research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of aryl­sulfonyl­ation products of 2-alkyl-5-substituted-1H-benzimidazoles

crossmark logo

aS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, 100170, Tashkent, Uzbekistan, bUrgench State University, Kh. Alimdjan str., 14, 220100, Urgench City, Uzbekistan, cKara-Kalpak State University, acad. Abdirov Str., 1, 742000, Nukus, Uzbekistan, and dTurin Polytechnic University in Tashkent, Kichik Khalka yuli str. 17, 100095, Tashkent, Uzbekistan
*Correspondence e-mail: raxul@mail.ru

Edited by M. Weil, Vienna University of Technology, Austria (Received 5 October 2022; accepted 18 November 2022; online 30 November 2022)

Mixed crystals of 1-(4-chloro­phenyl­sulfon­yl)-2,5-dimethyl-1H-benzimidazole and 1-(4-chloro­phenyl­sulfon­yl)-2,6-dimethyl-1H-benzimidazole (ratio 0.707:0.293; two mol­ecules in the asymmetric unit), 0.707C15H13ClN2O2S·0.293C15H13ClN2O2S, (I), and of 2-n-butyl-1-(4-tert-butyl­phenyl­sulfon­yl)-5-chloro-1H-benzimidazole and 2-n-butyl-1-(4-tert-butyl­phenyl­sulfon­yl)-6-chloro-1H-benzimidazole [ratio 0.731 (2):0.269 (2); one mol­ecule in the asymmetric unit], 0.731C21H25ClN2O2S·0.269C21H25ClN2O2S, (II), were obtained from the aryl­sulfonyl­ation reaction of the corresponding 2-alkyl­benzimidazoles. In addition, two products were obtained from the reaction of 2-n-butyl-5-chloro-1H-benzimidazole with 4-methyl­benzene­sulfonyl chloride. These reaction products were separated by column chromatography and the crystal structure of one of the products, 2-n-butyl-5-chloro-1-(4-methyl­phenyl­sulfon­yl)-1H-benzimidazole (one mol­ecule in the asymmetric unit), C18H19ClN2O2S, (III), was determined. In the crystal structures of (I)–(III), there is a difference in the arrangement of the planar benzimidazole and aryl­sulfonyl fragments. The formation of weak C—H⋯O hydrogen-bonding inter­actions is characteristic of all three crystal structures.

1. Chemical context

Benzimidazole derivatives are an important class of heteroaromatic compounds because of their biological and pharmaceutical activities (Keri et al., 2015[Keri, R. S., Hiremathad, A., Budagumpi, S. & Nagaraja, B. M. (2015). Chem. Biol. Drug Des. 86, 19-65.]). The benzimidazole entity has seven positions for substitution of various moieties. The literature describes most biologically active compounds based on benzimidazole derivatives bearing functional groups in positions 1, 2 and/or 5 (or 6) (Bansal & Silakari, 2012[Bansal, Y. & Silakari, O. (2012). Bioorg. Med. Chem. 20, 6208-6236.]). A large number of benzimidazole derivatives have been found to exhibit anti­bacterial (Elnima et al., 1981[Elnima, E. I., Zubair, M. U. & Al-Badr, A. A. (1981). Antimicrob. Agents Chemother. 19, 29-32.]), anti­viral (Townsend et al., 1995[Townsend, L. B., Devivar, R. V., Turk, S. R., Nassiri, M. R. & Drach, J. C. (1995). J. Med. Chem. 38, 4098-4105.]), anti­fungal (Desai & Desai, 2006[Desai, K. G. & Desai, K. R. (2006). Bioorg. Med. Chem. 14, 8271-8279.]), anti­diabetic, anti­asthmatic (Ramanatham et al., 2008[Ramanatham, V., Sanjay, D. V., Bobba, V. S. K., Umesh, N. B., Shekhar, B. B. & Uday, C. M. (2008). Eur. J. Med. Chem. 43, 986-995.]), anti-HIV (Li et al., 2009[Li, G. R., Liu, J., Pan, Q., Song, Z. B., Luo, F. L., Wang, S. R., Zhang, X. L. & Zhou, X. (2009). Chem. Biodivers. 6, 2200-2208.]), anti­convulsant (Bhrigu et al., 2012[Bhrigu, B., Siddiqui, N., Pathak, D., Alam, M. S., Ali, R. & Azad, B. (2012). Acta Pol. Pharm. Drug Res. 69, 53-62.]), anti­hypertensive (Jain et al., 2013[Jain, A., Sharma, R. & Chaturvedi, S. C. (2013). Med. Chem. Res. 22, 4622-4632.]), and anti­depressant (Mathew et al., 2016[Mathew, B., Suresh, J. & Anbazhagan, S. (2016). J. Saudi Chem. Soc. 20, S132-S139.]) activities.

In addition, among derivatives of aryl­sulfonyl­benzimidazoles, substances with a variety of biological activities have been reported, such as inhibition of HBV (Li et al., 2007[Li, Y. F., Wang, G. F., Luo, Y., Huang, W. G., Tang, W., Feng, C. L., Shi, L. P., Ren, Y. D., Zuo, J. P. & Lu, W. (2007). Eur. J. Med. Chem. 42, 1358-1364.]), acting on the NPY Y5 receptor (Tamura et al., 2012[Tamura, Y., Omori, N., Kouyama, N., Nishiura, Y., Hayashi, K., Watanabe, K., Tanaka, Y., Chiba, T., Yukioka, H., Sato, H. & Okuno, T. (2012). Bioorg. Med. Chem. Lett. 22, 5498-5502.]), and as anti­microbial and anti­tubercular (Ranjith et al., 2013[Ranjith, P. K., Rajeesh, P., Haridas, K. R., Susanta, N. K., Guru Row, T. N., Rishikesan, R. & Suchetha Kumari, N. (2013). Bioorg. Med. Chem. Lett. 23, 5228-5234.]), anti-inflammatory and analgesic agents (Gaba et al., 2010[Gaba, M., Singh, D., Singh, S., Sharma, V. & Gaba, P. (2010). Eur. J. Med. Chem. 45, 2245-2249.]).

The synthesis of aryl­sulfonyl­benzimidazoles has therefore attracted the attention of organic chemists. The preparation of an individual substance of this class involves the aryl­sulfonyl­ation of benzimidazole (Abdireimov et al., 2010[Abdireimov, K. B., Mukhamedov, N. S., Aiymbetov, M. Z. & Shakhidoyatov, K. M. (2010). Chem. Heterocycl. Compd. 46, 941-946.]), either by an intra­molecular Csp2—H amidation using N-iodo­succinimide (Alam et al., 2018[Alam, M. T., Maiti, S. & Mal, P. (2018). Eur. J. Org. Chem. pp. 4178-4186.]), the rearrangement of 7-sulfonamido­benzoxazole with ZnCl2 or Zn(NO3)2 (Tanakit et al., 2012[Tanakit, A., Rouffet, M., Martin, D. P. & Cohen, S. M. (2012). Dalton Trans. 41, 6507-6515.]), or the intra­molecular amidation of N-tosyl-o-phenyl­enedi­amine derivatives (for obtaining 1,2-disubstituted benzimidazoles) (Maiti & Mal, 2015[Maiti, S. & Mal, P. (2015). Adv. Synth. Catal. 357, 1416-1424.]; Hu et al., 2017[Hu, Z., Zhao, T., Wang, M., Wu, J., Yu, W. & Chang, J. (2017). J. Org. Chem. 82, 3152-3158.]). The above reactions produce a variety of aryl­sulfonyl­benzimidazole derivatives but there are other conditions that produce two derivatives such as the amination of N′′-aryl-N′-tos­yl/N′-methyl­sulfonyl­amidines derivatives (Alla et al., 2013[Alla, S. K., Kumar, R. K., Sadhu, P. & Punniyamurthy, T. (2013). Org. Lett. 15, 1334-1337.]). The main reason for two-product formation is the content of the functional group in the phenyl fragment of the starting compound.

In the aryl­sulfonyl­ation reaction of 2,5-dimethyl-1H-benzimidazole and 2-n-butyl-5-chloro-1H-benzimidazole, the formation of two products was likewise observed, which can be explained by the tautomerism of benzimidazoles. During the aryl­sulfonyl­ation reaction of benzimidazole derivatives, the acidic proton of benzimidazole is in equilibrium between positions 1 and 3, and consequently, two isomers are formed (Ranjith et al., 2013[Ranjith, P. K., Rajeesh, P., Haridas, K. R., Susanta, N. K., Guru Row, T. N., Rishikesan, R. & Suchetha Kumari, N. (2013). Bioorg. Med. Chem. Lett. 23, 5228-5234.]).

[Scheme 1]

In the reaction of 2,5-dimethyl-1H-benzimidazole with 4-chloro­benzene­sulfonyl chloride in the presence of tri­ethyl­amine, two products were formed (Fig. 1[link]). After purification of the reaction mixture, the single crystals of the two corres­ponding components were subjected to structure analysis by X-ray diffraction, showing that mixed crystals of 1-(4-chloro­phenyl­sulfon­yl)-2,5-dimethyl-1H-benzimidazole and 1-(4-chloro­phenyl­sulfon­yl)-2,6-dimethyl-1H-benzimidazole (I) were obtained. Likewise, mixed crystals of 2-n-butyl-1-(4-tert-butyl­phenyl­sulfon­yl)-5-chloro-1H-benzimidazole and 2-n-butyl-1-(4-tert-butyl­phenyl­sulfon­yl)-6-chloro-1H-benzimid­a­zole (II) were obtained from the reaction of 2-n-butyl-5-chloro-1H-benzimidazole and 4-tert-butyl­benzene­sulfonil chloride. In addition, aryl­sulfonyl­ation of 2-n-butyl-5-chloro-1H-benzimidazole with 4-methyl­benzene­sulfonyl chloride also gave two products. To study the structural features, the latter mixture of products was separated using column chroma­tography. From the separated products, single crystals of 2-n-butyl-5-chloro-1-(4-methyl­phenyl­sulfon­yl)-1H-benzimidazole (III) were grown.

[Figure 1]
Figure 1
Reaction scheme for the synthesis of the 2-alkyl-5(6)-substituted 1-(phenyl­sulfon­yl)-1H-benzimidazoles.

2. Structural commentary

The asymmetric unit of crystal (I) consists of two mol­ecules: A and B (Fig. 2[link]). Mol­ecule A corresponds to 1-(4-chloro­phenyl­sulfon­yl)-2,5-dimethyl-1H-benzimidazole, and for B the allocated mol­ecules are 1-(4-chloro­phenyl­sulfon­yl)-2,6-di­meth­yl-1H-benzimidazole and 1-(4-chloro­phenyl­sulfon­yl)-2,5-dimethyl-1H-benzimidazole in the ratio 0.555 (10):0.445 (10) (overall A:B ratio in the crystal of 0.707:0.293). Hence, (I) can be considered as a mixed crystal of the two latter mol­ecules.

[Figure 2]
Figure 2
The asymmetric unit of (I) with atom labeling. Displacement ellipsoids represent 30% probability levels.

Crystal (II) is a mixed crystal of 2-n-butyl-1-(4-tert-butyl­phenyl­sulfon­yl)-5-chloro-1H-benzimidazole and of 2-n-butyl-1-(4-tert-butyl­phenyl­sulfon­yl)-6-chloro-1H-benzimidazole in the ratio of 0.731 (2):0.269 (2), that differ in the position of the chloro substituent. Here, only one mol­ecule is present in the asymmetric unit (Fig. 3[link]).

[Figure 3]
Figure 3
The asymmetric unit of (II) with atom labeling. Displacement ellipsoids represent the 30% probability level.

The asymmetric unit of crystal (III) likewise comprises one mol­ecule, 2-n-butyl-5-chloro-1-(4-methyl­phenyl­sulfon­yl)-1H-benzimidazole (Fig. 4[link]).

[Figure 4]
Figure 4
The mol­ecular structure of (III) with atom labeling. Displacement ellipsoids represent the 30% probability level.

The mol­ecules of (I)–(III) consist of two flat fragments, viz. benzimidazole (N1/C2/N3/C3A/C4–C7/C7A) and benzene (C8–C13). The angles between the fragments are 83.4 (1)° for (IA), 79.3 (1)° for (IB), 87.1 (1)° for (II), and 86.6 (1)° for (III). These values do not differ significantly from the previously reported structures of related benzimidazole derivatives (Abdireymov et al., 2011[Abdireymov, K. B., Mukhamedov, N. S., Okmanov, R. Y., Ayimbetov, M. J. & Tashkhodjaev, B. (2011). Acta Cryst. E67, o3345-o3346.]). However, the orientation of the entities along the N1—S1 and S1—C8 bonds is different (Tables 1[link], 2[link] and 3[link]).

Table 1
Selected torsion angles (°) for (I)[link]

O2A—S1A—N1A—C2A 22.7 (5) O2B—S1B—N1B—C2B −25.1 (5)
O2A—S1A—C8A—C13A −25.6 (5) O2B—S1B—C8B—C13B 18.8 (4)

Table 2
Selected torsion angles (°) for (II)[link]

O2—S1—N1—C2 −44.7 (2) O2—S1—C8—C13 −9.6 (2)

Table 3
Selected torsion angles (°) for (III)[link]

O2—S1—N1—C2 17.4 (2) O2—S1—C8—C13 −48.5 (2)

3. Supra­molecular features

In the crystal packing of (I), two A mol­ecules form a centrosymmetric dimer by weak C14A—H14C⋯O1A hydrogen bonds. A Cl⋯Cl inter­action between these dimers [Cl1A⋯Cl1A(2 − x, 1 − y, 1 − z) = 3.304 (3) Å, 0.20 Å less than the sum of the the van der Waals radii] links the mol­ecules into chains running parallel to the b axis. Mol­ecules of B are linked by C4B—H4BA⋯Cl1 hydrogen bonds, which also form chains extending in the same direction (Table 4[link], Fig. 5[link]). Inter­molecular C—H⋯π inter­actions between these chains consolidate the crystal structure [C12A—H12ACg1: H⋯Cg1 = 2.85 Å; C12A—H⋯Cg1 = 3.549 (7) Å; C12A—H⋯Cg1 = 133° (symmetry code for Cg1: 1 + x, y, z; Cg1 is the centroid of the C3B′/C4B--C7B/C7B′ benzene ring); C10B—H10BCg2: H⋯Cg2 = 2.81 Å; C10B—H⋯Cg2 = 3.558 (6) Å; C10B—H⋯Cg2 = 139° (symmetry code for the Cg2 centroid: −1 + x, [{1\over 2}] − y, −[{1\over 2}] + z; Cg2 is centroid of the C3A′/C4A–C7A/C7A′ benzene ring)].

Table 4
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C14A—H14C⋯O1Ai 0.96 2.59 3.271 (6) 128
C4B—H4BA⋯Cl1Bii 0.93 2.95 3.800 (6) 153
Symmetry codes: (i) [-x+2, -y, -z+1]; (ii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 5]
Figure 5
The observed hydrogen bond and Cl1A⋯Cl1A inter­actions in the crystal structure of (I).

In the crystal packing of (II), the formation of a centrosymmetric dimer as the result of an inter­molecular C—H⋯π bond is also observed [C4—H4ACg3: H⋯Cg3 = 2.71 Å; C4—H⋯Cg3 = 3.590 (4) Å; C4—H⋯Cg3 = 158° (symmetry code for Cg3: −x, 1 − y, 1 − z; Cg3 is centroid of the C8–C13 benzene ring)]. These dimers are linked into chains running parallel to the a axis by Cl⋯Cl inter­actions [Cl1⋯Cl1(−x, 2 − y, 2 − z) = 3.435 (3) Å, 0.06 Å less than the sum of the van der Waals radii] and a weak inter­molecular C10—H10A⋯O2 hydrogen bond (Table 5[link], Fig. 6[link]). Similar C—H⋯π and C—H⋯O inter­actions were observed in the previously studied mixed crystal of 2-n-butyl-6-chloro-1-(2,4-di­methyl­benzene­sulfon­yl)-1H-benzimidazole and 2-n-butyl-5-chloro-1-(2,4-di­methyl­benzene­sulfon­yl)-1H-benzimidazole (Abdireymov et al., 2011[Abdireymov, K. B., Mukhamedov, N. S., Okmanov, R. Y., Ayimbetov, M. J. & Tashkhodjaev, B. (2011). Acta Cryst. E67, o3345-o3346.]).

Table 5
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O2i 0.93 2.67 3.595 (3) 176
Symmetry code: (i) [x-1, y, z].
[Figure 6]
Figure 6
The observed hydrogen bond and Cl1⋯Cl1 inter­actions in the crystal structure of (II).

In the crystal packing of (III), only weak hydrogen bonds of the type C—H⋯O are observed. Chains parallel to the a axis are formed through inter­molecular C12—H12A⋯O1 inter­actions. Further C18—H18D⋯O2 hydrogen bonds between the formed chains consolidate the packing (Table 6[link], Fig. 7[link]). Inter­actions such as Cl⋯Cl and C—H⋯π are not observed in (III).

Table 6
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O1i 0.93 2.55 3.467 (3) 170
C18—H18D⋯O2ii 0.96 2.46 3.199 (4) 133
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, -y+1, -z+1].
[Figure 7]
Figure 7
The observed hydrogen bond in the crystal structure of (III).

Halogen–halogen bonds such as the Cl⋯Cl inter­actions observed in the crystals of (I) and (II) have been studied by various methods, with the characteristics of such inter­actions described in the literature (Hathwar et al., 2010[Hathwar, V. R., Roopan, S. M., Subashini, R., Khan, F. N. & Guru Row, T. N. (2010). J. Chem. Sci. 122, 677-685.]; Bui et al., 2009[Bui, T. T. T., Dahaoui, S., Lecomte, C., Desiraju, G. R. & Espinosa, E. (2009). Angew. Chem. 121, 3896-3899.]).

4. Database survey

A search in the Cambridge database (version 2022.1.0; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) showed that 1-aryl­sulfonyl-1H-benzimidazoles with one or more substituents in positions 2, 4, 5, 6 resulted in 21 hits. Of these, five are 1-aryl­sulfonyl-2-alk­yl(ar­yl)-1H-benzimidazole derivatives. The most similar structures are 6-chloro-2-methyl-1-[(4-methyl­phen­yl)sulfon­yl]-1H-benzimidazole (MEZDAY; Alla et al., 2013[Alla, S. K., Kumar, R. K., Sadhu, P. & Punniyamurthy, T. (2013). Org. Lett. 15, 1334-1337.]), and the mixed crystals of 2-n-butyl-6-chloro-1-(2,4-di­methyl­benzene­sulfon­yl)-1H-benz­imidazole and 2-n-butyl-5-chloro-1-(2,4-di­methyl­benzene­sulfon­yl)-1H-benzimidazole (OCEVEZ; Abdireymov et al., 2011[Abdireymov, K. B., Mukhamedov, N. S., Okmanov, R. Y., Ayimbetov, M. J. & Tashkhodjaev, B. (2011). Acta Cryst. E67, o3345-o3346.]).

5. Synthesis and crystallization

The title compounds were synthesized according to a previously reported procedure (Abdireimov et al., 2010[Abdireimov, K. B., Mukhamedov, N. S., Aiymbetov, M. Z. & Shakhidoyatov, K. M. (2010). Chem. Heterocycl. Compd. 46, 941-946.]). After purification of the corresponding reaction mixtures, single crystals for X-ray diffraction analysis were obtained by evaporation of ethanol solutions at room temperature.

The reaction products of 2-n-butyl-5-chloro-1H-benzimidazole with 4-methyl­benzene­sulfonyl chloride were separated by column chromatography in a benzene:acetone (10:1 v:v) system. Colorless crystals of (III) for X-ray analysis were obtained by slow evaporation of an ethanol solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link]. In the crystal structure of (I), the C1B site in the (IB) mol­ecule is disordered over two positions (C1B and C1B′). The site occupancy factors refined to a ratio of 0.555 (10):0.445 (10). In the crystal structure of (II), the Cl site is disordered over two positions (Cl1 and Cl1′), with refined site occupation factors of 0.731 (2):0.269 (2) for the major and minor components. All H atoms bound to C atoms were placed geometrically (with C—H distances of 0.97 Å for CH2, 0.96 Å for CH3 and 0.93 Å for Car) and included in the refinement in a riding-motion approximation with Uiso(H) = 1.2Ueq(C) [Uiso = 1.5Ueq(C) for methyl H atoms].

Table 7
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula 0.707C15H13ClN2O2S·0.293C15H13ClN2O2S 0.731C21H25ClN2O2S·0.269C21H25ClN2O2S C18H19ClN2O2S
Mr 320.78 404.94 362.86
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 296 296 297
a, b, c (Å) 9.837 (2), 19.674 (4), 16.046 (3) 8.2990 (17), 11.644 (2), 12.279 (3) 8.1491 (16), 10.039 (2), 12.485 (3)
α, β, γ (°) 90, 101.91 (3), 90 115.85 (3), 99.03 (3), 94.96 (3) 112.23 (3), 105.49 (3), 96.02 (3)
V3) 3038.6 (11) 1038.5 (4) 886.5 (4)
Z 8 2 2
Radiation type Cu Kα Cu Kα Cu Kα
μ (mm−1) 3.56 2.71 3.11
Crystal size (mm) 0.60 × 0.40 × 0.30 0.36 × 0.20 × 0.20 0.40 × 0.34 × 0.28
 
Data collection
Diffractometer Xcalibur, Ruby Xcalibur, Ruby Xcalibur, Ruby
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.482, 1.000 0.842, 1.000 0.394, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 13759, 5354, 2629 7093, 4179, 3244 8070, 3662, 3088
Rint 0.071 0.029 0.022
(sin θ/λ)max−1) 0.596 0.630 0.631
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.190, 1.00 0.050, 0.152, 1.05 0.047, 0.151, 1.06
No. of reflections 5354 4179 3662
No. of parameters 394 258 219
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.30 0.31, −0.30 0.62, −0.57
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL and XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

1-(4-Chlorophenylsulfonyl)-2,5-dimethyl-1H-benzimidazole–\ 1-(4-chlorophenylsulfonyl)-2,6-dimethyl-1H-benzimidazole (0.707/0.293) (I) top
Crystal data top
0.707C15H13ClN2O2S·0.293C15H13ClN2O2SF(000) = 1328
Mr = 320.78Dx = 1.402 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 9.837 (2) ÅCell parameters from 1714 reflections
b = 19.674 (4) Åθ = 3.6–43.7°
c = 16.046 (3) ŵ = 3.56 mm1
β = 101.91 (3)°T = 296 K
V = 3038.6 (11) Å3Prizmatic, colorless
Z = 80.60 × 0.40 × 0.30 mm
Data collection top
Xcalibur, Ruby
diffractometer
5354 independent reflections
Radiation source: Enhance (Cu) X-ray Source2629 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
Detector resolution: 10.2576 pixels mm-1θmax = 66.8°, θmin = 3.6°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2323
Tmin = 0.482, Tmax = 1.000l = 1917
13759 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.190 w = 1/[σ2(Fo2) + (0.092P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
5354 reflectionsΔρmax = 0.30 e Å3
394 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S1A0.98039 (16)0.10855 (7)0.48596 (8)0.0759 (4)
O1A0.8450 (4)0.08551 (18)0.4479 (2)0.0963 (12)
O2A1.0979 (5)0.08877 (19)0.4541 (2)0.1020 (13)
Cl1A0.9719 (2)0.42170 (7)0.52959 (10)0.1301 (8)
N1A1.0069 (4)0.08135 (18)0.5868 (2)0.0695 (11)
N3A1.1128 (6)0.0524 (2)0.7190 (3)0.0839 (13)
C1A0.6646 (9)0.0576 (4)0.8265 (5)0.178 (4)
H1AA0.5684340.0628990.7997690.268*
H1AB0.6893130.0909500.8707840.268*
H1AC0.6794520.0129220.8506320.268*
C2A1.1341 (6)0.0658 (2)0.6431 (3)0.0754 (14)
C3A'0.9698 (7)0.0613 (2)0.7144 (4)0.0804 (15)
C4A0.8939 (9)0.0536 (3)0.7809 (4)0.103 (2)
H4AA0.9369010.0399500.8354330.124*
C5A0.7550 (9)0.0675 (3)0.7599 (5)0.103 (2)
C6A0.6906 (8)0.0861 (3)0.6798 (5)0.111 (2)
H6AA0.5955860.0945930.6687620.133*
C7A0.7607 (7)0.0927 (3)0.6149 (4)0.0916 (17)
H7AA0.7154800.1056050.5604470.110*
C7A'0.9013 (6)0.0793 (2)0.6338 (3)0.0706 (13)
C8A0.9767 (5)0.1967 (2)0.4957 (3)0.0648 (12)
C9A0.8527 (6)0.2297 (2)0.4937 (3)0.0809 (15)
H9AA0.7705880.2048210.4851640.097*
C10A0.8489 (6)0.2996 (3)0.5042 (3)0.0888 (16)
H10A0.7656480.3222110.5034870.107*
C11A0.9722 (8)0.3343 (3)0.5156 (3)0.0836 (16)
C12A1.0956 (7)0.3026 (3)0.5166 (3)0.0895 (17)
H12A1.1775960.3274820.5239200.107*
C13A1.0973 (6)0.2332 (3)0.5065 (3)0.0821 (15)
H13A1.1809610.2109910.5070590.099*
C14A1.2700 (6)0.0651 (3)0.6187 (4)0.0952 (17)
H14A1.3400010.0506440.6662580.143*
H14B1.2915530.1099790.6017500.143*
H14C1.2671970.0342560.5719910.143*
S1B0.27801 (13)0.20178 (7)0.24317 (7)0.0697 (4)
O1B0.3041 (4)0.26502 (18)0.20548 (19)0.0845 (11)
O2B0.3156 (4)0.13910 (19)0.2109 (2)0.0880 (11)
Cl1B0.34000 (16)0.19051 (12)0.27275 (11)0.1444 (9)
N1B0.3639 (4)0.2062 (2)0.3441 (2)0.0664 (10)
N3B0.4687 (4)0.1754 (3)0.4773 (3)0.0825 (13)
C1B0.3389 (12)0.4565 (5)0.4256 (7)0.121 (5)0.555 (10)
H1BA0.3804430.4835980.4738700.182*0.555 (10)
H1BB0.2396680.4572410.4190440.182*0.555 (10)
H1BC0.3638270.4745860.3752070.182*0.555 (10)
C1B'0.5215 (19)0.4175 (7)0.5827 (8)0.148 (8)0.445 (10)
H1BD0.6157900.4061840.6083410.222*0.445 (10)
H1BE0.4680260.4215900.6261360.222*0.445 (10)
H1BF0.5195390.4597960.5526800.222*0.445 (10)
C2B0.4156 (5)0.1531 (3)0.4014 (3)0.0745 (14)
C3B'0.4514 (5)0.2458 (3)0.4737 (3)0.0742 (14)
C4B0.4894 (6)0.2945 (4)0.5384 (3)0.0910 (17)
H4BA0.5342280.2814390.5928260.109*
C5B0.4594 (7)0.3612 (4)0.5200 (4)0.102 (2)
H5BA0.4849470.3934930.5626220.122*0.555 (10)
C6B0.3917 (7)0.3823 (3)0.4394 (4)0.103 (2)
H6BA0.3706510.4280690.4292780.123*0.445 (10)
C7B0.3553 (6)0.3353 (3)0.3738 (3)0.0843 (16)
H7BA0.3119500.3488380.3192360.101*
C7B'0.3864 (5)0.2667 (3)0.3930 (3)0.0692 (13)
C8B0.1024 (5)0.1986 (2)0.2501 (2)0.0597 (11)
C9B0.0312 (6)0.2576 (3)0.2556 (3)0.0797 (15)
H9BA0.0753410.2994340.2554860.096*
C10B0.1040 (7)0.2546 (3)0.2612 (4)0.0916 (17)
H10B0.1534410.2944800.2644330.110*
C11B0.1681 (6)0.1931 (4)0.2621 (3)0.0870 (17)
C12B0.0993 (6)0.1337 (3)0.2560 (3)0.0829 (15)
H12B0.1443530.0921870.2560280.099*
C13B0.0385 (5)0.1365 (2)0.2499 (3)0.0678 (13)
H13B0.0876100.0966600.2456490.081*
C14B0.4104 (7)0.0798 (3)0.3785 (4)0.1045 (19)
H14D0.4536520.0535650.4272830.157*
H14E0.4588390.0725880.3331160.157*
H14F0.3153480.0658700.3604390.157*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0993 (11)0.0590 (7)0.0667 (8)0.0013 (7)0.0111 (7)0.0035 (6)
O1A0.110 (3)0.071 (2)0.092 (2)0.016 (2)0.015 (2)0.0091 (18)
O2A0.133 (4)0.094 (3)0.089 (2)0.029 (3)0.045 (2)0.006 (2)
Cl1A0.223 (2)0.0559 (8)0.1053 (11)0.0132 (11)0.0190 (12)0.0026 (7)
N1A0.081 (3)0.059 (2)0.068 (2)0.000 (2)0.014 (2)0.0017 (19)
N3A0.113 (4)0.063 (3)0.067 (3)0.000 (3)0.001 (3)0.003 (2)
C1A0.192 (10)0.200 (10)0.163 (7)0.015 (8)0.081 (7)0.007 (6)
C2A0.087 (4)0.051 (3)0.083 (4)0.001 (3)0.006 (3)0.003 (2)
C3A'0.104 (5)0.050 (3)0.088 (4)0.005 (3)0.024 (4)0.002 (3)
C4A0.153 (7)0.069 (4)0.092 (4)0.014 (4)0.036 (5)0.006 (3)
C5A0.114 (6)0.094 (5)0.112 (5)0.019 (4)0.051 (5)0.010 (4)
C6A0.119 (6)0.072 (4)0.142 (6)0.015 (4)0.027 (5)0.001 (4)
C7A0.091 (5)0.078 (4)0.109 (4)0.017 (3)0.029 (4)0.007 (3)
C7A'0.087 (4)0.048 (2)0.074 (3)0.007 (3)0.011 (3)0.002 (2)
C8A0.075 (3)0.062 (3)0.057 (3)0.003 (3)0.012 (2)0.003 (2)
C9A0.078 (4)0.062 (3)0.104 (4)0.009 (3)0.023 (3)0.008 (3)
C10A0.093 (4)0.067 (3)0.114 (4)0.009 (3)0.038 (3)0.011 (3)
C11A0.122 (5)0.056 (3)0.073 (3)0.009 (3)0.021 (3)0.007 (2)
C12A0.091 (4)0.078 (4)0.093 (4)0.032 (4)0.006 (3)0.013 (3)
C13A0.072 (4)0.078 (4)0.099 (4)0.007 (3)0.022 (3)0.017 (3)
C14A0.082 (4)0.084 (4)0.115 (4)0.001 (3)0.010 (3)0.003 (3)
S1B0.0610 (8)0.0857 (9)0.0641 (7)0.0045 (7)0.0167 (6)0.0066 (7)
O1B0.086 (3)0.101 (3)0.067 (2)0.022 (2)0.0169 (18)0.0136 (18)
O2B0.075 (2)0.106 (3)0.086 (2)0.011 (2)0.0232 (19)0.024 (2)
Cl1B0.0531 (9)0.257 (3)0.1239 (13)0.0122 (12)0.0199 (8)0.0576 (14)
N1B0.061 (2)0.071 (3)0.066 (2)0.001 (2)0.0108 (19)0.002 (2)
N3B0.070 (3)0.096 (4)0.077 (3)0.001 (3)0.004 (2)0.009 (3)
C1B0.130 (11)0.073 (8)0.147 (10)0.005 (7)0.004 (8)0.036 (7)
C1B'0.25 (2)0.110 (12)0.090 (10)0.073 (13)0.046 (12)0.033 (9)
C2B0.063 (3)0.077 (3)0.085 (4)0.007 (3)0.018 (3)0.007 (3)
C3B'0.061 (3)0.099 (4)0.062 (3)0.008 (3)0.012 (3)0.002 (3)
C4B0.090 (4)0.118 (5)0.062 (3)0.023 (4)0.010 (3)0.000 (3)
C5B0.119 (6)0.100 (5)0.086 (4)0.027 (4)0.020 (4)0.021 (4)
C6B0.119 (5)0.101 (5)0.087 (4)0.032 (4)0.020 (4)0.014 (4)
C7B0.091 (4)0.082 (4)0.079 (3)0.016 (3)0.014 (3)0.002 (3)
C7B'0.057 (3)0.081 (3)0.071 (3)0.015 (3)0.018 (3)0.004 (3)
C8B0.063 (3)0.065 (3)0.053 (2)0.001 (2)0.015 (2)0.002 (2)
C9B0.074 (4)0.069 (3)0.098 (4)0.009 (3)0.021 (3)0.003 (3)
C10B0.072 (4)0.094 (5)0.109 (4)0.025 (3)0.020 (3)0.007 (4)
C11B0.057 (3)0.137 (6)0.064 (3)0.011 (4)0.006 (2)0.027 (3)
C12B0.068 (4)0.097 (4)0.080 (3)0.013 (3)0.008 (3)0.019 (3)
C13B0.065 (3)0.067 (3)0.069 (3)0.001 (3)0.008 (2)0.003 (2)
C14B0.104 (5)0.084 (4)0.118 (5)0.011 (4)0.006 (4)0.003 (4)
Geometric parameters (Å, º) top
S1A—O2A1.412 (4)S1B—C8B1.755 (5)
S1A—O1A1.420 (4)Cl1B—C11B1.735 (6)
S1A—N1A1.673 (4)N1B—C2B1.414 (6)
S1A—C8A1.743 (5)N1B—C7B'1.419 (6)
Cl1A—C11A1.734 (5)N3B—C2B1.297 (6)
N1A—C7A'1.403 (6)N3B—C3B'1.394 (7)
N1A—C2A1.418 (6)C1B—C6B1.549 (12)
N3A—C2A1.305 (6)C1B—H1BA0.9600
N3A—C3A'1.404 (7)C1B—H1BB0.9600
C1A—C5A1.537 (9)C1B—H1BC0.9600
C1A—H1AA0.9600C1B'—C5B1.536 (13)
C1A—H1AB0.9600C1B'—H1BD0.9600
C1A—H1AC0.9600C1B'—H1BE0.9600
C2A—C14A1.469 (7)C1B'—H1BF0.9600
C3A'—C7A'1.376 (7)C2B—C14B1.487 (7)
C3A'—C4A1.431 (8)C3B'—C7B'1.384 (6)
C4A—C5A1.366 (9)C3B'—C4B1.405 (7)
C4A—H4AA0.9300C4B—C5B1.364 (8)
C5A—C6A1.361 (9)C4B—H4BA0.9300
C6A—C7A1.369 (8)C5B—C6B1.390 (8)
C6A—H6AA0.9300C5B—H5BA0.9300
C7A—C7A'1.379 (7)C6B—C7B1.391 (7)
C7A—H7AA0.9300C6B—H6BA0.9300
C8A—C13A1.367 (7)C7B—C7B'1.404 (7)
C8A—C9A1.376 (7)C7B—H7BA0.9300
C9A—C10A1.388 (7)C8B—C9B1.368 (6)
C9A—H9AA0.9300C8B—C13B1.374 (6)
C10A—C11A1.370 (8)C9B—C10B1.353 (7)
C10A—H10A0.9300C9B—H9BA0.9300
C11A—C12A1.362 (7)C10B—C11B1.366 (8)
C12A—C13A1.375 (7)C10B—H10B0.9300
C12A—H12A0.9300C11B—C12B1.363 (7)
C13A—H13A0.9300C12B—C13B1.380 (7)
C14A—H14A0.9600C12B—H12B0.9300
C14A—H14B0.9600C13B—H13B0.9300
C14A—H14C0.9600C14B—H14D0.9600
S1B—O2B1.416 (3)C14B—H14E0.9600
S1B—O1B1.430 (3)C14B—H14F0.9600
S1B—N1B1.667 (4)
O2A—S1A—O1A121.4 (2)N1B—S1B—C8B104.37 (19)
O2A—S1A—N1A106.7 (2)C2B—N1B—C7B'105.4 (4)
O1A—S1A—N1A105.0 (2)C2B—N1B—S1B129.5 (4)
O2A—S1A—C8A109.9 (3)C7B'—N1B—S1B124.8 (3)
O1A—S1A—C8A108.8 (2)C2B—N3B—C3B'106.0 (4)
N1A—S1A—C8A103.5 (2)C6B—C1B—H1BA109.5
C7A'—N1A—C2A107.8 (4)C6B—C1B—H1BB109.5
C7A'—N1A—S1A122.9 (4)H1BA—C1B—H1BB109.5
C2A—N1A—S1A128.8 (4)C6B—C1B—H1BC109.5
C2A—N3A—C3A'106.1 (5)H1BA—C1B—H1BC109.5
C5A—C1A—H1AA109.5H1BB—C1B—H1BC109.5
C5A—C1A—H1AB109.5C5B—C1B'—H1BD109.5
H1AA—C1A—H1AB109.5C5B—C1B'—H1BE109.5
C5A—C1A—H1AC109.5H1BD—C1B'—H1BE109.5
H1AA—C1A—H1AC109.5C5B—C1B'—H1BF109.5
H1AB—C1A—H1AC109.5H1BD—C1B'—H1BF109.5
N3A—C2A—N1A110.3 (5)H1BE—C1B'—H1BF109.5
N3A—C2A—C14A125.3 (5)N3B—C2B—N1B112.5 (5)
N1A—C2A—C14A124.4 (5)N3B—C2B—C14B123.1 (5)
C7A'—C3A'—N3A111.9 (5)N1B—C2B—C14B124.4 (5)
C7A'—C3A'—C4A119.9 (6)C7B'—C3B'—N3B111.3 (5)
N3A—C3A'—C4A128.2 (6)C7B'—C3B'—C4B119.3 (6)
C5A—C4A—C3A'116.4 (6)N3B—C3B'—C4B129.4 (5)
C5A—C4A—H4AA121.8C5B—C4B—C3B'118.9 (5)
C3A'—C4A—H4AA121.8C5B—C4B—H4BA120.5
C6A—C5A—C4A122.2 (7)C3B'—C4B—H4BA120.5
C6A—C5A—C1A117.9 (8)C4B—C5B—C6B122.0 (6)
C4A—C5A—C1A119.8 (8)C4B—C5B—C1B'120.9 (8)
C5A—C6A—C7A122.4 (7)C6B—C5B—C1B'116.3 (8)
C5A—C6A—H6AA118.8C4B—C5B—H5BA119.0
C7A—C6A—H6AA118.8C6B—C5B—H5BA119.0
C6A—C7A—C7A'117.0 (6)C5B—C6B—C7B120.2 (6)
C6A—C7A—H7AA121.5C5B—C6B—C1B119.8 (6)
C7A'—C7A—H7AA121.5C7B—C6B—C1B119.4 (7)
C3A'—C7A'—C7A122.0 (6)C5B—C6B—H6BA119.9
C3A'—C7A'—N1A103.8 (5)C7B—C6B—H6BA119.9
C7A—C7A'—N1A134.1 (5)C6B—C7B—C7B'117.6 (5)
C13A—C8A—C9A119.9 (5)C6B—C7B—H7BA121.2
C13A—C8A—S1A120.0 (4)C7B'—C7B—H7BA121.2
C9A—C8A—S1A120.1 (4)C3B'—C7B'—C7B122.0 (5)
C8A—C9A—C10A120.7 (5)C3B'—C7B'—N1B104.9 (5)
C8A—C9A—H9AA119.7C7B—C7B'—N1B133.1 (5)
C10A—C9A—H9AA119.7C9B—C8B—C13B121.0 (5)
C11A—C10A—C9A117.7 (5)C9B—C8B—S1B119.8 (4)
C11A—C10A—H10A121.2C13B—C8B—S1B119.1 (4)
C9A—C10A—H10A121.2C10B—C9B—C8B119.3 (5)
C12A—C11A—C10A122.4 (5)C10B—C9B—H9BA120.3
C12A—C11A—Cl1A118.6 (5)C8B—C9B—H9BA120.3
C10A—C11A—Cl1A119.0 (5)C9B—C10B—C11B120.1 (6)
C11A—C12A—C13A119.1 (5)C9B—C10B—H10B119.9
C11A—C12A—H12A120.5C11B—C10B—H10B119.9
C13A—C12A—H12A120.5C12B—C11B—C10B121.4 (5)
C8A—C13A—C12A120.3 (6)C12B—C11B—Cl1B119.4 (5)
C8A—C13A—H13A119.8C10B—C11B—Cl1B119.2 (5)
C12A—C13A—H13A119.8C11B—C12B—C13B118.8 (5)
C2A—C14A—H14A109.5C11B—C12B—H12B120.6
C2A—C14A—H14B109.5C13B—C12B—H12B120.6
H14A—C14A—H14B109.5C8B—C13B—C12B119.3 (5)
C2A—C14A—H14C109.5C8B—C13B—H13B120.3
H14A—C14A—H14C109.5C12B—C13B—H13B120.3
H14B—C14A—H14C109.5C2B—C14B—H14D109.5
O2B—S1B—O1B121.4 (2)C2B—C14B—H14E109.5
O2B—S1B—N1B106.4 (2)H14D—C14B—H14E109.5
O1B—S1B—N1B105.5 (2)C2B—C14B—H14F109.5
O2B—S1B—C8B109.1 (2)H14D—C14B—H14F109.5
O1B—S1B—C8B108.9 (2)H14E—C14B—H14F109.5
O2A—S1A—N1A—C7A'166.7 (4)O1B—S1B—N1B—C2B155.2 (4)
O1A—S1A—N1A—C7A'36.6 (4)C8B—S1B—N1B—C2B90.1 (4)
C8A—S1A—N1A—C7A'77.4 (4)O2B—S1B—N1B—C7B'162.2 (4)
O2A—S1A—N1A—C2A22.7 (5)O1B—S1B—N1B—C7B'32.1 (4)
O1A—S1A—N1A—C2A152.7 (4)C8B—S1B—N1B—C7B'82.6 (4)
C8A—S1A—N1A—C2A93.3 (4)C3B'—N3B—C2B—N1B1.2 (6)
C3A'—N3A—C2A—N1A1.9 (5)C3B'—N3B—C2B—C14B178.7 (5)
C3A'—N3A—C2A—C14A178.1 (5)C7B'—N1B—C2B—N3B1.6 (5)
C7A'—N1A—C2A—N3A2.1 (5)S1B—N1B—C2B—N3B175.4 (3)
S1A—N1A—C2A—N3A173.9 (3)C7B'—N1B—C2B—C14B178.3 (5)
C7A'—N1A—C2A—C14A177.8 (4)S1B—N1B—C2B—C14B4.5 (7)
S1A—N1A—C2A—C14A6.0 (7)C2B—N3B—C3B'—C7B'0.4 (6)
C2A—N3A—C3A'—C7A'1.0 (6)C2B—N3B—C3B'—C4B179.5 (5)
C2A—N3A—C3A'—C4A179.1 (5)C7B'—C3B'—C4B—C5B0.9 (8)
C7A'—C3A'—C4A—C5A2.3 (8)N3B—C3B'—C4B—C5B178.9 (6)
N3A—C3A'—C4A—C5A177.9 (5)C3B'—C4B—C5B—C6B0.4 (10)
C3A'—C4A—C5A—C6A1.5 (10)C3B'—C4B—C5B—C1B'168.7 (9)
C3A'—C4A—C5A—C1A177.4 (5)C4B—C5B—C6B—C7B1.6 (10)
C4A—C5A—C6A—C7A0.5 (10)C1B'—C5B—C6B—C7B167.9 (9)
C1A—C5A—C6A—C7A176.5 (6)C4B—C5B—C6B—C1B170.1 (8)
C5A—C6A—C7A—C7A'0.3 (9)C5B—C6B—C7B—C7B'1.5 (9)
N3A—C3A'—C7A'—C7A178.0 (5)C1B—C6B—C7B—C7B'170.2 (7)
C4A—C3A'—C7A'—C7A2.2 (7)N3B—C3B'—C7B'—C7B178.9 (5)
N3A—C3A'—C7A'—N1A0.3 (5)C4B—C3B'—C7B'—C7B0.9 (8)
C4A—C3A'—C7A'—N1A179.6 (4)N3B—C3B'—C7B'—N1B0.6 (6)
C6A—C7A—C7A'—C3A'1.1 (8)C4B—C3B'—C7B'—N1B179.6 (4)
C6A—C7A—C7A'—N1A178.8 (5)C6B—C7B—C7B'—C3B'0.3 (8)
C2A—N1A—C7A'—C3A'1.4 (5)C6B—C7B—C7B'—N1B179.0 (5)
S1A—N1A—C7A'—C3A'173.7 (3)C2B—N1B—C7B'—C3B'1.2 (5)
C2A—N1A—C7A'—C7A176.6 (5)S1B—N1B—C7B'—C3B'175.4 (3)
S1A—N1A—C7A'—C7A4.2 (8)C2B—N1B—C7B'—C7B178.2 (5)
O2A—S1A—C8A—C13A25.6 (5)S1B—N1B—C7B'—C7B4.0 (8)
O1A—S1A—C8A—C13A160.7 (4)O2B—S1B—C8B—C9B161.2 (4)
N1A—S1A—C8A—C13A88.0 (4)O1B—S1B—C8B—C9B26.8 (4)
O2A—S1A—C8A—C9A155.2 (4)N1B—S1B—C8B—C9B85.5 (4)
O1A—S1A—C8A—C9A20.1 (5)O2B—S1B—C8B—C13B18.8 (4)
N1A—S1A—C8A—C9A91.1 (4)O1B—S1B—C8B—C13B153.2 (3)
C13A—C8A—C9A—C10A1.3 (7)N1B—S1B—C8B—C13B94.6 (4)
S1A—C8A—C9A—C10A177.9 (4)C13B—C8B—C9B—C10B0.2 (7)
C8A—C9A—C10A—C11A0.7 (8)S1B—C8B—C9B—C10B179.8 (4)
C9A—C10A—C11A—C12A0.3 (8)C8B—C9B—C10B—C11B0.6 (8)
C9A—C10A—C11A—Cl1A179.6 (4)C9B—C10B—C11B—C12B1.1 (9)
C10A—C11A—C12A—C13A0.6 (8)C9B—C10B—C11B—Cl1B178.0 (4)
Cl1A—C11A—C12A—C13A179.3 (4)C10B—C11B—C12B—C13B0.8 (8)
C9A—C8A—C13A—C12A0.9 (7)Cl1B—C11B—C12B—C13B178.3 (4)
S1A—C8A—C13A—C12A178.2 (4)C9B—C8B—C13B—C12B0.6 (7)
C11A—C12A—C13A—C8A0.0 (8)S1B—C8B—C13B—C12B179.5 (3)
O2B—S1B—N1B—C2B25.1 (5)C11B—C12B—C13B—C8B0.0 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14A—H14C···O1Ai0.962.593.271 (6)128
C4B—H4BA···Cl1Bii0.932.953.800 (6)153
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+1/2, z+1/2.
2-n-butyl-1-(4-tert-butylphenylsulfonyl)-5-chloro-1H-benzimidazole; 2-n-butyl-1-(4-tert-butylphenylsulfonyl)-6-chloro-1H-benzimidazole (II) top
Crystal data top
0.731C21H25ClN2O2S·0.269C21H25ClN2O2SZ = 2
Mr = 404.94F(000) = 428
Triclinic, P1Dx = 1.295 Mg m3
a = 8.2990 (17) ÅCu Kα radiation, λ = 1.54184 Å
b = 11.644 (2) ÅCell parameters from 2307 reflections
c = 12.279 (3) Åθ = 4.1–74.7°
α = 115.85 (3)°µ = 2.71 mm1
β = 99.03 (3)°T = 296 K
γ = 94.96 (3)°Prizmatic, colorless
V = 1038.5 (4) Å30.36 × 0.20 × 0.20 mm
Data collection top
Xcalibur, Ruby
diffractometer
4179 independent reflections
Radiation source: Enhance (Cu) X-ray Source3244 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 10.2576 pixels mm-1θmax = 76.2°, θmin = 4.1°
ω scansh = 910
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1414
Tmin = 0.842, Tmax = 1.000l = 1510
7093 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0775P)2 + 0.1659P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4179 reflectionsΔρmax = 0.31 e Å3
258 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.20524 (7)0.60421 (6)0.27060 (6)0.0616 (2)
O10.1971 (2)0.73010 (19)0.28074 (18)0.0809 (6)
O20.3383 (2)0.5409 (2)0.22959 (17)0.0741 (5)
Cl10.04322 (14)0.99456 (11)0.86571 (10)0.0942 (4)0.731 (2)
Cl1'0.0497 (4)1.0733 (2)0.6922 (3)0.0879 (11)0.269 (2)
N10.2121 (2)0.62283 (19)0.41511 (18)0.0572 (5)
N30.2121 (2)0.5667 (2)0.56841 (18)0.0601 (5)
C20.2365 (3)0.5296 (2)0.4576 (2)0.0557 (5)
C3A0.1665 (3)0.6881 (2)0.6048 (2)0.0591 (6)
C40.1301 (3)0.7689 (3)0.7172 (2)0.0670 (6)
H4A0.1302860.7437580.7794350.080*
C50.0938 (3)0.8879 (3)0.7332 (3)0.0752 (7)
H5A0.0664790.9431780.8068410.090*0.269 (2)
C60.0972 (3)0.9266 (3)0.6416 (3)0.0790 (8)
H6A0.0744551.0081610.6559850.095*0.731 (2)
C70.1332 (3)0.8475 (3)0.5299 (3)0.0718 (7)
H7A0.1355320.8740890.4687970.086*
C7A0.1658 (3)0.7272 (2)0.5125 (2)0.0576 (5)
C80.0163 (3)0.4999 (2)0.1833 (2)0.0552 (5)
C90.1303 (3)0.5342 (2)0.2174 (2)0.0608 (6)
H9A0.1298860.6127620.2853450.073*
C100.2776 (3)0.4498 (2)0.1488 (2)0.0604 (6)
H10A0.3759990.4721370.1725480.072*
C110.2830 (3)0.3321 (2)0.0452 (2)0.0535 (5)
C120.1335 (3)0.3031 (2)0.0117 (2)0.0618 (6)
H12A0.1336110.2265230.0582910.074*
C130.0161 (3)0.3855 (3)0.0801 (2)0.0639 (6)
H13A0.1149240.3638440.0566290.077*
C140.2920 (3)0.4038 (2)0.3847 (2)0.0606 (6)
H14A0.3978810.4217980.3660950.073*
H14B0.2123730.3539960.3066580.073*
C150.3087 (3)0.3245 (2)0.4546 (2)0.0621 (6)
H15A0.2017960.3045370.4707300.074*
H15B0.3851090.3759590.5338930.074*
C160.3701 (3)0.1993 (3)0.3853 (3)0.0718 (7)
H16A0.4764040.2187350.3679950.086*
H16B0.2927680.1466550.3066560.086*
C170.3884 (4)0.1230 (3)0.4593 (3)0.0899 (9)
H17A0.4277700.0445570.4129300.135*
H17B0.2828010.1019220.4750160.135*
H17C0.4660570.1743570.5367150.135*
C180.4480 (3)0.2395 (2)0.0235 (2)0.0624 (6)
C190.5259 (4)0.2093 (3)0.0686 (3)0.0883 (9)
H19A0.6295930.1511070.0258770.132*
H19B0.5445440.2881990.1328670.132*
H19C0.4524650.1696450.1045120.132*
C200.4259 (4)0.1129 (3)0.1283 (3)0.0963 (10)
H20A0.5325000.0598320.1727660.145*
H20B0.3598140.0677460.0942610.145*
H20C0.3716670.1314300.1837900.145*
C210.5653 (3)0.3055 (3)0.0773 (3)0.0812 (8)
H21A0.6694700.2480260.1201070.122*
H21B0.5173540.3261080.1342040.122*
H21C0.5827110.3836120.0113310.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0507 (3)0.0742 (4)0.0618 (4)0.0055 (3)0.0076 (2)0.0371 (3)
O10.0868 (13)0.0788 (12)0.0784 (12)0.0125 (10)0.0024 (10)0.0469 (10)
O20.0465 (9)0.1040 (14)0.0744 (11)0.0001 (9)0.0150 (8)0.0448 (10)
Cl10.0803 (7)0.0877 (7)0.0813 (7)0.0190 (5)0.0135 (5)0.0095 (5)
Cl1'0.098 (2)0.0607 (15)0.0895 (19)0.0184 (13)0.0046 (15)0.0282 (13)
N10.0497 (10)0.0615 (11)0.0589 (11)0.0008 (8)0.0075 (8)0.0290 (9)
N30.0553 (11)0.0673 (12)0.0596 (11)0.0095 (9)0.0113 (9)0.0312 (9)
C20.0417 (11)0.0633 (13)0.0627 (13)0.0009 (9)0.0062 (9)0.0323 (11)
C3A0.0427 (11)0.0686 (14)0.0644 (14)0.0046 (10)0.0083 (10)0.0308 (12)
C40.0541 (13)0.0750 (16)0.0634 (14)0.0091 (12)0.0089 (11)0.0256 (12)
C50.0519 (13)0.0718 (17)0.0780 (17)0.0038 (12)0.0058 (12)0.0170 (14)
C60.0609 (15)0.0585 (15)0.098 (2)0.0067 (12)0.0031 (14)0.0237 (15)
C70.0638 (15)0.0655 (15)0.0821 (18)0.0021 (12)0.0048 (13)0.0352 (14)
C7A0.0398 (10)0.0630 (13)0.0653 (14)0.0009 (9)0.0030 (9)0.0295 (11)
C80.0464 (11)0.0637 (13)0.0569 (12)0.0026 (10)0.0067 (9)0.0313 (11)
C90.0560 (13)0.0583 (13)0.0601 (13)0.0090 (10)0.0105 (10)0.0207 (11)
C100.0451 (11)0.0671 (14)0.0662 (14)0.0127 (10)0.0126 (10)0.0273 (12)
C110.0495 (11)0.0557 (12)0.0582 (12)0.0063 (9)0.0093 (9)0.0300 (10)
C120.0569 (13)0.0634 (14)0.0583 (13)0.0077 (11)0.0146 (10)0.0214 (11)
C130.0492 (12)0.0779 (16)0.0645 (14)0.0112 (11)0.0189 (11)0.0304 (12)
C140.0509 (12)0.0641 (14)0.0638 (14)0.0034 (10)0.0112 (10)0.0281 (11)
C150.0502 (12)0.0635 (14)0.0694 (15)0.0031 (10)0.0079 (11)0.0306 (12)
C160.0567 (14)0.0671 (15)0.0841 (18)0.0084 (12)0.0067 (12)0.0311 (13)
C170.086 (2)0.0736 (18)0.109 (2)0.0114 (15)0.0045 (18)0.0464 (18)
C180.0547 (13)0.0609 (14)0.0672 (14)0.0009 (10)0.0074 (11)0.0293 (11)
C190.0721 (18)0.101 (2)0.095 (2)0.0168 (16)0.0100 (15)0.0567 (19)
C200.078 (2)0.0700 (18)0.103 (2)0.0111 (15)0.0108 (17)0.0137 (17)
C210.0565 (15)0.094 (2)0.089 (2)0.0063 (14)0.0062 (13)0.0480 (17)
Geometric parameters (Å, º) top
S1—O21.417 (2)C11—C181.529 (3)
S1—O11.425 (2)C12—C131.390 (3)
S1—N11.682 (2)C12—H12A0.9300
S1—C81.758 (2)C13—H13A0.9300
Cl1—C51.705 (3)C14—C151.511 (3)
Cl1'—C61.652 (4)C14—H14A0.9700
N1—C21.410 (3)C14—H14B0.9700
N1—C7A1.419 (3)C15—C161.514 (4)
N3—C21.292 (3)C15—H15A0.9700
N3—C3A1.391 (3)C15—H15B0.9700
C2—C141.504 (3)C16—C171.525 (4)
C3A—C41.389 (3)C16—H16A0.9700
C3A—C7A1.395 (3)C16—H16B0.9700
C4—C51.379 (4)C17—H17A0.9600
C4—H4A0.9300C17—H17B0.9600
C5—C61.385 (4)C17—H17C0.9600
C5—H5A0.9300C18—C201.526 (4)
C6—C71.376 (4)C18—C211.531 (4)
C6—H6A0.9300C18—C191.536 (4)
C7—C7A1.380 (4)C19—H19A0.9600
C7—H7A0.9300C19—H19B0.9600
C8—C131.381 (3)C19—H19C0.9600
C8—C91.384 (3)C20—H20A0.9600
C9—C101.385 (3)C20—H20B0.9600
C9—H9A0.9300C20—H20C0.9600
C10—C111.396 (3)C21—H21A0.9600
C10—H10A0.9300C21—H21B0.9600
C11—C121.391 (3)C21—H21C0.9600
O2—S1—O1120.61 (12)C8—C13—H13A120.4
O2—S1—N1106.88 (11)C12—C13—H13A120.4
O1—S1—N1104.49 (12)C2—C14—C15111.9 (2)
O2—S1—C8109.43 (12)C2—C14—H14A109.2
O1—S1—C8109.75 (12)C15—C14—H14A109.2
N1—S1—C8104.34 (10)C2—C14—H14B109.2
C2—N1—C7A105.92 (19)C15—C14—H14B109.2
C2—N1—S1127.14 (17)H14A—C14—H14B107.9
C7A—N1—S1126.12 (17)C14—C15—C16113.1 (2)
C2—N3—C3A106.4 (2)C14—C15—H15A109.0
N3—C2—N1112.3 (2)C16—C15—H15A109.0
N3—C2—C14123.6 (2)C14—C15—H15B109.0
N1—C2—C14124.0 (2)C16—C15—H15B109.0
C4—C3A—N3128.4 (2)H15A—C15—H15B107.8
C4—C3A—C7A120.5 (2)C15—C16—C17111.7 (3)
N3—C3A—C7A111.1 (2)C15—C16—H16A109.3
C5—C4—C3A117.6 (3)C17—C16—H16A109.3
C5—C4—H4A121.2C15—C16—H16B109.3
C3A—C4—H4A121.2C17—C16—H16B109.3
C4—C5—C6121.2 (3)H16A—C16—H16B107.9
C4—C5—Cl1122.1 (3)C16—C17—H17A109.5
C6—C5—Cl1116.7 (2)C16—C17—H17B109.5
C4—C5—H5A119.4H17A—C17—H17B109.5
C6—C5—H5A119.4C16—C17—H17C109.5
C7—C6—C5121.8 (3)H17A—C17—H17C109.5
C7—C6—Cl1'130.0 (3)H17B—C17—H17C109.5
C5—C6—Cl1'108.2 (3)C20—C18—C11111.8 (2)
C7—C6—H6A119.1C20—C18—C21109.2 (3)
C5—C6—H6A119.1C11—C18—C21109.0 (2)
C6—C7—C7A117.1 (3)C20—C18—C19109.0 (3)
C6—C7—H7A121.4C11—C18—C19109.1 (2)
C7A—C7—H7A121.4C21—C18—C19108.5 (2)
C7—C7A—C3A121.7 (2)C18—C19—H19A109.5
C7—C7A—N1133.9 (2)C18—C19—H19B109.5
C3A—C7A—N1104.3 (2)H19A—C19—H19B109.5
C13—C8—C9120.9 (2)C18—C19—H19C109.5
C13—C8—S1119.42 (18)H19A—C19—H19C109.5
C9—C8—S1119.72 (18)H19B—C19—H19C109.5
C8—C9—C10118.9 (2)C18—C20—H20A109.5
C8—C9—H9A120.6C18—C20—H20B109.5
C10—C9—H9A120.6H20A—C20—H20B109.5
C9—C10—C11122.1 (2)C18—C20—H20C109.5
C9—C10—H10A119.0H20A—C20—H20C109.5
C11—C10—H10A119.0H20B—C20—H20C109.5
C12—C11—C10117.2 (2)C18—C21—H21A109.5
C12—C11—C18122.9 (2)C18—C21—H21B109.5
C10—C11—C18119.9 (2)H21A—C21—H21B109.5
C13—C12—C11121.8 (2)C18—C21—H21C109.5
C13—C12—H12A119.1H21A—C21—H21C109.5
C11—C12—H12A119.1H21B—C21—H21C109.5
C8—C13—C12119.2 (2)
O2—S1—N1—C244.7 (2)S1—N1—C7A—C713.3 (4)
O1—S1—N1—C2173.60 (18)C2—N1—C7A—C3A0.1 (2)
C8—S1—N1—C271.2 (2)S1—N1—C7A—C3A170.24 (15)
O2—S1—N1—C7A147.17 (18)O2—S1—C8—C139.6 (2)
O1—S1—N1—C7A18.3 (2)O1—S1—C8—C13124.9 (2)
C8—S1—N1—C7A96.96 (19)N1—S1—C8—C13123.6 (2)
C3A—N3—C2—N11.0 (2)O2—S1—C8—C9171.52 (18)
C3A—N3—C2—C14178.5 (2)O1—S1—C8—C954.0 (2)
C7A—N1—C2—N30.7 (2)N1—S1—C8—C957.5 (2)
S1—N1—C2—N3170.73 (16)C13—C8—C9—C102.2 (4)
C7A—N1—C2—C14178.2 (2)S1—C8—C9—C10178.88 (19)
S1—N1—C2—C1411.8 (3)C8—C9—C10—C111.1 (4)
C2—N3—C3A—C4178.7 (2)C9—C10—C11—C120.9 (4)
C2—N3—C3A—C7A0.9 (3)C9—C10—C11—C18177.0 (2)
N3—C3A—C4—C5177.6 (2)C10—C11—C12—C131.8 (4)
C7A—C3A—C4—C50.0 (3)C18—C11—C12—C13176.1 (2)
C3A—C4—C5—C61.5 (4)C9—C8—C13—C121.4 (4)
C3A—C4—C5—Cl1178.72 (19)S1—C8—C13—C12179.73 (19)
C4—C5—C6—C71.4 (4)C11—C12—C13—C80.7 (4)
Cl1—C5—C6—C7178.7 (2)N3—C2—C14—C152.2 (3)
C4—C5—C6—Cl1'179.4 (2)N1—C2—C14—C15179.46 (19)
C5—C6—C7—C7A0.1 (4)C2—C14—C15—C16178.03 (19)
Cl1'—C6—C7—C7A178.9 (2)C14—C15—C16—C17179.0 (2)
C6—C7—C7A—C3A1.6 (4)C12—C11—C18—C201.7 (4)
C6—C7—C7A—N1177.5 (2)C10—C11—C18—C20176.1 (2)
C4—C3A—C7A—C71.5 (3)C12—C11—C18—C21119.2 (3)
N3—C3A—C7A—C7176.4 (2)C10—C11—C18—C2163.0 (3)
C4—C3A—C7A—N1178.5 (2)C12—C11—C18—C19122.4 (3)
N3—C3A—C7A—N10.5 (2)C10—C11—C18—C1955.4 (3)
C2—N1—C7A—C7176.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O2i0.932.673.595 (3)176
Symmetry code: (i) x1, y, z.
2-n-Butyl-5-chloro-1-(4-methylphenylsulfonyl)-1H-benzimidazole (III) top
Crystal data top
C18H19ClN2O2SZ = 2
Mr = 362.86F(000) = 380
Triclinic, P1Dx = 1.359 Mg m3
a = 8.1491 (16) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.039 (2) ÅCell parameters from 4862 reflections
c = 12.485 (3) Åθ = 4.9–76.1°
α = 112.23 (3)°µ = 3.11 mm1
β = 105.49 (3)°T = 297 K
γ = 96.02 (3)°Prizmatic, colorless
V = 886.5 (4) Å30.40 × 0.34 × 0.28 mm
Data collection top
Xcalibur, Ruby
diffractometer
3662 independent reflections
Radiation source: Enhance (Cu) X-ray Source3088 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 10.2576 pixels mm-1θmax = 76.7°, θmin = 4.9°
ω scansh = 107
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1212
Tmin = 0.394, Tmax = 1.000l = 1515
8070 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0949P)2 + 0.1961P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3662 reflectionsΔρmax = 0.62 e Å3
219 parametersΔρmin = 0.56 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.14167 (6)0.68003 (5)0.49351 (5)0.05023 (18)
Cl10.14634 (10)1.03713 (9)0.10476 (6)0.0805 (2)
O10.0423 (2)0.61981 (18)0.44279 (18)0.0639 (5)
O20.2329 (2)0.71457 (18)0.61788 (16)0.0621 (4)
N10.1723 (2)0.84081 (18)0.47964 (17)0.0484 (4)
N30.2844 (2)1.07202 (19)0.51200 (17)0.0502 (4)
C20.2986 (2)0.9753 (2)0.5575 (2)0.0463 (4)
C3A0.1486 (3)1.0042 (2)0.40047 (19)0.0467 (4)
C40.0822 (3)1.0625 (2)0.3172 (2)0.0544 (5)
H4A0.1269851.1593470.3322020.065*
C50.0529 (3)0.9701 (3)0.2118 (2)0.0569 (5)
C60.1219 (3)0.8249 (3)0.1868 (2)0.0612 (6)
H6A0.2116620.7659740.1134210.073*
C70.0585 (3)0.7670 (3)0.2698 (2)0.0592 (5)
H7A0.1045780.6704100.2547790.071*
C7A0.0771 (3)0.8598 (2)0.3767 (2)0.0477 (4)
C80.2445 (3)0.5723 (2)0.3976 (2)0.0484 (5)
C90.1471 (3)0.4447 (3)0.2933 (2)0.0623 (6)
H9A0.0270670.4148790.2744440.075*
C100.2313 (4)0.3638 (3)0.2186 (2)0.0684 (6)
H10A0.1671280.2779380.1493410.082*
C110.4103 (3)0.4072 (3)0.2443 (2)0.0611 (6)
C120.5044 (3)0.5332 (3)0.3486 (2)0.0614 (6)
H12A0.6244480.5629300.3671260.074*
C130.4237 (3)0.6159 (2)0.4260 (2)0.0569 (5)
H13A0.4889140.7000140.4965800.068*
C140.4290 (3)1.0024 (2)0.6776 (2)0.0523 (5)
H14A0.5065170.9354670.6630680.063*
H14B0.3677230.9803990.7278730.063*
C150.5380 (3)1.1608 (3)0.7474 (2)0.0544 (5)
H15A0.6058791.1805990.6997770.065*
H15B0.4602741.2281070.7569610.065*
C160.6611 (4)1.1901 (3)0.8731 (2)0.0674 (6)
H16A0.5937701.1659350.9193660.081*
H16B0.7423751.1259840.8633390.081*
C170.7634 (5)1.3493 (4)0.9447 (3)0.0946 (10)
H17A0.8364191.3632591.0242340.142*
H17B0.6835301.4133980.9539480.142*
H17C0.8349611.3723670.9013810.142*
C180.5008 (5)0.3202 (4)0.1594 (3)0.0903 (10)
H18D0.6212010.3341210.2053060.135*
H18A0.4943750.3541410.0963860.135*
H18B0.4442490.2171260.1224910.135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0441 (3)0.0451 (3)0.0725 (4)0.0097 (2)0.0245 (2)0.0332 (2)
Cl10.0847 (5)0.0901 (5)0.0704 (4)0.0155 (4)0.0130 (3)0.0477 (4)
O10.0460 (8)0.0580 (9)0.1005 (13)0.0095 (7)0.0315 (8)0.0428 (9)
O20.0709 (10)0.0570 (9)0.0736 (10)0.0155 (8)0.0317 (8)0.0382 (8)
N10.0427 (8)0.0424 (8)0.0655 (10)0.0093 (7)0.0184 (7)0.0285 (8)
N30.0503 (9)0.0421 (8)0.0611 (10)0.0093 (7)0.0198 (8)0.0243 (8)
C20.0408 (9)0.0434 (9)0.0604 (11)0.0107 (8)0.0220 (9)0.0241 (9)
C3A0.0455 (10)0.0422 (10)0.0582 (11)0.0122 (8)0.0230 (9)0.0229 (8)
C40.0597 (12)0.0490 (11)0.0634 (13)0.0147 (9)0.0250 (10)0.0296 (10)
C50.0552 (12)0.0670 (13)0.0589 (12)0.0204 (10)0.0231 (10)0.0331 (11)
C60.0533 (12)0.0599 (13)0.0629 (13)0.0095 (10)0.0143 (10)0.0225 (11)
C70.0517 (12)0.0490 (11)0.0711 (14)0.0043 (9)0.0145 (10)0.0255 (10)
C7A0.0425 (9)0.0455 (10)0.0630 (12)0.0131 (8)0.0233 (9)0.0267 (9)
C80.0450 (10)0.0423 (10)0.0648 (12)0.0098 (8)0.0188 (9)0.0295 (9)
C90.0453 (11)0.0576 (13)0.0753 (15)0.0025 (9)0.0133 (10)0.0262 (11)
C100.0627 (14)0.0648 (14)0.0627 (14)0.0085 (11)0.0129 (11)0.0186 (11)
C110.0617 (13)0.0694 (14)0.0608 (13)0.0233 (11)0.0214 (11)0.0337 (11)
C120.0434 (11)0.0690 (14)0.0779 (15)0.0151 (10)0.0232 (10)0.0350 (12)
C130.0435 (10)0.0492 (11)0.0724 (14)0.0061 (9)0.0166 (10)0.0229 (10)
C140.0499 (11)0.0518 (11)0.0603 (12)0.0132 (9)0.0203 (9)0.0275 (10)
C150.0482 (11)0.0567 (12)0.0573 (12)0.0088 (9)0.0187 (9)0.0233 (10)
C160.0634 (14)0.0746 (16)0.0594 (14)0.0156 (12)0.0189 (11)0.0244 (12)
C170.085 (2)0.092 (2)0.0710 (18)0.0069 (17)0.0106 (15)0.0157 (16)
C180.088 (2)0.118 (3)0.0685 (17)0.0433 (19)0.0335 (16)0.0324 (17)
Geometric parameters (Å, º) top
S1—O21.4163 (19)C10—C111.390 (4)
S1—O11.4235 (17)C10—H10A0.9300
S1—N11.6875 (17)C11—C121.379 (4)
S1—C81.747 (2)C11—C181.510 (4)
Cl1—C51.751 (2)C12—C131.379 (3)
N1—C7A1.405 (3)C12—H12A0.9300
N1—C21.417 (3)C13—H13A0.9300
N3—C21.298 (3)C14—C151.523 (3)
N3—C3A1.389 (3)C14—H14A0.9700
C2—C141.494 (3)C14—H14B0.9700
C3A—C7A1.391 (3)C15—C161.518 (3)
C3A—C41.394 (3)C15—H15A0.9700
C4—C51.376 (3)C15—H15B0.9700
C4—H4A0.9300C16—C171.513 (4)
C5—C61.388 (4)C16—H16A0.9700
C6—C71.383 (4)C16—H16B0.9700
C6—H6A0.9300C17—H17A0.9600
C7—C7A1.387 (3)C17—H17B0.9600
C7—H7A0.9300C17—H17C0.9600
C8—C131.386 (3)C18—H18D0.9600
C8—C91.392 (3)C18—H18A0.9600
C9—C101.373 (4)C18—H18B0.9600
C9—H9A0.9300
O2—S1—O1120.39 (11)C12—C11—C10118.6 (2)
O2—S1—N1105.87 (10)C12—C11—C18120.3 (2)
O1—S1—N1105.72 (10)C10—C11—C18121.2 (3)
O2—S1—C8110.71 (10)C11—C12—C13121.2 (2)
O1—S1—C8109.53 (11)C11—C12—H12A119.4
N1—S1—C8103.00 (9)C13—C12—H12A119.4
C7A—N1—C2106.35 (17)C12—C13—C8119.4 (2)
C7A—N1—S1123.54 (15)C12—C13—H13A120.3
C2—N1—S1129.95 (15)C8—C13—H13A120.3
C2—N3—C3A106.66 (17)C2—C14—C15112.90 (19)
N3—C2—N1111.37 (19)C2—C14—H14A109.0
N3—C2—C14124.58 (19)C15—C14—H14A109.0
N1—C2—C14124.04 (18)C2—C14—H14B109.0
N3—C3A—C7A110.97 (19)C15—C14—H14B109.0
N3—C3A—C4128.68 (19)H14A—C14—H14B107.8
C7A—C3A—C4120.4 (2)C16—C15—C14112.5 (2)
C5—C4—C3A116.9 (2)C16—C15—H15A109.1
C5—C4—H4A121.6C14—C15—H15A109.1
C3A—C4—H4A121.6C16—C15—H15B109.1
C4—C5—C6122.8 (2)C14—C15—H15B109.1
C4—C5—Cl1119.36 (19)H15A—C15—H15B107.8
C6—C5—Cl1117.79 (19)C17—C16—C15112.5 (3)
C7—C6—C5120.6 (2)C17—C16—H16A109.1
C7—C6—H6A119.7C15—C16—H16A109.1
C5—C6—H6A119.7C17—C16—H16B109.1
C6—C7—C7A116.9 (2)C15—C16—H16B109.1
C6—C7—H7A121.6H16A—C16—H16B107.8
C7A—C7—H7A121.6C16—C17—H17A109.5
C7—C7A—C3A122.4 (2)C16—C17—H17B109.5
C7—C7A—N1133.0 (2)H17A—C17—H17B109.5
C3A—C7A—N1104.63 (18)C16—C17—H17C109.5
C13—C8—C9120.5 (2)H17A—C17—H17C109.5
C13—C8—S1119.27 (17)H17B—C17—H17C109.5
C9—C8—S1120.27 (17)C11—C18—H18D109.5
C10—C9—C8118.9 (2)C11—C18—H18A109.5
C10—C9—H9A120.6H18D—C18—H18A109.5
C8—C9—H9A120.6C11—C18—H18B109.5
C9—C10—C11121.5 (2)H18D—C18—H18B109.5
C9—C10—H10A119.2H18A—C18—H18B109.5
C11—C10—H10A119.2
O2—S1—N1—C7A167.75 (16)C4—C3A—C7A—N1178.69 (18)
O1—S1—N1—C7A38.97 (19)C2—N1—C7A—C7178.3 (2)
C8—S1—N1—C7A75.96 (18)S1—N1—C7A—C72.5 (3)
O2—S1—N1—C217.4 (2)C2—N1—C7A—C3A1.5 (2)
O1—S1—N1—C2146.22 (19)S1—N1—C7A—C3A177.31 (14)
C8—S1—N1—C298.86 (19)O2—S1—C8—C1348.5 (2)
C3A—N3—C2—N10.8 (2)O1—S1—C8—C13176.40 (18)
C3A—N3—C2—C14179.80 (18)N1—S1—C8—C1364.3 (2)
C7A—N1—C2—N31.5 (2)O2—S1—C8—C9131.96 (19)
S1—N1—C2—N3176.97 (15)O1—S1—C8—C93.1 (2)
C7A—N1—C2—C14179.54 (18)N1—S1—C8—C9115.25 (19)
S1—N1—C2—C144.0 (3)C13—C8—C9—C100.6 (4)
C2—N3—C3A—C7A0.2 (2)S1—C8—C9—C10178.9 (2)
C2—N3—C3A—C4179.5 (2)C8—C9—C10—C110.7 (4)
N3—C3A—C4—C5179.2 (2)C9—C10—C11—C121.3 (4)
C7A—C3A—C4—C51.1 (3)C9—C10—C11—C18177.9 (3)
C3A—C4—C5—C60.3 (3)C10—C11—C12—C130.5 (4)
C3A—C4—C5—Cl1178.52 (16)C18—C11—C12—C13178.7 (3)
C4—C5—C6—C71.3 (4)C11—C12—C13—C80.7 (4)
Cl1—C5—C6—C7177.49 (19)C9—C8—C13—C121.3 (3)
C5—C6—C7—C7A0.9 (4)S1—C8—C13—C12178.24 (18)
C6—C7—C7A—C3A0.5 (3)N3—C2—C14—C154.0 (3)
C6—C7—C7A—N1179.8 (2)N1—C2—C14—C15174.85 (19)
N3—C3A—C7A—C7178.8 (2)C2—C14—C15—C16175.97 (18)
C4—C3A—C7A—C71.5 (3)C14—C15—C16—C17177.4 (2)
N3—C3A—C7A—N11.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O1i0.932.553.467 (3)170
C18—H18D···O2ii0.962.463.199 (4)133
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

We are especially grateful to Professor B. Tashkhodzhaev for help in discussing the results.

References

First citationAbdireimov, K. B., Mukhamedov, N. S., Aiymbetov, M. Z. & Shakhidoyatov, K. M. (2010). Chem. Heterocycl. Compd. 46, 941–946.  CrossRef CAS Google Scholar
First citationAbdireymov, K. B., Mukhamedov, N. S., Okmanov, R. Y., Ayimbetov, M. J. & Tashkhodjaev, B. (2011). Acta Cryst. E67, o3345–o3346.  CrossRef IUCr Journals Google Scholar
First citationAlam, M. T., Maiti, S. & Mal, P. (2018). Eur. J. Org. Chem. pp. 4178–4186.  CrossRef Google Scholar
First citationAlla, S. K., Kumar, R. K., Sadhu, P. & Punniyamurthy, T. (2013). Org. Lett. 15, 1334–1337.  CrossRef CAS PubMed Google Scholar
First citationBansal, Y. & Silakari, O. (2012). Bioorg. Med. Chem. 20, 6208–6236.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBhrigu, B., Siddiqui, N., Pathak, D., Alam, M. S., Ali, R. & Azad, B. (2012). Acta Pol. Pharm. Drug Res. 69, 53–62.  CAS Google Scholar
First citationBui, T. T. T., Dahaoui, S., Lecomte, C., Desiraju, G. R. & Espinosa, E. (2009). Angew. Chem. 121, 3896–3899.  CrossRef Google Scholar
First citationDesai, K. G. & Desai, K. R. (2006). Bioorg. Med. Chem. 14, 8271–8279.  Web of Science CrossRef PubMed CAS Google Scholar
First citationElnima, E. I., Zubair, M. U. & Al-Badr, A. A. (1981). Antimicrob. Agents Chemother. 19, 29–32.  CrossRef CAS PubMed Google Scholar
First citationGaba, M., Singh, D., Singh, S., Sharma, V. & Gaba, P. (2010). Eur. J. Med. Chem. 45, 2245–2249.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Roopan, S. M., Subashini, R., Khan, F. N. & Guru Row, T. N. (2010). J. Chem. Sci. 122, 677–685.  Web of Science CSD CrossRef CAS Google Scholar
First citationHu, Z., Zhao, T., Wang, M., Wu, J., Yu, W. & Chang, J. (2017). J. Org. Chem. 82, 3152–3158.  CrossRef CAS PubMed Google Scholar
First citationJain, A., Sharma, R. & Chaturvedi, S. C. (2013). Med. Chem. Res. 22, 4622–4632.  Web of Science CrossRef CAS Google Scholar
First citationKeri, R. S., Hiremathad, A., Budagumpi, S. & Nagaraja, B. M. (2015). Chem. Biol. Drug Des. 86, 19–65.  Web of Science CrossRef PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, G. R., Liu, J., Pan, Q., Song, Z. B., Luo, F. L., Wang, S. R., Zhang, X. L. & Zhou, X. (2009). Chem. Biodivers. 6, 2200–2208.  CrossRef CAS PubMed Google Scholar
First citationLi, Y. F., Wang, G. F., Luo, Y., Huang, W. G., Tang, W., Feng, C. L., Shi, L. P., Ren, Y. D., Zuo, J. P. & Lu, W. (2007). Eur. J. Med. Chem. 42, 1358–1364.  CrossRef PubMed CAS Google Scholar
First citationMaiti, S. & Mal, P. (2015). Adv. Synth. Catal. 357, 1416–1424.  CrossRef CAS Google Scholar
First citationMathew, B., Suresh, J. & Anbazhagan, S. (2016). J. Saudi Chem. Soc. 20, S132–S139.  CrossRef CAS Google Scholar
First citationRamanatham, V., Sanjay, D. V., Bobba, V. S. K., Umesh, N. B., Shekhar, B. B. & Uday, C. M. (2008). Eur. J. Med. Chem. 43, 986–995.  PubMed Google Scholar
First citationRanjith, P. K., Rajeesh, P., Haridas, K. R., Susanta, N. K., Guru Row, T. N., Rishikesan, R. & Suchetha Kumari, N. (2013). Bioorg. Med. Chem. Lett. 23, 5228–5234.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTamura, Y., Omori, N., Kouyama, N., Nishiura, Y., Hayashi, K., Watanabe, K., Tanaka, Y., Chiba, T., Yukioka, H., Sato, H. & Okuno, T. (2012). Bioorg. Med. Chem. Lett. 22, 5498–5502.  CrossRef CAS PubMed Google Scholar
First citationTanakit, A., Rouffet, M., Martin, D. P. & Cohen, S. M. (2012). Dalton Trans. 41, 6507–6515.  CrossRef CAS PubMed Google Scholar
First citationTownsend, L. B., Devivar, R. V., Turk, S. R., Nassiri, M. R. & Drach, J. C. (1995). J. Med. Chem. 38, 4098–4105.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds