research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of dibenzo[c,e]thiepine-5(7H)-thione

crossmark logo

aChemistry Division, United States Naval Research Laboratory, Washington, DC 20375, USA, and bAerospace Systems Directorate, Air Force Research Laboratory, Edwards AFB, CA 93524, USA
*Correspondence e-mail: Matthew.Thum@NRL.Navy.Mil

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 30 September 2022; accepted 1 November 2022; online 10 November 2022)

The title compound, C14H10S2, was prepared from dibenzo[c,e]oxepine-5(7H)-one and Lawesson's reagent in refluxing toluene. Pink blocks were grown by slow evaporation from petroleum ether. The resulting crystal structure resides in the ortho­rhom­bic space group Pbca with Z = 8 and Z′ = 1. The structure is comprised of a network of C—H⋯S and C—H⋯π inter­actions. No ππ inter­actions between ring moieties were observed, most likely due to the lack of mol­ecular planarity.

1. Chemical context

Ring-opening polymerization is a method of stepwise chain-growth polymerization that can be accessed through a variety of ionic, organometallic, organocatalytic, and radical mechanisms. Of these, radical ring-opening polymerization (rROP) has become popular as it utilizes the benefits of the radical process via ease of use and mild reaction conditions (Tardy et al., 2017[Tardy, A., Nicolas, J., Gigmes, D., Lefay, C. & Guillaneuf, Y. (2017). Chem. Rev. 117, 1319-1406.]). Cyclic thio­esters, di­thio­noesters, and di­thio­esters are commonly used in rROP and have been recently demonstrated in the preparation of a new class of fully degradable polymers (Spick et al., 2020[Spick, M. P., Bingham, N. M., Li, Y., de Jesus, J., Costa, C., Bailey, M. J. & Roth, P. J. (2020). Macromolecules, 53, 539-547.]; Purohit et al., 2022[Purohit, V. B., Pięta, M., Pietrasik, J. & Plummer, C. M. (2022). Polym. Chem. 13, 4858-4878.]; Smith et al., 2019[Smith, R. A., Fu, G., McAteer, O., Xu, M. & Gutekunst, W. R. (2019). J. Am. Chem. Soc. 141, 1446-1451.]; Kiel et al., 2022[Kiel, G. R., Lundberg, D. J., Prince, E., Husted, K. E. L., Johnson, A. M., Lensch, V., Li, S., Shieh, P. & Johnson, J. A. (2022). J. Am. Chem. Soc. 144, 12979-12988.]; Bingham & Roth, 2019[Bingham, N. M. & Roth, P. J. (2019). Chem. Commun. 55, 55-58.]). Specifically, di­thio­esters are of inter­est because of their long history of use as reversible addition-fragmentation chain-transfer (RAFT) agents for controlled free-radical polymerization (Perrier, 2017[Perrier, S. (2017). Macromolecules, 50, 7433-7447.]). Herein, we report the crystal structure of a cyclic di­thio­ester, dibenzo[c,e]thiepine-5(7H)-thione.

[Scheme 1]

2. Structural commentary

The crystal structure of the title compound (Fig. 1[link]) resides in the ortho­rhom­bic space group Pbca with Z = 8, having one mol­ecule per asymmetric unit (Z′ = 1). Similarly, dinaphth[2,1-e:1′,2′-e]thiepin-3-(5H)-thione crystallized in the monoclinic space group P21/n (Peters et al., 2000[Peters, K., Peters, E.-M., Hinrichs, J. & Bringmann, G. (2000). Z. Kristallogr. New Cryst. Struct. 215, 395-396.]) and the closely related dibenzo[c,e]oxepine-5(7H)-thione (Smith et al., 2019[Smith, R. A., Fu, G., McAteer, O., Xu, M. & Gutekunst, W. R. (2019). J. Am. Chem. Soc. 141, 1446-1451.]; Yang et al., 2019[Yang, C.-K., Chen, W.-N., Ding, Y.-T., Wang, J., Rao, Y., Liao, W.-Q., Xie, Y., Zou, W. & Xiong, R.-G. (2019). J. Am. Chem. Soc. 141, 1781-1787.]) crystallized in the Pbca space group. The bond lengths in the title mol­ecule are typical of this type of compound, whereas the angles within the seven-membered ring indicate that this ring is slightly strained (see Table 1[link]). Inter­estingly, the torsion angle S1—C1—C2—C3 for the title compound is 46.4 (3)°, which lies in between those in dinaphth[2,1-e:1′,2′-e]thiepin-3-(5H)-thione [52.6 (3)°] and dibenzo[c,e]oxepine-5(7H)-thione [42.38 (12)°]. Additionally, the angle involving the thio S2 atom, C1—S2—C14, for the title compound is 104.2 (5)° (Table 1[link]), which is comparable to the same angle in dinaphth[2,1-e:1′,2′-e]thiepin-3-(5H)-thione [103.64 (12)°]. However, dibenzo[c,e]oxepine-5(7H)-thione exhibits a larger angle of 118.73 (8)° with the replacement of the sulfur atom by an oxygen. The dibenzo ring system in the title compound exhibits a dihedral angle of 50.8 (5)°, which is significantly smaller than in dinaphth[2,1-e:1′,2′-e]thiepin-3-(5H)-thione. The comparable aromatic rings in the naphthalene-containing structure are observed to have a dihedral angle of 65.17 (8)°, whereas the whole naphthalene systems make an angle of 68.10 (4)°. In comparison, in dibenzo[c,e]oxepine-5(7H)-thione, the dihedral angle between the respective ring systems is 41.02 (3)°, which is the smallest dihedral angle out of the three compounds highlighted.

Table 1
Selected geometric parameters (Å, °)

S1—C1 1.645 (12) C2—C7 1.412 (15)
S2—C1 1.726 (9) C7—C8 1.483 (9)
S2—C14 1.819 (13) C8—C13 1.401 (7)
C1—C2 1.482 (8) C13—C14 1.506 (18)
       
C1—S2—C14 104.2 (5) C2—C7—C8 124.4 (3)
S1—C1—S2 116.1 (4) C13—C8—C7 120.9 (6)
C2—C1—S1 122.4 (2) C8—C13—C14 119.0 (3)
C2—C1—S2 121.4 (5) C12—C13—C14 121.1 (4)
C3—C2—C1 116.5 (6) C13—C14—S2 109.5 (7)
C7—C2—C1 123.9 (4)    
[Figure 1]
Figure 1
The mol­ecular structure of dibenzo[c,e]thiepine-5(7H)-thione. Displacement ellipsoids are shown at the 50% probability level.

3. Supra­molecular features

A view of the crystal packing of the title compound is presented in Fig. 2[link]. The mol­ecules pack in an alternating pattern that does not exhibit any ππ inter­actions between ring planes of neighboring mol­ecules. This phenomenon is most probably due to lack of mol­ecular planarity. For example, the dihedral angle between the two dibenzo rings is 122.7 (5)°. In comparison, both dinaphth[2,1-e:1′,2′-e]thiepin-3-(5H)-thione [3.908 (2) Å; Peters et al., 2000[Peters, K., Peters, E.-M., Hinrichs, J. & Bringmann, G. (2000). Z. Kristallogr. New Cryst. Struct. 215, 395-396.]] and dibenzo[c,e]oxepine-5(7H)-thione [3.7742 (9) Å] exhibit weak ππ inter­actions between neighboring rings. Therefore, the title compound can be considered an outlier as it packs in a way to minimize any such inter­actions. Rather, the title compound packs in a way to maximize C—H⋯S inter­actions (Fig. 3[link]) between adjacent mol­ecules. The shortest C—H⋯S contacts are 2.94 Å [C14—H14B⋯S2([{1\over 2}] + x, y, [{3\over 2}] − z] and 2.97 Å [C10—H10⋯S1([{1\over 2}] − x, −[{1\over 2}] + y, z]. Comparing dinaphth[2,1-e:1′,2′-e]thiepin-3-(5H)-thione, there is a slightly shorter contact of 2.86 Å of the thio­ketone sulfur to a neighboring hydrogen atom. By comparison, the lack of contacts is not abnormal as the only notable short C—H⋯O contact for the oxepine compound is 2.57 Å, which is significantly shorter in comparison to its sulfur counterparts. Lastly, the title compound exhibits close C—H⋯π inter­actions: C12—H12⋯Cg2([{1\over 2}] + x, y, [{3\over 2}] − z) of 2.94 Å and C4—H4⋯Cg2(−[{1\over 2}] + x, [{1\over 2}] − y, 1 − z) of 2.93 Å, where Cg2 is the centroid of the C8–C13 aromatic ring, which is longer than a similar contact in dinaphth[2,1-e:1′,2′-e]thiepin-3-(5H)-thione (2.67 Å). In conclusion, both dinaph­th[2,1-e:1′,2′-e]thiepin-3-(5H)-thione and dibenzo[c,e]-5(7H)-thione utilize ππ inter­actions in addition to their respective short contacts in packing, whereas the title compound solely relies on its weaker C—H⋯S and C—H⋯π inter­actions.

[Figure 2]
Figure 2
The packing view of dibenzo[c,e]thiepine-5(7H)-thione along the a-axis direction. Hydrogen atoms omitted for clarity.
[Figure 3]
Figure 3
View of inter­molecular C—H⋯S inter­actions in the title structure.

4. Database survey

A search of the Cambridge Structural Database (CSD, version of March 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for dibenzothiepines yielded one result. The bond lengths and angles in the title mol­ecule are consistent with the previously reported crystal structure of dinaphth[2,1-e:1′,2′-e]thiepin-3-(5H)-thione (FUQHAA; Peters et al., 2000[Peters, K., Peters, E.-M., Hinrichs, J. & Bringmann, G. (2000). Z. Kristallogr. New Cryst. Struct. 215, 395-396.]). This compound was compared to the title compound in the previous sections.

5. Synthesis and crystallization

The synthesis of dibenzo[c,e]oxepine-5(7H)-one was adapted from the procedure reported by Bingham & Roth (2019[Bingham, N. M. & Roth, P. J. (2019). Chem. Commun. 55, 55-58.]). Lawesson's reagent (7.65 g, 18.9 mmol, 2.2 eq) was added to a solution of dibenzo[c,e]oxepine-5(7H)-one (1.81 g, 8.6 mmol) in anhydrous toluene and the reaction was refluxed for 72 h. The solution was filtered and the filtrate was concentrated in vacuo. The resulting orange solid was purified using column chromatography (hexa­ne–EtOAc, 4:1) to afford a red oil that solidified upon standing. The red solid was further purified by recrystallization from petroleum ether to afford a red crystalline solid (0.465 g, 22%). Pink crystals of the title compound suitable for single-crystal X-ray diffraction were obtained after slow evaporation of petroleum ether.

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link]. All H atoms were placed in calculated positions (0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C14H10S2
Mr 242.34
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 7.84 (7), 16.0 (2), 18.51 (12)
V3) 2315 (39)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.43
Crystal size (mm) 0.17 × 0.14 × 0.09
 
Data collection
Diffractometer Bruker D8
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.384, 0.431
No. of measured, independent and observed [I > 2σ(I)] reflections 30500, 2664, 2154
Rint 0.059
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.088, 1.04
No. of reflections 2664
No. of parameters 145
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.28
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

7. Distribution Statement A

Distribution Statement A. Approved for public release. Distribution is unlimited.

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Dibenzo[c,e]thiepine-5(7H)-thione top
Crystal data top
C14H10S2Dx = 1.390 Mg m3
Mr = 242.34Mo Kα radiation, λ = 0.71076 Å
Orthorhombic, PbcaCell parameters from 6808 reflections
a = 7.84 (7) Åθ = 2.8–27.5°
b = 16.0 (2) ŵ = 0.43 mm1
c = 18.51 (12) ÅT = 100 K
V = 2315 (39) Å3Block, pink
Z = 80.17 × 0.14 × 0.09 mm
F(000) = 1008
Data collection top
Bruker D8
diffractometer
2664 independent reflections
Radiation source: microsource2154 reflections with I > 2σ(I)
Detector resolution: 7.39 pixels mm-1Rint = 0.059
ω and φ scansθmax = 27.6°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1010
Tmin = 0.384, Tmax = 0.431k = 2020
30500 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0379P)2 + 1.959P]
where P = (Fo2 + 2Fc2)/3
2664 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22706 (6)0.45127 (3)0.62216 (3)0.02342 (14)
S20.55925 (6)0.43034 (3)0.68343 (2)0.01708 (12)
C10.4180 (2)0.40955 (11)0.61419 (10)0.0146 (4)
C20.4711 (2)0.36200 (11)0.54916 (9)0.0126 (3)
C30.4331 (2)0.39856 (11)0.48215 (10)0.0151 (4)
H30.3783330.4516510.4806400.018*
C40.4742 (2)0.35855 (12)0.41837 (10)0.0171 (4)
H40.4533730.3851950.3733260.021*
C50.5463 (2)0.27895 (12)0.42054 (10)0.0170 (4)
H50.5731810.2507630.3767890.020*
C60.5790 (2)0.24074 (12)0.48594 (9)0.0146 (4)
H60.6248630.1856310.4865470.017*
C70.5458 (2)0.28150 (11)0.55145 (9)0.0119 (3)
C80.5867 (2)0.23546 (11)0.61885 (9)0.0124 (3)
C90.5363 (2)0.15165 (11)0.62688 (9)0.0147 (4)
H90.4681830.1259260.5906900.018*
C100.5849 (2)0.10611 (12)0.68701 (10)0.0171 (4)
H100.5496820.0494050.6919070.020*
C110.6843 (2)0.14257 (12)0.73997 (10)0.0172 (4)
H110.7173500.1110770.7812160.021*
C120.7357 (2)0.22559 (12)0.73271 (9)0.0168 (4)
H120.8045440.2505740.7690490.020*
C130.6873 (2)0.27230 (12)0.67274 (9)0.0136 (4)
C140.7404 (2)0.36256 (12)0.66461 (9)0.0165 (4)
H14A0.7818450.3726030.6148310.020*
H14B0.8344720.3752780.6985530.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0177 (2)0.0222 (3)0.0303 (3)0.0043 (2)0.0017 (2)0.0084 (2)
S20.0214 (2)0.0154 (2)0.0144 (2)0.00114 (18)0.00091 (18)0.00374 (17)
C10.0175 (9)0.0102 (8)0.0162 (8)0.0024 (7)0.0009 (7)0.0005 (7)
C20.0107 (8)0.0137 (8)0.0135 (8)0.0037 (7)0.0005 (7)0.0001 (7)
C30.0136 (8)0.0140 (8)0.0176 (8)0.0013 (7)0.0034 (7)0.0015 (7)
C40.0162 (9)0.0218 (10)0.0134 (8)0.0041 (8)0.0035 (7)0.0053 (7)
C50.0158 (9)0.0233 (10)0.0120 (8)0.0013 (8)0.0006 (7)0.0022 (7)
C60.0127 (8)0.0155 (9)0.0155 (8)0.0015 (7)0.0007 (7)0.0011 (7)
C70.0091 (8)0.0145 (8)0.0120 (8)0.0018 (7)0.0010 (6)0.0001 (6)
C80.0102 (8)0.0149 (9)0.0123 (8)0.0017 (7)0.0020 (6)0.0008 (7)
C90.0124 (8)0.0167 (9)0.0151 (8)0.0002 (7)0.0006 (7)0.0017 (7)
C100.0152 (9)0.0159 (9)0.0200 (9)0.0009 (7)0.0041 (7)0.0029 (7)
C110.0141 (9)0.0233 (10)0.0143 (8)0.0052 (7)0.0017 (7)0.0051 (7)
C120.0137 (8)0.0242 (10)0.0124 (8)0.0009 (8)0.0003 (7)0.0000 (7)
C130.0114 (8)0.0169 (9)0.0126 (8)0.0011 (7)0.0014 (6)0.0007 (7)
C140.0136 (8)0.0206 (10)0.0153 (8)0.0028 (7)0.0035 (7)0.0014 (7)
Geometric parameters (Å, º) top
S1—C11.645 (12)C7—C81.483 (9)
S2—C11.726 (9)C8—C131.401 (7)
S2—C141.819 (13)C8—C91.402 (16)
C1—C21.482 (8)C9—C101.383 (8)
C2—C31.403 (8)C9—H90.9500
C2—C71.412 (15)C10—C111.381 (7)
C3—C41.380 (8)C10—H100.9500
C3—H30.9500C11—C121.391 (16)
C4—C51.391 (15)C11—H110.9500
C4—H40.9500C12—C131.390 (8)
C5—C61.379 (8)C12—H120.9500
C5—H50.9500C13—C141.506 (18)
C6—C71.400 (8)C14—H14A0.9900
C6—H60.9500C14—H14B0.9900
C1—S2—C14104.2 (5)C13—C8—C7120.9 (6)
S1—C1—S2116.1 (4)C9—C8—C7120.1 (4)
C2—C1—S1122.4 (2)C10—C9—C8120.6 (4)
C2—C1—S2121.4 (5)C10—C9—H9119.7
C3—C2—C7119.5 (3)C8—C9—H9119.7
C3—C2—C1116.5 (6)C11—C10—C9120.4 (6)
C7—C2—C1123.9 (4)C11—C10—H10119.8
C4—C3—C2121.0 (6)C9—C10—H10119.8
C4—C3—H3119.5C10—C11—C12119.7 (3)
C2—C3—H3119.5C10—C11—H11120.1
C3—C4—C5119.5 (4)C12—C11—H11120.1
C3—C4—H4120.2C13—C12—C11120.6 (4)
C5—C4—H4120.2C13—C12—H12119.7
C6—C5—C4120.3 (3)C11—C12—H12119.7
C6—C5—H5119.9C12—C13—C8119.8 (6)
C4—C5—H5119.9C8—C13—C14119.0 (3)
C5—C6—C7121.4 (6)C12—C13—C14121.1 (4)
C5—C6—H6119.3C13—C14—S2109.5 (7)
C7—C6—H6119.3C13—C14—H14A109.8
C6—C7—C2118.2 (4)S2—C14—H14A109.8
C6—C7—C8117.3 (7)C13—C14—H14B109.8
C2—C7—C8124.4 (3)S2—C14—H14B109.8
C13—C8—C9118.9 (3)H14A—C14—H14B108.2
Selected bond distances (Å) and angles (°) for dibenzo[c,e]thiepine-5(7H)-thione. top
S1 – C11.644 (12)
S2 – C11.726 (9)
S2 – C141.818 (13)
C1 – C21.482 (8)
C2 – C71.412 (15)
C7 – C81.483 (9)
C8 – C131.400 (7)
C13 – C141.506 (18)
C1–S2–C14104.2 (5)
S1–C1–S2116.1 (4)
C2–C1–S1122.4 (2)
C2–C1–S2121.4 (5)
C3–C2–C1116.6 (6)
C7–C2–C1123.8 (4)
C2–C7–C8124.4 (3)
C13–C8–C7120.9 (6)
C8–C13–C14119.0 (3)
C12–C13–C14121.1 (4)
C13–C14–S2109.6 (7)
 

Acknowledgements

We would like to thank Dr Carla Slebodnick from Virginia Tech for conducting the database survey check.

Funding information

Funding for this research was provided by: Office of Naval Research (award No. 300000173800).

References

First citationBingham, N. M. & Roth, P. J. (2019). Chem. Commun. 55, 55–58.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKiel, G. R., Lundberg, D. J., Prince, E., Husted, K. E. L., Johnson, A. M., Lensch, V., Li, S., Shieh, P. & Johnson, J. A. (2022). J. Am. Chem. Soc. 144, 12979–12988.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationPerrier, S. (2017). Macromolecules, 50, 7433–7447.  Web of Science CrossRef CAS Google Scholar
First citationPeters, K., Peters, E.-M., Hinrichs, J. & Bringmann, G. (2000). Z. Kristallogr. New Cryst. Struct. 215, 395–396.  CSD CrossRef CAS Google Scholar
First citationPurohit, V. B., Pięta, M., Pietrasik, J. & Plummer, C. M. (2022). Polym. Chem. 13, 4858–4878.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, R. A., Fu, G., McAteer, O., Xu, M. & Gutekunst, W. R. (2019). J. Am. Chem. Soc. 141, 1446–1451.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSpick, M. P., Bingham, N. M., Li, Y., de Jesus, J., Costa, C., Bailey, M. J. & Roth, P. J. (2020). Macromolecules, 53, 539–547.  Web of Science CrossRef CAS Google Scholar
First citationTardy, A., Nicolas, J., Gigmes, D., Lefay, C. & Guillaneuf, Y. (2017). Chem. Rev. 117, 1319–1406.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYang, C.-K., Chen, W.-N., Ding, Y.-T., Wang, J., Rao, Y., Liao, W.-Q., Xie, Y., Zou, W. & Xiong, R.-G. (2019). J. Am. Chem. Soc. 141, 1781–1787.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds