C5—H5B0.9800C24—H24B0.9800
C5—H5C0.9800C24—H24C0.9800
C6—H6A0.9800C25—H25A0.9800
C6—H6B0.9800C25—H25B0.9800
C6—H6C0.9800C25—H25C0.9800
N2—Al1—N1115.12 (10)Si3—C8—H8A109.5
N2—Al1—H1110.3 (11)Si3—C8—H8B109.5
N1—Al1—H1107.0 (10)H8A—C8—H8B109.5
N2—Al1—H2107.5 (11)Si3—C8—H8C109.5
N1—Al1—H2110.4 (11)H8A—C8—H8C109.5
H1—Al1—H2106.2 (15)H8B—C8—H8C109.5
O1—Na1—N593.00 (9)Si3—C9—H9A109.5
O1—Na1—N4161.00 (9)Si3—C9—H9B109.5
N5—Na1—N473.23 (9)H9A—C9—H9B109.5
O1—Na1—N3100.21 (8)Si3—C9—H9C109.5
N5—Na1—N3111.63 (9)H9A—C9—H9C109.5
N4—Na1—N373.89 (9)H9B—C9—H9C109.5
O1—Na1—H1103.2 (7)Si4—C10—H10A109.5
N5—Na1—H1111.1 (8)Si4—C10—H10B109.5
N4—Na1—H194.1 (8)H10A—C10—H10B109.5
N3—Na1—H1129.4 (7)Si4—C10—H10C109.5
N1—Si1—C2115.05 (14)H10A—C10—H10C109.5
N1—Si1—C3111.78 (16)H10B—C10—H10C109.5
C2—Si1—C3103.9 (2)Si4—C11—H11A109.5
N1—Si1—C1112.45 (15)Si4—C11—H11B109.5
C2—Si1—C1104.39 (19)H11A—C11—H11B109.5
C3—Si1—C1108.6 (2)Si4—C11—H11C109.5
N1—Si2—C5111.77 (13)H11A—C11—H11C109.5
N1—Si2—C6111.84 (12)H11B—C11—H11C109.5
C5—Si2—C6108.43 (16)Si4—C12—H12A109.5
N1—Si2—C4115.45 (14)Si4—C12—H12B109.5
C5—Si2—C4105.54 (17)H12A—C12—H12B109.5
C6—Si2—C4103.18 (17)Si4—C12—H12C109.5
N2—Si3—C7112.61 (13)H12A—C12—H12C109.5
N2—Si3—C9112.24 (12)H12B—C12—H12C109.5
C7—Si3—C9105.96 (15)O1—C13—C14108.9 (3)
N2—Si3—C8112.84 (13)O1—C13—H13A109.9
C7—Si3—C8104.96 (15)C14—C13—H13A109.9
C9—Si3—C8107.70 (15)O1—C13—H13B109.9
N2—Si4—C10114.41 (13)C14—C13—H13B109.9
N2—Si4—C12112.82 (15)H13A—C13—H13B108.3
C10—Si4—C12106.89 (17)C13—C14—C15104.5 (3)
N2—Si4—C11113.19 (14)C13—C14—H14A110.9
C10—Si4—C11102.75 (17)C15—C14—H14A110.9
C12—Si4—C11105.92 (18)C13—C14—H14B110.9
C16—O1—C13107.9 (2)C15—C14—H14B110.9
C16—O1—Na1135.86 (19)H14A—C14—H14B108.9
C13—O1—Na1116.29 (19)C14—C15—C16104.4 (3)
Si1—N1—Si2120.23 (13)C14—C15—H15A110.9
Si1—N1—Al1122.45 (12)C16—C15—H15A110.9
Si2—N1—Al1117.31 (12)C14—C15—H15B110.9
Si4—N2—Si3118.77 (13)C16—C15—H15B110.9
Si4—N2—Al1126.25 (12)H15A—C15—H15B108.9
Si3—N2—Al1113.78 (12)O1—C16—C15105.6 (3)
C19—N3—C18112.2 (3)O1—C16—H16A110.6
C19—N3—C17109.0 (3)C15—C16—H16A110.6
C18—N3—C17108.4 (3)O1—C16—H16B110.6
C19—N3—Na1105.05 (18)C15—C16—H16B110.6
C18—N3—Na1105.78 (17)H16A—C16—H16B108.8
C17—N3—Na1116.38 (19)N3—C17—H17A109.5
C22—N4—C21110.1 (3)N3—C17—H17B109.5
C22—N4—C20111.7 (3)H17A—C17—H17B109.5
C21—N4—C20109.9 (3)N3—C17—H17C109.5
C22—N4—Na1108.21 (18)H17A—C17—H17C109.5
C21—N4—Na1110.0 (2)H17B—C17—H17C109.5
C20—N4—Na1106.78 (18)N3—C18—H18A109.5
C25—N5—C24110.4 (3)N3—C18—H18B109.5
C25—N5—C23111.1 (3)H18A—C18—H18B109.5
C24—N5—C23108.0 (3)N3—C18—H18C109.5
C25—N5—Na1105.5 (2)H18A—C18—H18C109.5
C24—N5—Na1114.1 (2)H18B—C18—H18C109.5
C23—N5—Na1107.76 (17)N3—C19—C20114.3 (3)
Si1—C1—H1A109.5N3—C19—H19A108.7
Si1—C1—H1B109.5C20—C19—H19A108.7
H1A—C1—H1B109.5N3—C19—H19B108.7
Si1—C1—H1C109.5C20—C19—H19B108.7
H1A—C1—H1C109.5H19A—C19—H19B107.6
H1B—C1—H1C109.5N4—C20—C19113.9 (3)
Si1—C2—H2A109.5N4—C20—H20A108.8
Si1—C2—H2B109.5C19—C20—H20A108.8
H2A—C2—H2B109.5N4—C20—H20B108.8
Si1—C2—H2C109.5C19—C20—H20B108.8
H2A—C2—H2C109.5H20A—C20—H20B107.7
H2B—C2—H2C109.5N4—C21—H21A109.5
Si1—C3—H3A109.5N4—C21—H21B109.5
Si1—C3—H3B109.5H21A—C21—H21B109.5
H3A—C3—H3B109.5N4—C21—H21C109.5
Si1—C3—H3C109.5H21A—C21—H21C109.5
H3A—C3—H3C109.5H21B—C21—H21C109.5
H3B—C3—H3C109.5N4—C22—C23113.6 (3)
Si2—C4—H4A109.5N4—C22—H22A108.8
Si2—C4—H4B109.5C23—C22—H22A108.8
H4A—C4—H4B109.5N4—C22—H22B108.8
Si2—C4—H4C109.5C23—C22—H22B108.8
H4A—C4—H4C109.5H22A—C22—H22B107.7
H4B—C4—H4C109.5N5—C23—C22113.2 (3)
Si2—C5—H5A109.5N5—C23—H23A108.9
Si2—C5—H5B109.5C22—C23—H23A108.9
H5A—C5—H5B109.5N5—C23—H23B108.9
Si2—C5—H5C109.5C22—C23—H23B108.9
H5A—C5—H5C109.5H23A—C23—H23B107.8
H5B—C5—H5C109.5N5—C24—H24A109.5
Si2—C6—H6A109.5N5—C24—H24B109.5
Si2—C6—H6B109.5H24A—C24—H24B109.5
H6A—C6—H6B109.5N5—C24—H24C109.5
Si2—C6—H6C109.5H24A—C24—H24C109.5
H6A—C6—H6C109.5H24B—C24—H24C109.5
H6B—C6—H6C109.5N5—C25—H25A109.5
Si3—C7—H7A109.5N5—C25—H25B109.5
Si3—C7—H7B109.5H25A—C25—H25B109.5
H7A—C7—H7B109.5N5—C25—H25C109.5
Si3—C7—H7C109.5H25A—C25—H25C109.5
H7A—C7—H7C109.5H25B—C25—H25C109.5
H7B—C7—H7C109.5
C2—Si1—N1—Si2167.40 (19)C8—Si3—N2—Al1151.73 (15)
C3—Si1—N1—Si274.4 (2)N1—Al1—N2—Si4112.19 (15)
C1—Si1—N1—Si248.1 (2)N1—Al1—N2—Si380.58 (14)
C2—Si1—N1—Al113.7 (2)C16—O1—C13—C148.2 (5)
C3—Si1—N1—Al1104.5 (2)Na1—O1—C13—C14172.3 (3)
C1—Si1—N1—Al1133.02 (19)O1—C13—C14—C1511.0 (5)
C5—Si2—N1—Si197.36 (19)C13—C14—C15—C1624.8 (5)
C6—Si2—N1—Si1140.84 (16)C13—O1—C16—C1523.9 (4)
C4—Si2—N1—Si123.3 (2)Na1—O1—C16—C15156.7 (3)
C5—Si2—N1—Al183.68 (18)C14—C15—C16—O130.4 (5)
C6—Si2—N1—Al138.12 (19)C18—N3—C19—C2067.6 (4)
C4—Si2—N1—Al1155.69 (16)C17—N3—C19—C20172.3 (3)
N2—Al1—N1—Si1134.48 (13)Na1—N3—C19—C2046.9 (3)
N2—Al1—N1—Si246.58 (16)C22—N4—C20—C19155.9 (3)
C10—Si4—N2—Si3156.81 (16)C21—N4—C20—C1981.5 (3)
C12—Si4—N2—Si380.7 (2)Na1—N4—C20—C1937.8 (3)
C11—Si4—N2—Si339.6 (2)N3—C19—C20—N462.2 (4)
C10—Si4—N2—Al19.8 (2)C21—N4—C22—C23158.3 (3)
C12—Si4—N2—Al1112.65 (19)C20—N4—C22—C2379.3 (3)
C11—Si4—N2—Al1127.09 (18)Na1—N4—C22—C2338.0 (3)
C7—Si3—N2—Si4158.62 (15)C25—N5—C23—C2271.0 (4)
C9—Si3—N2—Si481.91 (17)C24—N5—C23—C22167.7 (3)
C8—Si3—N2—Si440.01 (19)Na1—N5—C23—C2244.0 (3)
C7—Si3—N2—Al133.12 (18)N4—C22—C23—N558.8 (4)
C9—Si3—N2—Al186.35 (16)
Tetrakis[bis(trimethylsilyl)amido]-3κ2N,4κ2N-tetra-µ-hydrido-tetrakis(tetrahydrofuran)-1κ2O,2κ2O-dialuminiumdisodium (2) top
Crystal data top
[Al2Na2(C6H18NSi2)4H4(C4H8O)4]F(000) = 2272
Mr = 1033.96Dx = 1.088 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 22.4151 (4) ÅCell parameters from 24656 reflections
b = 17.2323 (2) Åθ = 2.7–72.5°
c = 17.4649 (3) ŵ = 2.29 mm1
β = 110.674 (2)°T = 100 K
V = 6311.64 (19) Å3Fragment, colourless
Z = 40.25 × 0.20 × 0.10 mm
Data collection top
Rigaku Synergy-i
diffractometer
5781 reflections with I > 2σ(I)
Radiation source: microsource tubeRint = 0.063
ω scansθmax = 72.8°, θmin = 3.3°
Absorption correction: multi-scan
(CrysalisPro; Rigaku OD, 2021)
h = 2727
Tmin = 0.121, Tmax = 1.000k = 2121
40833 measured reflectionsl = 2121
6268 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.160 w = 1/[σ2(Fo2) + (0.0641P)2 + 17.678P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
6268 reflectionsΔρmax = 0.36 e Å3
293 parametersΔρmin = 0.42 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.48738 (4)0.74554 (5)0.40514 (5)0.02599 (19)
Na10.5000000.88645 (9)0.2500000.0325 (4)
Na20.5000000.61172 (9)0.2500000.0341 (4)
Si10.62196 (4)0.80971 (4)0.46633 (5)0.02963 (19)
Si20.58845 (4)0.68549 (4)0.56835 (5)0.02967 (19)
Si30.41149 (4)0.81457 (4)0.50915 (5)0.02863 (19)
Si40.34965 (4)0.69261 (5)0.38716 (5)0.0320 (2)
O10.57142 (11)0.97423 (12)0.23571 (13)0.0377 (5)
O20.57085 (12)0.52024 (13)0.31969 (13)0.0460 (6)
N10.56860 (11)0.74909 (13)0.48689 (14)0.0272 (5)
N20.41601 (11)0.74821 (13)0.43715 (14)0.0278 (5)
C10.59865 (16)0.91507 (18)0.4541 (2)0.0385 (7)
H1A0.5547130.9200060.4157070.058*
H1B0.6273560.9435530.4328830.058*
H1C0.6017330.9365640.5073090.058*
C20.70269 (15)0.8121 (2)0.5490 (2)0.0436 (8)
H2A0.6982000.8256400.6012150.065*
H2B0.7293280.8509280.5354670.065*
H2C0.7227450.7609170.5536060.065*
C30.63416 (15)0.7790 (2)0.36960 (19)0.0381 (7)
H3A0.6542640.7276640.3774940.057*
H3B0.6617320.8166210.3561400.057*
H3C0.5928470.7766630.3247650.057*
C40.66680 (16)0.63313 (19)0.5912 (2)0.0436 (8)
H4A0.6762440.6279730.5407590.065*
H4B0.6639860.5814670.6131400.065*
H4C0.7008570.6627560.6315670.065*
C50.59591 (16)0.73563 (19)0.66691 (18)0.0392 (7)
H5A0.6271460.7777280.6771010.059*
H5B0.6100320.6982410.7120420.059*
H5C0.5544210.7570470.6629610.059*
C60.52614 (16)0.60790 (18)0.54800 (19)0.0384 (7)
H6A0.4848820.6316620.5413560.058*
H6B0.5379150.5715690.5941180.058*
H6C0.5230340.5799280.4978820.058*
C70.47767 (14)0.88716 (17)0.53522 (18)0.0330 (6)
H7A0.5186950.8603680.5585840.050*
H7B0.4728960.9242760.5751900.050*
H7C0.4761060.9148980.4855630.050*
C80.33596 (15)0.87377 (18)0.4736 (2)0.0367 (7)
H8A0.3333890.9027700.4242180.055*
H8B0.3361520.9101690.5167490.055*
H8C0.2990620.8391540.4611740.055*
C90.41473 (17)0.76732 (18)0.60776 (19)0.0383 (7)
H9A0.3719580.7497610.6028800.057*
H9B0.4302280.8048800.6525820.057*
H9C0.4436970.7227280.6191330.057*
C100.29033 (17)0.7455 (2)0.2992 (2)0.0489 (9)
H10A0.2739830.7905700.3198010.073*
H10B0.2549330.7106510.2704870.073*
H10C0.3110720.7628780.2613310.073*
C110.30752 (17)0.6617 (2)0.4580 (2)0.0455 (8)
H11A0.3375890.6346160.5052530.068*
H11B0.2722660.6268140.4289170.068*
H11C0.2907340.7075470.4767730.068*
C120.36677 (19)0.5996 (2)0.3437 (3)0.0561 (10)
H12A0.3785340.6107880.2958460.084*
H12B0.3287080.5666340.3272940.084*
H12C0.4020400.5726920.3851530.084*
C130.58808 (17)1.04898 (18)0.2724 (2)0.0416 (7)
H13A0.5762981.0535100.3217410.050*
H13B0.5661011.0903990.2333160.050*
C140.65940 (19)1.0549 (2)0.2947 (2)0.0547 (9)
H14A0.6820011.0367900.3513980.066*
H14B0.6723801.1089480.2894470.066*
C150.6732 (2)1.0019 (3)0.2329 (3)0.0830 (16)
H15A0.6867511.0325680.1940630.100*
H15B0.7072220.9642490.2611840.100*
C160.61219 (17)0.9610 (2)0.1894 (2)0.0478 (8)
H16A0.5923020.9816040.1332040.057*
H16B0.6198270.9047060.1859900.057*
C170.6185 (2)0.5338 (2)0.3979 (2)0.0565 (10)
H17A0.6105930.5020480.4405960.068*
H17B0.6198860.5892130.4132460.068*
C180.68020 (19)0.5094 (2)0.3867 (2)0.0559 (10)
H18A0.7124520.4927110.4392240.067*
H18B0.6979850.5524450.3637670.067*
C190.65973 (17)0.4419 (2)0.3265 (2)0.0440 (8)
H19A0.6778280.4470500.2826460.053*
H19B0.6734450.3916820.3548590.053*
C200.58746 (18)0.44804 (19)0.2921 (2)0.0466 (8)
H20A0.5718380.4465230.2315670.056*
H20B0.5680850.4043190.3118140.056*
H10.4847 (15)0.8127 (18)0.345 (2)0.031 (8)*
H20.4846 (16)0.675 (2)0.352 (2)0.040 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0297 (4)0.0277 (4)0.0201 (4)0.0006 (3)0.0082 (3)0.0000 (3)
Na10.0435 (9)0.0274 (8)0.0309 (8)0.0000.0187 (7)0.000
Na20.0473 (9)0.0281 (8)0.0283 (8)0.0000.0151 (7)0.000
Si10.0308 (4)0.0300 (4)0.0274 (4)0.0012 (3)0.0095 (3)0.0007 (3)
Si20.0366 (4)0.0265 (4)0.0225 (4)0.0019 (3)0.0061 (3)0.0009 (3)
Si30.0357 (4)0.0267 (4)0.0257 (4)0.0001 (3)0.0136 (3)0.0004 (3)
Si40.0328 (4)0.0362 (4)0.0271 (4)0.0059 (3)0.0104 (3)0.0030 (3)
O10.0474 (12)0.0336 (11)0.0384 (11)0.0096 (9)0.0230 (10)0.0095 (9)
O20.0650 (15)0.0355 (12)0.0296 (11)0.0125 (11)0.0068 (11)0.0034 (9)
N10.0304 (12)0.0254 (11)0.0233 (11)0.0006 (9)0.0066 (9)0.0015 (9)
N20.0311 (12)0.0282 (12)0.0251 (11)0.0005 (9)0.0112 (9)0.0017 (9)
C10.0455 (17)0.0330 (15)0.0416 (17)0.0058 (13)0.0211 (14)0.0023 (13)
C20.0349 (16)0.051 (2)0.0397 (17)0.0068 (14)0.0070 (14)0.0024 (15)
C30.0376 (16)0.0440 (17)0.0347 (16)0.0012 (13)0.0153 (13)0.0000 (13)
C40.0468 (18)0.0362 (16)0.0388 (17)0.0084 (14)0.0041 (14)0.0016 (14)
C50.0502 (18)0.0381 (16)0.0264 (14)0.0025 (14)0.0098 (13)0.0010 (12)
C60.0495 (18)0.0304 (15)0.0308 (15)0.0004 (13)0.0085 (13)0.0058 (12)
C70.0410 (16)0.0289 (14)0.0304 (14)0.0016 (12)0.0140 (12)0.0028 (11)
C80.0416 (16)0.0325 (15)0.0406 (17)0.0025 (12)0.0202 (14)0.0013 (13)
C90.0524 (19)0.0352 (16)0.0301 (15)0.0031 (14)0.0181 (14)0.0023 (12)
C100.0423 (18)0.067 (2)0.0322 (16)0.0094 (16)0.0064 (14)0.0048 (16)
C110.0462 (18)0.0499 (19)0.0401 (17)0.0147 (15)0.0149 (15)0.0023 (15)
C120.052 (2)0.053 (2)0.065 (2)0.0180 (17)0.0216 (19)0.0270 (19)
C130.058 (2)0.0323 (16)0.0363 (16)0.0070 (14)0.0192 (15)0.0071 (13)
C140.060 (2)0.057 (2)0.045 (2)0.0206 (18)0.0154 (17)0.0109 (17)
C150.059 (3)0.118 (4)0.082 (3)0.036 (3)0.037 (2)0.047 (3)
C160.054 (2)0.050 (2)0.050 (2)0.0118 (16)0.0316 (17)0.0158 (16)
C170.083 (3)0.0425 (19)0.0300 (16)0.0085 (19)0.0029 (17)0.0066 (14)
C180.064 (2)0.045 (2)0.044 (2)0.0110 (18)0.0012 (17)0.0013 (16)
C190.055 (2)0.0398 (17)0.0394 (17)0.0007 (15)0.0191 (15)0.0029 (14)
C200.058 (2)0.0321 (16)0.0445 (18)0.0053 (15)0.0115 (16)0.0073 (14)
Geometric parameters (Å, º) top
Al1—N21.872 (2)C5—H5C0.9800
Al1—N11.876 (2)C6—H6A0.9800
Al1—H11.55 (3)C6—H6B0.9800
Al1—H21.53 (3)C6—H6C0.9800
Na1—O1i2.279 (2)C7—H7A0.9800
Na1—O12.279 (2)C7—H7B0.9800
Na1—H12.21 (3)C7—H7C0.9800
Na2—O22.264 (2)C8—H8A0.9800
Na2—O2i2.264 (2)C8—H8B0.9800
Na2—H22.21 (3)C8—H8C0.9800
Si1—N11.719 (2)C9—H9A0.9800
Si1—C21.875 (3)C9—H9B0.9800
Si1—C31.880 (3)C9—H9C0.9800
Si1—C11.880 (3)C10—H10A0.9800
Si2—N11.725 (2)C10—H10B0.9800
Si2—C61.875 (3)C10—H10C0.9800
Si2—C51.880 (3)C11—H11A0.9800
Si2—C41.887 (3)C11—H11B0.9800
Si3—N21.729 (2)C11—H11C0.9800
Si3—C71.870 (3)C12—H12A0.9800
Si3—C91.883 (3)C12—H12B0.9800
Si3—C81.884 (3)C12—H12C0.9800
Si4—N21.725 (2)C13—C141.509 (5)
Si4—C121.870 (4)C13—H13A0.9900
Si4—C101.875 (4)C13—H13B0.9900
Si4—C111.879 (3)C14—C151.526 (6)
O1—C131.428 (4)C14—H14A0.9900
O1—C161.436 (4)C14—H14B0.9900
O2—C171.425 (4)C15—C161.486 (5)
O2—C201.430 (4)C15—H15A0.9900
C1—H1A0.9800C15—H15B0.9900
C1—H1B0.9800C16—H16A0.9900
C1—H1C0.9800C16—H16B0.9900
C2—H2A0.9800C17—C181.522 (6)
C2—H2B0.9800C17—H17A0.9900
C2—H2C0.9800C17—H17B0.9900
C3—H3A0.9800C18—C191.526 (5)
C3—H3B0.9800C18—H18A0.9900
C3—H3C0.9800C18—H18B0.9900
C4—H4A0.9800C19—C201.519 (5)
C4—H4B0.9800C19—H19A0.9900
C4—H4C0.9800C19—H19B0.9900
C5—H5A0.9800C20—H20A0.9900
C5—H5B0.9800C20—H20B0.9900
N2—Al1—N1118.28 (11)Si3—C7—H7A109.5
N2—Al1—H1110.6 (12)Si3—C7—H7B109.5
N1—Al1—H1106.6 (12)H7A—C7—H7B109.5
N2—Al1—H2110.3 (13)Si3—C7—H7C109.5
N1—Al1—H2108.1 (13)H7A—C7—H7C109.5
H1—Al1—H2101.6 (18)H7B—C7—H7C109.5
O1i—Na1—O196.84 (12)Si3—C8—H8A109.5
O1i—Na1—H189.9 (8)Si3—C8—H8B109.5
O1—Na1—H1139.9 (8)H8A—C8—H8B109.5
O2—Na2—O2i91.72 (13)Si3—C8—H8C109.5
O2—Na2—H2100.9 (9)H8A—C8—H8C109.5
O2i—Na2—H2119.6 (9)H8B—C8—H8C109.5
N1—Si1—C2113.95 (14)Si3—C9—H9A109.5
N1—Si1—C3110.44 (13)Si3—C9—H9B109.5
C2—Si1—C3106.93 (15)H9A—C9—H9B109.5
N1—Si1—C1115.13 (13)Si3—C9—H9C109.5
C2—Si1—C1102.73 (16)H9A—C9—H9C109.5
C3—Si1—C1107.01 (15)H9B—C9—H9C109.5
N1—Si2—C6109.80 (13)Si4—C10—H10A109.5
N1—Si2—C5112.13 (13)Si4—C10—H10B109.5
C6—Si2—C5108.71 (15)H10A—C10—H10B109.5
N1—Si2—C4115.34 (14)Si4—C10—H10C109.5
C6—Si2—C4105.94 (15)H10A—C10—H10C109.5
C5—Si2—C4104.53 (15)H10B—C10—H10C109.5
N2—Si3—C7111.99 (12)Si4—C11—H11A109.5
N2—Si3—C9112.70 (13)Si4—C11—H11B109.5
C7—Si3—C9107.18 (14)H11A—C11—H11B109.5
N2—Si3—C8113.25 (13)Si4—C11—H11C109.5
C7—Si3—C8105.15 (14)H11A—C11—H11C109.5
C9—Si3—C8106.02 (15)H11B—C11—H11C109.5
N2—Si4—C12114.68 (14)Si4—C12—H12A109.5
N2—Si4—C10112.34 (14)Si4—C12—H12B109.5
C12—Si4—C10105.76 (19)H12A—C12—H12B109.5
N2—Si4—C11111.61 (14)Si4—C12—H12C109.5
C12—Si4—C11104.32 (18)H12A—C12—H12C109.5
C10—Si4—C11107.54 (17)H12B—C12—H12C109.5
C13—O1—C16106.2 (2)O1—C13—C14105.2 (3)
C13—O1—Na1129.20 (19)O1—C13—H13A110.7
C16—O1—Na1124.55 (19)C14—C13—H13A110.7
C17—O2—C20105.6 (3)O1—C13—H13B110.7
C17—O2—Na2123.2 (2)C14—C13—H13B110.7
C20—O2—Na2129.9 (2)H13A—C13—H13B108.8
Si1—N1—Si2124.23 (14)C13—C14—C15103.7 (3)
Si1—N1—Al1114.88 (13)C13—C14—H14A111.0
Si2—N1—Al1120.35 (13)C15—C14—H14A111.0
Si4—N2—Si3118.29 (14)C13—C14—H14B111.0
Si4—N2—Al1120.69 (13)C15—C14—H14B111.0
Si3—N2—Al1120.60 (13)H14A—C14—H14B109.0
Si1—C1—H1A109.5C16—C15—C14105.5 (3)
Si1—C1—H1B109.5C16—C15—H15A110.6
H1A—C1—H1B109.5C14—C15—H15A110.7
Si1—C1—H1C109.5C16—C15—H15B110.6
H1A—C1—H1C109.5C14—C15—H15B110.6
H1B—C1—H1C109.5H15A—C15—H15B108.8
Si1—C2—H2A109.5O1—C16—C15106.8 (3)
Si1—C2—H2B109.5O1—C16—H16A110.4
H2A—C2—H2B109.5C15—C16—H16A110.4
Si1—C2—H2C109.5O1—C16—H16B110.4
H2A—C2—H2C109.5C15—C16—H16B110.4
H2B—C2—H2C109.5H16A—C16—H16B108.6
Si1—C3—H3A109.5O2—C17—C18103.8 (3)
Si1—C3—H3B109.5O2—C17—H17A111.0
H3A—C3—H3B109.5C18—C17—H17A111.0
Si1—C3—H3C109.5O2—C17—H17B111.0
H3A—C3—H3C109.5C18—C17—H17B111.0
H3B—C3—H3C109.5H17A—C17—H17B109.0
Si2—C4—H4A109.5C17—C18—C19103.4 (3)
Si2—C4—H4B109.5C17—C18—H18A111.1
H4A—C4—H4B109.5C19—C18—H18A111.1
Si2—C4—H4C109.5C17—C18—H18B111.1
H4A—C4—H4C109.5C19—C18—H18B111.1
H4B—C4—H4C109.5H18A—C18—H18B109.0
Si2—C5—H5A109.5C20—C19—C18103.8 (3)
Si2—C5—H5B109.5C20—C19—H19A111.0
H5A—C5—H5B109.5C18—C19—H19A111.0
Si2—C5—H5C109.5C20—C19—H19B111.0
H5A—C5—H5C109.5C18—C19—H19B111.0
H5B—C5—H5C109.5H19A—C19—H19B109.0
Si2—C6—H6A109.5O2—C20—C19107.2 (3)
Si2—C6—H6B109.5O2—C20—H20A110.3
H6A—C6—H6B109.5C19—C20—H20A110.3
Si2—C6—H6C109.5O2—C20—H20B110.3
H6A—C6—H6C109.5C19—C20—H20B110.3
H6B—C6—H6C109.5H20A—C20—H20B108.5
C2—Si1—N1—Si28.5 (2)C9—Si3—N2—Si474.85 (19)
C3—Si1—N1—Si2111.87 (18)C8—Si3—N2—Si445.49 (19)
C1—Si1—N1—Si2126.83 (17)C7—Si3—N2—Al18.37 (19)
C2—Si1—N1—Al1179.99 (15)C9—Si3—N2—Al1112.58 (17)
C3—Si1—N1—Al159.62 (17)C8—Si3—N2—Al1127.07 (16)
C1—Si1—N1—Al161.68 (18)N1—Al1—N2—Si4141.53 (14)
C6—Si2—N1—Si1159.84 (16)N1—Al1—N2—Si346.08 (18)
C5—Si2—N1—Si179.2 (2)C16—O1—C13—C1436.7 (3)
C4—Si2—N1—Si140.3 (2)Na1—O1—C13—C14139.8 (2)
C6—Si2—N1—Al111.22 (19)O1—C13—C14—C1527.3 (4)
C5—Si2—N1—Al1109.74 (17)C13—C14—C15—C168.4 (5)
C4—Si2—N1—Al1130.78 (16)C13—O1—C16—C1531.3 (4)
N2—Al1—N1—Si1136.46 (13)Na1—O1—C16—C15145.4 (3)
N2—Al1—N1—Si251.68 (18)C14—C15—C16—O113.2 (5)
C12—Si4—N2—Si3157.14 (19)C20—O2—C17—C1841.2 (4)
C10—Si4—N2—Si382.1 (2)Na2—O2—C17—C18126.9 (3)
C11—Si4—N2—Si338.8 (2)O2—C17—C18—C1934.2 (4)
C12—Si4—N2—Al130.3 (2)C17—C18—C19—C2014.7 (4)
C10—Si4—N2—Al190.49 (19)C17—O2—C20—C1931.9 (4)
C11—Si4—N2—Al1148.64 (17)Na2—O2—C20—C19135.1 (3)
C7—Si3—N2—Si4164.19 (14)C18—C19—C20—O29.4 (4)
Symmetry code: (i) x+1, y, z+1/2.
Bis[bis(trimethylsilyl)amido]-3κN,4κN-dihydrido-3κH,4κH-tetra-µ-hydrido-bis(N,N,N',N'',N''-pentamethyldiethylenetriamine)-1κ3N,N',N'';2κ3N,N',N''-dialuminiumdisodium (3) top
Crystal data top
[Al2Na2(C6H18NSi2)2H6(C9H23N3)2]Z = 1
Mr = 773.38F(000) = 428
Triclinic, P1Dx = 1.000 Mg m3
a = 9.2634 (5) ÅCu Kα radiation, λ = 1.54184 Å
b = 11.7188 (7) ÅCell parameters from 6113 reflections
c = 12.6742 (7) Åθ = 3.6–72.8°
α = 84.811 (5)°µ = 1.77 mm1
β = 76.840 (5)°T = 123 K
γ = 73.485 (5)°Fragment, colourless
V = 1283.97 (13) Å30.44 × 0.20 × 0.10 mm
Data collection top
Oxford Diffraction Gemini S
diffractometer
4511 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.028
ω scansθmax = 73.1°, θmin = 5.5°
Absorption correction: multi-scan
(CrysalisPro; Rigaku OD, 2021)
h = 1111
Tmin = 0.256, Tmax = 1.000k = 1114
14891 measured reflectionsl = 1215
5082 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0708P)2 + 0.2717P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5082 reflectionsΔρmax = 0.46 e Å3
231 parametersΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.15640 (5)0.36454 (4)0.86299 (3)0.02993 (13)
Na10.09543 (6)0.64121 (5)0.89017 (4)0.02873 (14)
Si10.42221 (5)0.17657 (4)0.74287 (3)0.03074 (12)
Si20.14772 (5)0.27561 (3)0.63862 (3)0.02898 (12)
N10.24175 (14)0.27040 (11)0.74157 (9)0.0276 (3)
N20.26670 (16)0.73937 (13)0.94714 (12)0.0381 (3)
N30.27235 (15)0.68367 (12)0.71937 (11)0.0343 (3)
N40.06952 (15)0.78444 (12)0.78285 (10)0.0328 (3)
C10.5770 (2)0.25579 (18)0.70459 (16)0.0483 (4)
H1A0.5798640.2888360.6305310.072*
H1B0.6768420.1995290.7084840.072*
H1C0.5553280.3204330.7547240.072*
C20.4294 (2)0.10732 (15)0.88131 (12)0.0378 (3)
H2A0.4116730.1696250.9330880.057*
H2B0.5307370.0509920.8800310.057*
H2C0.3494170.0650840.9032600.057*
C30.4802 (2)0.04831 (17)0.64892 (15)0.0527 (5)
H3A0.4108220.0027980.6726640.079*
H3B0.5861640.0020340.6500970.079*
H3C0.4738130.0788710.5750730.079*
C40.0921 (3)0.13492 (17)0.63057 (16)0.0502 (5)
H4A0.1840580.0718710.6008170.075*
H4B0.0179550.1490160.5834160.075*
H4C0.0451870.1105250.7032850.075*
C50.0369 (2)0.39697 (18)0.65368 (16)0.0487 (4)
H5A0.1046510.3862870.7232840.073*
H5B0.0876940.3938270.5945170.073*
H5C0.0150610.4743560.6511170.073*
C60.2679 (2)0.30358 (17)0.50353 (12)0.0426 (4)
H6A0.2960010.3778810.5049800.064*
H6B0.2088770.3100350.4471180.064*
H6C0.3615780.2374300.4878990.064*
C70.3711 (3)0.63945 (18)0.99332 (18)0.0560 (5)
H7A0.3138250.6092071.0594520.084*
H7B0.4537330.6662661.0108270.084*
H7C0.4157520.5759180.9406280.084*
C80.1932 (2)0.83010 (18)1.02912 (16)0.0502 (5)
H8A0.1209140.8965530.9995020.075*
H8B0.2720450.8590851.0496130.075*
H8C0.1372520.7954441.0931500.075*
C90.3473 (2)0.79147 (16)0.85071 (16)0.0439 (4)
H9A0.4385410.8080040.8676030.053*
H9B0.2783160.8684150.8320650.053*
C100.39983 (19)0.71209 (17)0.75246 (16)0.0450 (4)
H10A0.4546670.7525300.6909480.054*
H10B0.4736520.6369790.7695570.054*
C110.3315 (2)0.57993 (16)0.64911 (14)0.0450 (4)
H11A0.3818790.5104200.6894670.067*
H11B0.4060520.5967020.5855390.067*
H11C0.2457880.5635780.6255430.067*
C120.1830 (2)0.78566 (15)0.66357 (13)0.0402 (4)
H12A0.2352890.7876190.5863170.048*
H12B0.1800420.8602560.6959950.048*
C130.0192 (2)0.77997 (16)0.67094 (13)0.0412 (4)
H13A0.0334920.8474760.6282510.049*
H13B0.0222120.7053360.6385580.049*
C140.1103 (2)0.90356 (15)0.82598 (14)0.0418 (4)
H14A0.1716000.9040380.9000640.063*
H14B0.1705710.9607600.7802850.063*
H14C0.0161900.9257790.8265040.063*
C150.20954 (19)0.74745 (17)0.78988 (15)0.0432 (4)
H15A0.1817850.6658770.7646220.065*
H15B0.2739380.8010540.7444170.065*
H15C0.2667470.7506160.8652910.065*
H10.027 (3)0.484 (2)0.8479 (18)0.057 (6)*
H20.281 (3)0.411 (2)0.899 (2)0.067 (7)*
H30.080 (3)0.296 (2)0.9634 (18)0.056 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0318 (2)0.0301 (2)0.0260 (2)0.00858 (17)0.00097 (17)0.00846 (16)
Na10.0294 (3)0.0304 (3)0.0252 (3)0.0080 (2)0.0028 (2)0.0030 (2)
Si10.0321 (2)0.0321 (2)0.0228 (2)0.00108 (16)0.00370 (15)0.00400 (15)
Si20.0335 (2)0.0311 (2)0.0230 (2)0.00925 (16)0.00644 (15)0.00147 (15)
N10.0313 (6)0.0284 (6)0.0211 (5)0.0040 (5)0.0052 (4)0.0049 (4)
N20.0344 (7)0.0400 (7)0.0415 (7)0.0082 (6)0.0098 (6)0.0105 (6)
N30.0327 (7)0.0318 (6)0.0328 (6)0.0066 (5)0.0036 (5)0.0059 (5)
N40.0312 (6)0.0363 (7)0.0276 (6)0.0036 (5)0.0056 (5)0.0046 (5)
C10.0310 (8)0.0525 (10)0.0522 (10)0.0063 (7)0.0006 (7)0.0053 (8)
C20.0414 (9)0.0400 (8)0.0291 (7)0.0039 (7)0.0116 (6)0.0013 (6)
C30.0617 (12)0.0434 (10)0.0405 (9)0.0130 (8)0.0141 (8)0.0172 (8)
C40.0692 (13)0.0476 (10)0.0451 (10)0.0302 (9)0.0165 (9)0.0012 (8)
C50.0395 (9)0.0555 (11)0.0491 (10)0.0008 (8)0.0188 (8)0.0063 (8)
C60.0528 (10)0.0518 (10)0.0231 (7)0.0163 (8)0.0065 (7)0.0021 (7)
C70.0612 (12)0.0476 (10)0.0642 (13)0.0052 (9)0.0323 (10)0.0097 (9)
C80.0482 (10)0.0535 (11)0.0515 (10)0.0103 (8)0.0133 (8)0.0203 (9)
C90.0315 (8)0.0439 (9)0.0580 (11)0.0140 (7)0.0046 (7)0.0108 (8)
C100.0292 (8)0.0486 (10)0.0523 (10)0.0114 (7)0.0057 (7)0.0101 (8)
C110.0474 (10)0.0380 (9)0.0401 (9)0.0077 (7)0.0085 (7)0.0112 (7)
C120.0468 (9)0.0357 (8)0.0299 (7)0.0092 (7)0.0051 (7)0.0008 (6)
C130.0470 (9)0.0447 (9)0.0261 (7)0.0032 (7)0.0071 (7)0.0027 (6)
C140.0399 (9)0.0393 (9)0.0397 (9)0.0020 (7)0.0042 (7)0.0066 (7)
C150.0334 (8)0.0513 (10)0.0445 (9)0.0061 (7)0.0117 (7)0.0082 (8)
Geometric parameters (Å, º) top
Al1—N11.8621 (12)C3—H3C0.9800
Al1—Na1i3.4586 (7)C4—H4A0.9800
Al1—H11.59 (2)C4—H4B0.9800
Al1—H21.57 (3)C4—H4C0.9800
Al1—H31.58 (2)C5—H5A0.9800
Na1—N22.4639 (15)C5—H5B0.9800
Na1—N42.4651 (14)C5—H5C0.9800
Na1—N32.5046 (14)C6—H6A0.9800
Na1—H12.25 (2)C6—H6B0.9800
H3—Na1i2.20 (2)C6—H6C0.9800
Si1—N11.7229 (13)C7—H7A0.9800
Si1—C21.8726 (16)C7—H7B0.9800
Si1—C11.8742 (19)C7—H7C0.9800
Si1—C31.8812 (17)C8—H8A0.9800
Si2—N11.7140 (12)C8—H8B0.9800
Si2—C51.8713 (18)C8—H8C0.9800
Si2—C61.8751 (17)C9—C101.526 (2)
Si2—C41.8793 (18)C9—H9A0.9900
N2—C91.460 (2)C9—H9B0.9900
N2—C71.463 (2)C10—H10A0.9900
N2—C81.463 (2)C10—H10B0.9900
N3—C101.468 (2)C11—H11A0.9800
N3—C121.471 (2)C11—H11B0.9800
N3—C111.472 (2)C11—H11C0.9800
N4—C141.461 (2)C12—C131.519 (3)
N4—C151.462 (2)C12—H12A0.9900
N4—C131.4656 (19)C12—H12B0.9900
C1—H1A0.9800C13—H13A0.9900
C1—H1B0.9800C13—H13B0.9900
C1—H1C0.9800C14—H14A0.9800
C2—H2A0.9800C14—H14B0.9800
C2—H2B0.9800C14—H14C0.9800
C2—H2C0.9800C15—H15A0.9800
C3—H3A0.9800C15—H15B0.9800
C3—H3B0.9800C15—H15C0.9800
N1—Al1—Na1i138.06 (4)Si2—C4—H4B109.5
N1—Al1—H1115.9 (8)H4A—C4—H4B109.5
Na1i—Al1—H181.2 (8)Si2—C4—H4C109.5
N1—Al1—H2111.6 (9)H4A—C4—H4C109.5
Na1i—Al1—H2100.0 (9)H4B—C4—H4C109.5
H1—Al1—H2102.9 (12)Si2—C5—H5A109.5
N1—Al1—H3112.5 (8)Si2—C5—H5B109.5
Na1i—Al1—H328.2 (8)H5A—C5—H5B109.5
H1—Al1—H3105.5 (11)Si2—C5—H5C109.5
H2—Al1—H3107.7 (12)H5A—C5—H5C109.5
N2—Na1—N4109.15 (5)H5B—C5—H5C109.5
N2—Na1—N374.35 (5)Si2—C6—H6A109.5
N4—Na1—N374.05 (5)Si2—C6—H6B109.5
N2—Na1—Al1i98.40 (4)H6A—C6—H6B109.5
N4—Na1—Al1i101.98 (4)Si2—C6—H6C109.5
N3—Na1—Al1i169.57 (4)H6A—C6—H6C109.5
N2—Na1—H1154.8 (6)H6B—C6—H6C109.5
N4—Na1—H193.8 (6)N2—C7—H7A109.5
N3—Na1—H1103.3 (6)N2—C7—H7B109.5
Al1i—Na1—H186.5 (6)H7A—C7—H7B109.5
N1—Si1—C2110.28 (7)N2—C7—H7C109.5
N1—Si1—C1112.43 (7)H7A—C7—H7C109.5
C2—Si1—C1107.83 (9)H7B—C7—H7C109.5
N1—Si1—C3113.92 (8)N2—C8—H8A109.5
C2—Si1—C3105.48 (8)N2—C8—H8B109.5
C1—Si1—C3106.49 (10)H8A—C8—H8B109.5
N1—Si2—C5112.92 (7)N2—C8—H8C109.5
N1—Si2—C6111.60 (7)H8A—C8—H8C109.5
C5—Si2—C6106.10 (9)H8B—C8—H8C109.5
N1—Si2—C4112.80 (8)N2—C9—C10113.56 (14)
C5—Si2—C4105.06 (10)N2—C9—H9A108.9
C6—Si2—C4107.88 (9)C10—C9—H9A108.9
Si2—N1—Si1123.12 (7)N2—C9—H9B108.9
Si2—N1—Al1122.84 (7)C10—C9—H9B108.9
Si1—N1—Al1114.04 (6)H9A—C9—H9B107.7
C9—N2—C7111.89 (15)N3—C10—C9113.27 (13)
C9—N2—C8109.57 (15)N3—C10—H10A108.9
C7—N2—C8108.88 (15)C9—C10—H10A108.9
C9—N2—Na1108.11 (10)N3—C10—H10B108.9
C7—N2—Na1102.07 (11)C9—C10—H10B108.9
C8—N2—Na1116.18 (11)H10A—C10—H10B107.7
C10—N3—C12111.69 (14)N3—C11—H11A109.5
C10—N3—C11110.25 (13)N3—C11—H11B109.5
C12—N3—C11110.07 (14)H11A—C11—H11B109.5
C10—N3—Na1106.49 (10)N3—C11—H11C109.5
C12—N3—Na1107.15 (9)H11A—C11—H11C109.5
C11—N3—Na1111.10 (10)H11B—C11—H11C109.5
C14—N4—C15109.51 (13)N3—C12—C13112.39 (14)
C14—N4—C13111.49 (14)N3—C12—H12A109.1
C15—N4—C13110.79 (13)C13—C12—H12A109.1
C14—N4—Na1109.95 (10)N3—C12—H12B109.1
C15—N4—Na1108.44 (10)C13—C12—H12B109.1
C13—N4—Na1106.57 (9)H12A—C12—H12B107.9
Si1—C1—H1A109.5N4—C13—C12112.54 (13)
Si1—C1—H1B109.5N4—C13—H13A109.1
H1A—C1—H1B109.5C12—C13—H13A109.1
Si1—C1—H1C109.5N4—C13—H13B109.1
H1A—C1—H1C109.5C12—C13—H13B109.1
H1B—C1—H1C109.5H13A—C13—H13B107.8
Si1—C2—H2A109.5N4—C14—H14A109.5
Si1—C2—H2B109.5N4—C14—H14B109.5
H2A—C2—H2B109.5H14A—C14—H14B109.5
Si1—C2—H2C109.5N4—C14—H14C109.5
H2A—C2—H2C109.5H14A—C14—H14C109.5
H2B—C2—H2C109.5H14B—C14—H14C109.5
Si1—C3—H3A109.5N4—C15—H15A109.5
Si1—C3—H3B109.5N4—C15—H15B109.5
H3A—C3—H3B109.5H15A—C15—H15B109.5
Si1—C3—H3C109.5N4—C15—H15C109.5
H3A—C3—H3C109.5H15A—C15—H15C109.5
H3B—C3—H3C109.5H15B—C15—H15C109.5
Si2—C4—H4A109.5
C5—Si2—N1—Si1174.14 (9)C7—N2—C9—C1070.97 (19)
C6—Si2—N1—Si154.71 (11)C8—N2—C9—C10168.16 (15)
C4—Si2—N1—Si166.93 (12)Na1—N2—C9—C1040.65 (17)
C5—Si2—N1—Al16.69 (12)C12—N3—C10—C975.00 (19)
C6—Si2—N1—Al1126.12 (9)C11—N3—C10—C9162.28 (15)
C4—Si2—N1—Al1112.24 (10)Na1—N3—C10—C941.67 (17)
C2—Si1—N1—Si2137.16 (9)N2—C9—C10—N359.5 (2)
C1—Si1—N1—Si2102.47 (10)C10—N3—C12—C13155.70 (13)
C3—Si1—N1—Si218.79 (12)C11—N3—C12—C1381.48 (16)
C2—Si1—N1—Al142.07 (10)Na1—N3—C12—C1339.45 (15)
C1—Si1—N1—Al178.30 (10)C14—N4—C13—C1272.82 (17)
C3—Si1—N1—Al1160.44 (9)C15—N4—C13—C12164.94 (14)
Na1i—Al1—N1—Si282.91 (9)Na1—N4—C13—C1247.17 (16)
Na1i—Al1—N1—Si196.33 (8)N3—C12—C13—N462.45 (18)
Symmetry code: (i) x, y+1, z+2.
 

Funding information

MTW thanks the University of Strathclyde for funding his PhD via a Research Excellence Award.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAldridge, S. & Downs, A. J. (2001). Chem. Rev. 101, 3305–3366.  CrossRef PubMed CAS Google Scholar
First citationAsako, S., Nakajima, H. & Takai, K. (2019). Nat. Catal. 2, 297–303.  CrossRef CAS Google Scholar
First citationBogdanović, B., Brand, R. A., Marjanović, A., Schwickardi, M. & Tölle, J. (2000). J. Alloys Compd. 302, 36–58.  Google Scholar
First citationBogdanović, B., Eberle, U., Felderhoff, M. & Schüth, F. (2007). Scr. Mater. 56, 813–816.  Google Scholar
First citationBöttcher, P., Roesky, H. W., Walawalkar, M. G. & Schmidt, H.-G. (2001). Organometallics, 20, 790–793.  Google Scholar
First citationCortes-Llamas, S. A. & Muñoz-Hernández, M. (2007). Organometallics, 26, 6844–6851.  CAS Google Scholar
First citationDando, N. R., Perrotta, A. J., Strohmann, C., Stewart, R. M. & Seyferth, D. (1993). Chem. Mater. 5, 1624–1630.  CrossRef CAS Google Scholar
First citationEisler, D. J. & Chivers, T. (2006). Can. J. Chem. 84, 443–452.  Web of Science CSD CrossRef CAS Google Scholar
First citationFan, X., Xiao, X., Chen, L., Yu, K., Wu, Z., Li, S. & Wang, Q. (2009). Chem. Commun. pp. 6857–6859.  CrossRef Google Scholar
First citationGavrilenko, V. V., Zakharkin, L. I. & Vinnikova, M. I. (1987). Russ. Chem. Bull. 3, 636–641.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHatop, H., Roesky, H. W., Labahn, T., Fischer, A., Schmidt, H.-G. & Noltemeyer, M. (2000). Organometallics, 19, 937–940.  CSD CrossRef CAS Google Scholar
First citationHeine, A. & Stalke, D. (1992). Angew. Chem. Int. Ed. Engl. 31, 854–855.  CSD CrossRef Web of Science Google Scholar
First citationHöllerhage, T., Schuhknecht, D., Mistry, A., Spaniol, T. P., Yang, Y., Maron, L. & Okuda, J. (2021). Chem. Eur. J. 27, 3002–3007.  PubMed Google Scholar
First citationHuang, S., Wang, X. & Richmond, M. G. (2009). J. Chem. Crystallogr. 39, 428–432.  CSD CrossRef CAS Google Scholar
First citationLiptrot, D. J., Hill, M. S. & Mahon, M. F. (2014). Chem. Eur. J. 20, 9871–9874.  CSD CrossRef CAS PubMed Google Scholar
First citationLiptrot, D. J., Hill, M. S., Mahon, M. F. & Wilson, A. S. S. (2015). Angew. Chem. 127, 13560–13563.  CrossRef Google Scholar
First citationLu, L., Han, X., Li, J., Hua, J. & Ouyang, M. (2013). J. Power Sources, 226, 272–288.  CrossRef CAS Google Scholar
First citationMa, Y., Woltornist, R. A., Algera, R. F. & Collum, D. B. (2021). J. Am. Chem. Soc. 143, 13370–13381.  CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMulvey, R. E. & Robertson, S. D. (2013). Angew. Chem. Int. Ed. 52, 11470–11487.  CrossRef CAS Google Scholar
First citationMuñoz, M. T., Cuenca, T. & Mosquera, M. E. G. (2014). Dalton Trans. 43, 14377–14385.  Web of Science PubMed Google Scholar
First citationNöth, H., Schlegel, A. & Lima, S. R. (2001). Z. Anorg. Allg. Chem. 627, 1793–1800.  Google Scholar
First citationOlbrich, F. & Trzaska, S. (2005). CSD Communication (refcode PAPNOK). CCDC, Cambridge, England.  Google Scholar
First citationPollard, V. A., Orr, S. A., McLellan, R., Kennedy, A. R., Hevia, E. & Mulvey, R. E. (2018). Chem. Commun. 54, 1233–1236.  CSD CrossRef CAS Google Scholar
First citationRigaku OD, (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRoy, M. M. D., Omaña, A. A., Wilson, A. S. S., Hill, M. S., Aldridge, S. & Rivard, E. (2021). Chem. Rev. 121, 12784–12965.  CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheppard, D. A., Jepsen, L. H., Jensen, T. R., Paskevicius, M. & Buckley, C. E. (2013). J. Mater. Chem. A, 1, 12775–12781.  CrossRef CAS Google Scholar
First citationSirsch, P., Clark, N. L. N., Onuţ, L., Burchell, R. P. L., Decken, A., McGrady, G. S., Daoud-Aladine, A. & Gutmann, M. J. (2010). Inorg. Chem. 49, 11395–11402.  CSD CrossRef CAS PubMed Google Scholar
First citationSpielmann, J. & Harder, S. (2007). Chem. Eur. J. 13, 8928–8938.  CSD CrossRef PubMed CAS Google Scholar
First citationStennett, C. R. & Power, P. P. (2021). Inorg. Chem. 60, 18503–18511.  CSD CrossRef CAS PubMed Google Scholar
First citationUhl, W. (2008). Coord. Chem. Rev. 252, 1540–1563.  CrossRef CAS Google Scholar
First citationVeith, M., Smail, H. & Huch, V. (2008). Z. Anorg. Allg. Chem. 634, 2867–2872.  CSD CrossRef CAS Google Scholar
First citationWalker, E. R. H. (1976). Chem. Soc. Rev. 5, 23–50.  CrossRef CAS Google Scholar
First citationWang, Y., Liu, B., Li, Q., Cartmell, S., Ferrara, S., Deng, Z. D. & Xiao, J. (2015). J. Power Sources, 286, 330–345.  CrossRef CAS Google Scholar
First citationWesterhausen, M. (1998). Coord. Chem. Rev. 176, 157–210.  Web of Science CrossRef CAS Google Scholar
First citationWoltornist, R. A. & Collum, D. B. (2021). J. Org. Chem. 86, 2406–2422.  CSD CrossRef CAS PubMed Google Scholar
First citationWu, J., Pan, X., Tang, N. & Lin, C.-C. (2010). Inorg. Chem. 49, 5362–5364.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationYoshio, M., Brodd, R. J. & Kozawa, A. (2009). Editors. Lithium Ion Batteries. New York: Springer.  Google Scholar
First citationZakharkin, L. I. & Gavrilenko, V. V. (1962). Russ. Chem. Bull. 10, 2105–2106.  CrossRef Google Scholar
First citationZhang, S. S. (2006). J. Power Sources, 162, 1379–1394.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds