research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and properties of tetra­kis­(pyridine-3-carbo­nitrile)­di­thio­cyanatoiron(II) and of di­aqua­bis­­(pyridine-3-carbo­nitrile)­di­thio­cyanatoiron(II) pyridine-3-carbo­nitrile monosolvate

crossmark logo

aInstitut für Anorganische Chemie, Universität Kiel, Max-Eyth.-Str. 2, 24118 Kiel, Germany
*Correspondence e-mail: cnaether@ac.uni-kiel.de

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 13 October 2023; accepted 16 October 2023; online 31 October 2023)

The reaction of iron thio­cyanate with 3-cyano­pyridine (C6H4N2) leads to the formation of two compounds with the composition [Fe(NCS)2(C6H4N2)4] (1) and [Fe(NCS)2(C6H4N2)2(H2O)2]·2C6H4N2 (2). The asymmetric unit of 1 consists of one iron cation, two thio­cyanate anions and four 3-cyano­pyridine ligands in general positions. The iron cation is octa­hedrally coordinated by two N-bonded thio­cyanate anions and four 3-cyano­pyridine ligands. The complexes are arranged in columns along the crystallographic c-axis direction and are linked by weak C—H⋯N inter­actions. In 2, the asymmetric unit consists of one iron cation on a center of inversion as well as one thio­cyanate anion, one 3-cyano­pyridine ligand, one water ligand and one 3-cyano­pyridine solvate mol­ecule in general positions. The iron cation is octa­hedrally coordinated by two N-bonded thio­cyanate anions, two cyano­pyridine ligands and two water ligands. O—H⋯N and C—H⋯S hydrogen bonding is observed between the water ligands and the solvent 3-cyano­pyridine mol­ecules. In the crystal structure, alternating layers of the iron complexes and the solvated 3-cyano­pyridine mol­ecules are observed. Powder X-ray (PXRD) investigations reveal that both compounds were obtained as pure phases and from IR spectroscopic measurements conclusions on the coordination mode of the thio­canate anions and the cyano­group were made. Thermogravimetric (TG) and differential thermoanalysis (DTA) of 1 indicate the formation of a compound with the composition {[Fe(NCS)2]3(C6H4N2)4}n that is isotypic to the corresponding Cd compound already reported in the literature. TG/DTA of 2 show several mass losses. The first mass loss corresponds to the removal of the two water ligands leading to the formation of 1, which transforms into {[Fe(NCS)2]3(C6H4N2)4}n, upon further heating.

1. Chemical context

For several years, we and others have been inter­ested in the synthesis, structures and physical properties of coordination compounds based on transition-metal thio­cyanates with additional neutral organic coligands. In such compounds, the anionic ligands can be terminally coordinated to the metal cations or they can act as bridging ligands, leading to the formation of networks (Kabešová & Gažo, 1980[Kabešová, M. & Gažo, J. (1980). Chemical Papers. 34, 800-841.]). The latter compounds are of special inter­est because different magnetic phenomena can be observed (González et al., 2012[González, R., Acosta, A., Chiozzone, R., Kremer, C., Armentano, D., De Munno, G., Julve, M., Lloret, F. & Faus, J. (2012). Inorg. Chem. 51, 5737-5747.]; Werner et al., 2014[Werner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333-17342.]; Palion-Gazda et al., 2015[Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.]; Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]; Rams et al., 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. A Eur. J. 26, 2837-2851.]). Unfortunately, the compounds with a bridging coordination are sometimes difficult to prepare with metal cations such as Mn, Fe, Co or Ni, because these cations are less chalcophilic, which means that a terminal coordination is preferred. In such cases, an alternative synthetic approach can be used based on thermal treatment of suitable precursor compounds, which we developed many years ago for the synthesis of copper(I) halide coordination polymers (Näther et al., 2001[Näther, C., Jess, I. & Greve, J. (2001). Polyhedron, 20, 1017-1022.]; Näther & Jess, 2004[Näther, C. & Jess, I. (2004). Eur. J. Inorg. Chem. 2004, 2868-2876.]). For the synthesis of thio­cyanate coordination polymers, these precursors consist of compounds in which the metal cations are octa­hedrally coordinated by two terminally N-bonding thio­cyanate anions and four coligands that in most cases consist of pyridine derivatives. If such compounds are heated, the coligands are frequently stepwise removed and the empty coordination sites at the metal centers are completed by the S atoms of the anionic ligands that in the complex do not participate in the metal coordination, which enforces a bridging coordination of the thio­cyanate anions. Major advantages of this approach are the fact that this reaction is irreversible, that the products are formed in qu­an­ti­tative yields, and that in several cases, polymorphic or isomeric modifications can be prepared (Werner et al., 2015[Werner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015). Eur. J. Inorg. Chem. 2015, 3236-3245.]). However, following this approach, only microcrystalline powders are observed that cannot be investigated by single crystal X-ray diffraction. In this case, the corresponding Cd(NCS)2 compounds can be prepared, which also prefer an octa­hedral coordination. Because cadmium is more chalcophilic than the cations mentioned above, the synthesis of compounds with a bridging coordination is easier and, in most cases, they can easily be crystallized and characterized by single-crystal structure analysis (Wöhlert et al., 2013[Wöhlert, S., Peters, L. & Näther, C. (2013). Dalton Trans. 42, 10746-10758.]). In several cases they are isotypic with the Mn, Fe, Co or Ni compounds, allowing the structural identification of the latter. Moreover, with Cd(NCS)2 and one definite ligand, usually several compounds with a different, in part unusual ratio between Cd(NCS)2 and the coligands can be obtained. If such compounds are detected, one can determine whether they are also available with other metal cations.

In this context, we have reported new thio­cyanate coord­in­ation compounds based on Cd(NCS)2 and 3-cyano­pyridine as ligand, where five different compounds were detected (Jochim et al., 2020[Jochim, A., Jess, I. & Näther, C. (2020). Z. Naturforsch. B, 75, 163-172.]). This includes two solvates with the composition [Cd(NCS)2(C6H4N2)2]n·C6H4N2 and [Cd(NCS)2(C6H4N2)2]n·1/3C6H4N2 (C6H4N2 = 3-cyano­pyridine) and one further compound with a similar structure with the composition [Cd(NCS)2(C6H4N2)2]n. In all of these compounds, the Cd cations are octa­hedrally coordinated by two thio­cyanate anions and four 3-cyano­pyridine coligands and are linked by pairs of μ-1,3-bridging thio­cyanate anions into chains, which is a common motif in thio­cyanate coordination polymers. Two additional 3-cyano­pyridine deficient compounds with an unusual ratio between Cd(NCS)2 and 3-cyano­pyridine were also characterized. In {[Cd(NCS)2]2(C6H4N2)3}n and {[Cd(NCS)2]3(C6H4N2)4}n the cations are also octa­hedrally coordinated and linked into chains, but some of the 3-cyano­pyridine ligands act as bridging ligands and connect the chains into layers.

In further work, corresponding compounds with Ni(NCS)2 were investigated. With this cation, discrete complexes with the composition Ni(NCS)2(C6H4N2)4 have already been reported in the literature (Kilkenny & Nassimbeni, 2001[Kilkenny, M. L. & Nassimbeni, L. R. (2001). J. Chem. Soc. Dalton Trans. pp. 3065-3068.]), Ni(NCS)2(C6H4N2)2(H2O)2, Ni(NCS)2(C6H4N2)2(CH3OH)2 and Ni(NCS)2(C6H4N2)2(CH3CN)2 were prepared in which the metal cations are always octa­hedrally coordinated (Krebs et al., 2021[Krebs, C., Thiele, S., Ceglarska, M. & Näther, C. (2021). Z. Anorg. Allge Chem. 647, 2122-2129.]). All of these complexes transform into a new compound with the composition Ni(NCS)2(C6H4N2)2 upon heating, which can also be prepared from solution. In this compound, the metal cations are linked by pairs of μ-1,3-bridging thio­cyanate anions into dinuclear units that are further connected by single anionic ligands into layers. Therefore, the structures of the Ni(NCS)2 compounds are completely different from those of the Cd(NCS)2 compounds.

Compounds with Mn(NCS)2 and 3-cyano­pyridine were prepared because MnII compounds frequently behave similar to Cd(NCS)2 compounds (Krebs et al., 2023[Krebs, C., Foltyn, M., Jess, I., Mangelsen, S., Rams, M. & Näther, C. (2023). Inorg. Chim. Acta, 554, 121495.]). With Mn(NCS)2 compounds with the composition Mn(NCS)2(C6H4N2)4, Mn(NCS)2(C6H4N2)2(H2O)2·bis­(C6H4N2) solvate and Mn(NCS)2(C6H4N2)(H2O) and Mn(NCS)2(C6H4N2)2(H2O)2 were obtained, but the latter compound cannot be prepared as a pure phase. Most compounds consist of discrete complexes but in Mn(NCS)2(C6H4N2)(H2O) the Mn cations are linked by single μ-1,3-bridging thio­cyanates into chains, which are further connected into layers by the 3-cyano­pyridine coligands. Thermoanaytical investigations reveal that the discrete complex Mn(NCS)2(C6H4N2)4 transforms into a new compound with the composition [(Mn(NCS)2)3(C6H4N2)4]n that is isotypic to the corresponding Cd compound mentioned above. When Mn(NCS)2(C6H4N2)2(H2O)2·bis­(C6H4N2) solvate is heated, it transforms into [(Mn(NCS)2)3(C6H4N2)4]n via the discrete complex Mn(NCS)2(C6H4N2)4 as an inter­mediate. Therefore, the structural behavior and the thermal reactivity is much more similar to that of the Cd(NCS)2 compounds with 3-cyano­pyridine as coligand.

Based on all these findings, we decided to prepare corresponding compounds based on Fe(NCS)2 and 3-cyano­pyridine to investigate if this cation behaves more similarly to CdII, MnII or NiII. Within this systematic work, only two discrete complexes were obtained, which were investigated for their thermal behavior.

[Scheme 1]

2. Structural commentary

The asymmetric unit of Fe(NCS)2(C6H4N2)4 (1) consists of one iron cation as well as of two thio­cyanate anions and four 3-cyano­pyridine coligands in general positions (Fig. 1[link]). The iron cations are octa­hedrally coordinated by two terminally N-bonded thio­cyanate anions and four 3-cyano­pyridine colig­ands that coordinate via the pyridine N atom to the metal centers (Fig. 1[link]). This compound is isotypic to Ni(NCS)2(C6H4N2)4, Mn(NCS)2(C6H4N2)4 and Zn(NCS)2(C6H4N2)4 already reported in the literature (Kilkenny & Nassimbeni, 2001[Kilkenny, M. L. & Nassimbeni, L. R. (2001). J. Chem. Soc. Dalton Trans. pp. 3065-3068.]; Krebs et al., 2021[Krebs, C., Thiele, S., Ceglarska, M. & Näther, C. (2021). Z. Anorg. Allge Chem. 647, 2122-2129.], Krebs et al., 2023[Krebs, C., Foltyn, M., Jess, I., Mangelsen, S., Rams, M. & Näther, C. (2023). Inorg. Chim. Acta, 554, 121495.]; Jochim et al., 2019[Jochim, A., Jess, I. & Näther, C. (2019). Z. Anorg. Allge Chem. 645, 212-218.]). Despite differences because of the different ionic radii, the bond lengths are comparable to those in the isotypic compounds (Table 1[link]). From the N—Fe—N bond angles it is obvious that the octa­hedra are slightly distorted (Table 1[link]).

Table 1
Selected geometric parameters (Å, °) for 1[link]

Fe1—N1 2.065 (2) Fe1—N21 2.273 (2)
Fe1—N2 2.069 (2) Fe1—N31 2.257 (2)
Fe1—N11 2.2660 (19) Fe1—N41 2.2339 (19)
       
N1—Fe1—N2 179.21 (9) N11—Fe1—N21 97.44 (7)
N1—Fe1—N11 90.70 (8) N31—Fe1—N11 176.72 (7)
N1—Fe1—N21 90.56 (8) N31—Fe1—N21 85.31 (7)
N1—Fe1—N31 91.05 (8) N41—Fe1—N11 90.12 (7)
N1—Fe1—N41 90.15 (9) N41—Fe1—N21 172.40 (7)
N2—Fe1—N11 88.70 (8) N41—Fe1—N31 87.11 (7)
N2—Fe1—N21 89.00 (8) Fe1—N1—C1 175.0 (2)
N2—Fe1—N31 89.57 (8) Fe1—N2—C2 163.2 (2)
N2—Fe1—N41 90.37 (8)    
[Figure 1]
Figure 1
The mol­ecular structure of 1 with displacement ellipsoids drawn at the 50% probability level.

In Fe(NCS)2(C6H4N2)2(H2O)2·2(C6H4N2) (2), the asymmetric unit consists of one iron cation that is located on a center of inversion as well as one thio­cyanate anion, one 3-cyano­pyridine ligand, one water ligand and one 3-cyano­pyridine solvate mol­ecule in general positions (Fig. 2[link]). The iron cation is octa­hedrally coordinated by two 3-cyano­pyridine coligands that are connected via the pyridine N atom to the FeII cations, two water ligands and two terminally N-bonded thio­cyanate anions. This compound is isotypic to Mn(NCS)2(C6H4N2)2(H2O)2·2(C6H4N2) and Zn(NCS)2(C6H4N2)2(H2O)2 ·2(C6H4N2) that are reported in the literature (Krebs et al., 2023[Krebs, C., Foltyn, M., Jess, I., Mangelsen, S., Rams, M. & Näther, C. (2023). Inorg. Chim. Acta, 554, 121495.]; Jochim et al., 2019[Jochim, A., Jess, I. & Näther, C. (2019). Z. Anorg. Allge Chem. 645, 212-218.]). The Fe—X (X = N, O) bond lengths are slightly shorter than those in the corresponding Mn compound and the bond angles show that the octa­hedra are slightly distorted (Table 2[link]).

Table 2
Selected geometric parameters (Å, °) for 2[link]

Fe1—N1 2.1207 (10) Fe1—N11 2.2358 (10)
Fe1—O1 2.1267 (9)    
       
N1—Fe1—O1 89.42 (4) O1i—Fe1—N11 87.62 (3)
N1i—Fe1—O1 90.58 (4) O1—Fe1—N11 92.38 (3)
N1—Fe1—N11 89.86 (4) Fe1—N1—C1 167.09 (10)
N1i—Fe1—N11 90.14 (4)    
Symmetry code: (i) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
The mol­ecular structure of 2 with displacement ellipsoids drawn at the 50% probability level. Symmetry codes for the generation of equivalent atoms: (i) −x + 1, −y + 1, −z + 1.

3. Supra­molecular features

In compound 1 the discrete complexes are arranged in columns that are oriented along the crystallographic c-axis direction (Fig. 3[link]). Within the columns, neighboring 3-cyano­pyridine rings are not coplanar, with no indication of ππ stacking inter­actions. The complexes are connected via weak C—H⋯N hydrogen bonding but most of these inter­actions exhibit C—H⋯N angles far from linearity, indicating that they do not represent strong inter­actions (Table 3[link] and Fig. 3[link])

Table 3
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯N1 0.95 2.63 3.190 (3) 118
C15—H15⋯N2 0.95 2.58 3.113 (3) 115
C21—H21⋯N2 0.95 2.54 3.108 (3) 118
C24—H24⋯N22i 0.95 2.67 3.514 (4) 148
C25—H25⋯N1 0.95 2.61 3.181 (3) 119
C31—H31⋯N1 0.95 2.67 3.214 (3) 117
C35—H35⋯N2 0.95 2.53 3.091 (3) 118
C35—H35⋯N12ii 0.95 2.67 3.538 (4) 151
C41—H41⋯N22iii 0.95 2.61 3.487 (3) 154
C44—H44⋯S1iv 0.95 2.82 3.498 (3) 129
C45—H45⋯N2 0.95 2.55 3.123 (3) 119
Symmetry codes: (i) [-x+1, -y, z-{\script{1\over 2}}]; (ii) [-x+1, -y+1, z+{\script{1\over 2}}]; (iii) [-x+1, -y+1, z-{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Crystal structure of 1 viewed along the crystallographic c-axis direction with C—H⋯N bonds shown as dashed lines.

In compound 2 the discrete complexes are also stacked in columns that proceed along the crystallographic a-axis (Fig. 4[link]). These columns are arranged in layers that are parallel to the ab-plane. The 3-cyano­pyridine solvate mol­ecules are located between these layers and are connected to the complexes via C—H⋯S and O—H⋯N hydrogen bonding where the pyridine N atom is involved (Table 4[link] and Fig. 4[link]). There are additional C—H⋯N inter­actions, but from the distances and angles it is obvious that they correspond to only very weak inter­actions. Within the 3-cyano­pyridine layers, neighboring 3-cyano­pyridine mol­ecules are oriented parallel but shifted relative to each other, preventing ππ inter­actions (Fig. 4[link]).

Table 4
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N21 0.89 (2) 1.88 (2) 2.7615 (14) 175 (2)
O1—H1B⋯S1ii 0.81 (2) 2.62 (2) 3.3184 (9) 145.7 (18)
C11—H11⋯N1 0.95 2.54 3.1243 (16) 120
C11—H11⋯S1iii 0.95 3.03 3.6833 (12) 128
C14—H14⋯S1iv 0.95 2.98 3.7688 (13) 141
C15—H15⋯N1i 0.95 2.67 3.1894 (16) 115
C21—H21⋯S1 0.95 2.92 3.8513 (13) 165
C24—H24⋯N22ii 0.95 2.67 3.3082 (17) 125
C25—H25⋯S1ii 0.95 3.01 3.8056 (13) 142
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) x+1, y, z; (iii) [-x, -y+1, -z+1]; (iv) [-x+1, -y, -z+1].
[Figure 4]
Figure 4
Crystal structure of 2 viewed along the crystallographic a-axis direction with C—H⋯S and O—H⋯N hydrogen bonds shown as dashed lines.

4. Database survey

A search in the CSD (version 5.43, last update November 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) reveals that a number of thio­cyanate coordination compounds with 3-cyano­pyridine have already been reported in the literature and most of these compounds have already been mentioned in the Chemical context section above. This includes discrete complexes with the composition M(NCS)2(C6H4N2)4 (M = Ni, Zn) in which the metal cations are octa­hedrally coordinated by two thio­cyanate anions and four 3-cyano­pyridine coligands (CSD refcode UDABAC, Kilkenny & Nassimbeni, 2001[Kilkenny, M. L. & Nassimbeni, L. R. (2001). J. Chem. Soc. Dalton Trans. pp. 3065-3068.]; UDABAC01, Krebs et al., 2021[Krebs, C., Thiele, S., Ceglarska, M. & Näther, C. (2021). Z. Anorg. Allge Chem. 647, 2122-2129.]; LIPZES, Jochim et al., 2019[Jochim, A., Jess, I. & Näther, C. (2019). Z. Anorg. Allge Chem. 645, 212-218.]). There are additional complexes with the composition M(NCS)2(C6H4N2)4 (M = Ni, Co) that contain solvate mol­ecules (UDABIK, Kilkenny & Nassimbeni, 2001[Kilkenny, M. L. & Nassimbeni, L. R. (2001). J. Chem. Soc. Dalton Trans. pp. 3065-3068.]; UDABEG, Kilkenny & Nassimbeni, 2001[Kilkenny, M. L. & Nassimbeni, L. R. (2001). J. Chem. Soc. Dalton Trans. pp. 3065-3068.]; OBONOK, Diehr et al., 2011[Diehr, S., Wöhlert, S., Boeckmann, J. & Näther, C. (2011). Acta Cryst. E67, m1898.]) as well as one complex of composition Zn(NCS)2(C6H4N2)2(H2O)2 that also contains solvate mol­ecules (LIZNOA; Jochim et al., 2019[Jochim, A., Jess, I. & Näther, C. (2019). Z. Anorg. Allge Chem. 645, 212-218.]).

Additionally, complexes with the composition Ni(NCS)2(C6H4N2)2(X)2 (X = MeCN, OCH3, H2O, OHCH3) are reported, in which the nickel cations are octa­hedrally coordinated by two thio­cyanate anions, two 3-cyano­pyridine coligands and two further coligands (YAXDOU, Krebs et al., 2021[Krebs, C., Thiele, S., Ceglarska, M. & Näther, C. (2021). Z. Anorg. Allge Chem. 647, 2122-2129.]; YAXDIO, Krebs et al., 2021[Krebs, C., Thiele, S., Ceglarska, M. & Näther, C. (2021). Z. Anorg. Allge Chem. 647, 2122-2129.]; YAXCUZ, Krebs et al., 2021[Krebs, C., Thiele, S., Ceglarska, M. & Näther, C. (2021). Z. Anorg. Allge Chem. 647, 2122-2129.]). With CuII, an aqua complex with the composition Cu(NCS)2(C6H4N2)2(H2O)2 is also found (ABOVAR; Handy et al., 2017[Handy, J. V., Ayala, G. & Pike, R. D. (2017). Inorg. Chim. Acta, 456, 64-75.]). One complex of the composition Zn(NCS)2(C6H4N2)2 is reported in which the zinc cations are tetra­hedrally coordinated by two thio­cyanate anions and two 3-cyano­pyridine coligands (LIZNUG; Jochim et al., 2019[Jochim, A., Jess, I. & Näther, C. (2019). Z. Anorg. Allge Chem. 645, 212-218.]).

Furthermore, one structure of the composition Ni(NCS)2(C6H4N2)2 exists in which nickel cations are octa­hedrally coordinated by four thio­cyanate anions and two 3-cyano­pyridine coligands. The nickel cations are linked by pairs of thio­cyanate anions into dinuclear units that are further connected into layers by single bridging anionic ligands (YAXDEK; Krebs et al., 2021[Krebs, C., Thiele, S., Ceglarska, M. & Näther, C. (2021). Z. Anorg. Allge Chem. 647, 2122-2129.]). In a further compound of the composition Cd(NCS)2(C6H4N2)2, the cadmium cations are octa­hedrally coordinated by four thio­cyanate anions and two 3-cyano­pyridine coligands and are linked through two thio­cyanate anions into chains (NURTUS; Jochim et al., 2020[Jochim, A., Jess, I. & Näther, C. (2020). Z. Naturforsch. B, 75, 163-172.]). Two additional compounds with similar chain structures are also listed that contain 3-cyano­pyridine solvate mol­ecules (NURTOM, Jochim et al., 2020[Jochim, A., Jess, I. & Näther, C. (2020). Z. Naturforsch. B, 75, 163-172.]; NURTIG, Jochim et al., 2020[Jochim, A., Jess, I. & Näther, C. (2020). Z. Naturforsch. B, 75, 163-172.]). With Cd(NCS)2, two additional compounds are reported in which Cd(NCS)2 chains are linked by some of the 3-cyano­pyridine ligands into layers (NURVAA and NURVEE; Jochim et al., 2020[Jochim, A., Jess, I. & Näther, C. (2020). Z. Naturforsch. B, 75, 163-172.]). With Mn(NCS)2, the previously mentioned compounds with the composition Mn(NCS)2(C6H4N2)4, Mn(NCS)2(C6H4N2)2(H2O)2-bis­(C6H4N2) solvate and Mn(NCS)2(C6H4N2)(H2O) and Mn(NCS)2(C6H4N2)2(H2O)2 have also been reported (Krebs et al., 2023[Krebs, C., Foltyn, M., Jess, I., Mangelsen, S., Rams, M. & Näther, C. (2023). Inorg. Chim. Acta, 554, 121495.]) but these are not yet listed in the CSD.

5. Physical characterization investigations

Comparison of the experimental powder pattern of 1 and 2 with that calculated from single crystal data shows that both compounds were obtained as pure phases (Figs. 5[link] and 6[link]). For compound 1, the CN stretching vibration of the thio­cyanate anion is observed at 2056 cm−1 and for the cyano­group of the 3-cyano­pyridine ligand at 2234 cm−1 while for compound 2 these values amount to 2238 cm−1 and 2080 cm−1, which is in agreement with the fact that the thio­cyanate anions are only terminally coordinated and that the cyano­group is not involved in the metal coordination (Figs. S1 and S2).

[Figure 5]
Figure 5
Experimental (top) and calculated PXRD patterns (bottom) of 1.
[Figure 6]
Figure 6
Experimental (top) and calculated PXRD patterns (bottom) of 2.

The thermal properties of both compounds were investigated by simultaneous thermogravimetry and differential thermoanalysis (TG–DTA). For compound 1 the measurements reveal three mass losses due to heating that are accompanied with two endothermic (first and second mass loss) and one exothermic (third mass loss) events in the DTA curve (Fig. 7[link] and S3). From the first derivative of the TG curve it is obvious that all mass losses are not well resolved. The first mass loss of 37.3% is slightly higher that that calculated for the removal of two 3-cano­pyridine ligands (Δmcalc.= 35.4%). To identify the inter­mediate formed after the first mass loss we repeated the TG measurement and isolated the residue after the respective mass loss. The residue was then investigated by IR spectroscopy and powder X-ray diffraction (PXRD). The CN stretching vibrations of the thio­cyanate anions are observed at 2105 cm−1 and at 2078cm−1, which indicates that μ-1,3-bridging anionic ligands are present (Fig. S4). For the cyano group, two different values at 2248 cm−1 and 2270 cm−1 are observed, indicating that some of them are coordinated to the metal center, whereas some others are not (Fig. S4). If the experimental powder pattern is compared with those calculated for all thio­cyanate compounds with less 3-cyano­pyridine (Fig. S5) that are reported in the literature (see Database survey), it is evident that this crystalline phase is isotypic to compounds {[Cd(NCS)2]3(C6H4N2)4}n (Jochim et al., 2020[Jochim, A., Jess, I. & Näther, C. (2020). Z. Naturforsch. B, 75, 163-172.]) and {[Mn(NCS)2]3(C6H4N2)4}n (Krebs et al., 2023[Krebs, C., Foltyn, M., Jess, I., Mangelsen, S., Rams, M. & Näther, C. (2023). Inorg. Chim. Acta, 554, 121495.]) already reported in the literature (Fig. S5). In this context, it is surprising that two different CN stretching vibrations for the thio­cyanate anions are observed, because this structure contains only one crystallographically independent anion, but similar observations were made for the corresponding Mn compound (Krebs et al., 2023[Krebs, C., Foltyn, M., Jess, I., Mangelsen, S., Rams, M. & Näther, C. (2023). Inorg. Chim. Acta, 554, 121495.]). However, in the second mass loss the remaining 3-cyano­pyridine ligands are removed and upon further heating Mn(NCS)2 decomposes.

[Figure 7]
Figure 7
TG curves for 1 (top) and 2 (bottom) measured with a 4 °C min−1 heating rate. The mass losses are stated in %.

For compound 2, four mass losses were observed upon heating that are accompanied with three endothermic and one exothermic events in the DTA curve (Figs. 7[link] and S6). The first mass loss of 5.2% is in good agreement with the loss of two water ligands (Δmcalc.= 5.8%). This indicates that compound 1 has been formed. To prove this assumption, a second TG measurement was performed in which the residue formed after the first mass loss was isolated and investigated by IR spectroscopy and PXRD. The IR spectra is very similar to that of compound 1 (compare Figs. S1 and S7) and comparison of the experimental pattern with that calculated for 1 proves that this compound was obtained (Fig. S8). The second mass loss of 44.7% is in excellent agreement with the loss of 2.67 3-cyano­pyridine ligands (Δmcalc.= 44.5%), which indicates that after the second mass loss {[Fe(NCS)2]3(C6H4N2)4}n has been formed. This assumption has been proved through a repetition of the TG measurement, isolation of the residue after the second mass loss and by IR (Fig. S9) as well as PXRD investigations (Fig. S10).

6. Synthesis and crystallization

FeSO4·7H2O and KSCN were purchased from Sigma-Aldrich and 3-cyano­pyrine was purchased from Alfa Aesar.

A microcrystalline powder of 1 was obtained by the reaction of 0.25 mmol of FeSO4·7 H2O (69.5 mg), 0.5 mmol of KSCN (48.6 mg) and 1 mmol (104.1 mg) of 3-cyano­pyridine in 0.5 ml of ethanol. The mixture was stirred for 1 d at room temperature and filtered off. Crystals suitable for single crystal X-ray diffraction were obtained with the same amount of reactants and solvent under hydro­thermal conditions (400 K for 1 d) without stirring.

For 2, a microcrystalline powder was obtained by the reaction of 1 mmol of FeSO4·7H2O (278 mg), 2 mmol of KSCN (194 mg) and 2 mmol (208.2 mg) of 3-cyano­pyridine in 1.5 ml of water. The mixture was filtered off after stirring at room temperature for 2 d. To obtain crystals for singe-crystal X-ray diffraction, 0.25 mmol of FeSO4·7H2O (69.5 mg), 0.5 mmol of KSCN (48.6 mg) and 1 mmol (104.1 mg) of 3-cyano­pyridine were mixed in 1.5 ml of water and heated for 2 d at 403 K under hydro­thermal conditions.

IR spectra of 1 and 2 can be found in Figs. S1 and S2.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The C-bound H atoms were positioned with idealized geometry and were refined isotropically with Uĩso(H) = 1.2Ueq(C) using a riding model. The water H atoms were located in a difference map and refined isotropically with freely varying coordinates.

Table 5
Experimental details

  1 2
Crystal data
Chemical formula [Fe(NCS)2(C6H4N2)4] [Fe(NCS)2(C6H4N2)2(H2O)2]·2C6H4N2
Mr 588.46 624.49
Crystal system, space group Orthorhombic, Pna21 Triclinic, P[\overline{1}]
Temperature (K) 100 100
a, b, c (Å) 20.3549 (2), 10.2084 (1), 13.0310 (1) 8.1065 (1), 8.2880 (1), 11.4347 (2)
α, β, γ (°) 90, 90, 90 84.765 (1), 77.787 (1), 70.826 (1)
V3) 2707.72 (4) 709.02 (2)
Z 4 1
Radiation type Cu Kα Cu Kα
μ (mm−1) 6.21 6.01
Crystal size (mm) 0.10 × 0.08 × 0.06 0.11 × 0.10 × 0.08
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction.])
Tmin, Tmax 0.745, 1.000 0.727, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 26794, 5727, 5676 29397, 2999, 2999
Rint 0.019 0.022
(sin θ/λ)max−1) 0.639 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.074, 1.06 0.022, 0.060, 1.15
No. of reflections 5727 2999
No. of parameters 352 196
No. of restraints 1 0
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.29 0.29, −0.25
Absolute structure Classical Flack method preferred over Parsons because s.u. lower
Absolute structure parameter −0.001 (3)
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction.]), SHELXT2014/5 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.42.90a (Rigaku OD, 2023) for (1); CrysAlis PRO 1.171.42.100a (Rigaku OD, 2023) for (2). Cell refinement: CrysAlis PRO 1.171.42.90a (Rigaku OD, 2023) for (1); CrysAlis PRO 1.171.42.100a (Rigaku OD, 2023) for (2). Data reduction: CrysAlis PRO 1.171.42.90a (Rigaku OD, 2023) for (1); CrysAlis PRO 1.171.42.100a (Rigaku OD, 2023) for (2). For both structures, program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015b); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015a); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Tetrakis(pyridine-3-carbonitrile)dithiocyanatoiron(II) (1) top
Crystal data top
[Fe(NCS)2(C6H4N2)4]Dx = 1.444 Mg m3
Mr = 588.46Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, Pna21Cell parameters from 22008 reflections
a = 20.3549 (2) Åθ = 4.3–79.7°
b = 10.2084 (1) ŵ = 6.21 mm1
c = 13.0310 (1) ÅT = 100 K
V = 2707.72 (4) Å3Block, yellow
Z = 40.10 × 0.08 × 0.06 mm
F(000) = 1200
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
5727 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source5676 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.019
Detector resolution: 10.0000 pixels mm-1θmax = 80.1°, θmin = 4.3°
ω scansh = 2524
Absorption correction: multi-scan
(CrysalisPro; Rigaku OD, 2023)
k = 1313
Tmin = 0.745, Tmax = 1.000l = 1615
26794 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0521P)2 + 0.7383P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.24 e Å3
5727 reflectionsΔρmin = 0.29 e Å3
352 parametersAbsolute structure: Classical Flack method preferred over Parsons because s.u. lower
1 restraintAbsolute structure parameter: 0.001 (3)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.61644 (2)0.57715 (4)0.50208 (3)0.01625 (10)
N10.60947 (11)0.5803 (2)0.34404 (18)0.0220 (5)
C10.60437 (12)0.5722 (2)0.2549 (2)0.0182 (5)
S10.59757 (3)0.56051 (6)0.13118 (5)0.02232 (13)
N20.62205 (11)0.5735 (2)0.66062 (18)0.0207 (5)
C20.61060 (12)0.5872 (2)0.7474 (2)0.0184 (5)
S20.59268 (4)0.60626 (6)0.86779 (5)0.02877 (15)
N110.51976 (9)0.68579 (19)0.51593 (16)0.0186 (4)
C110.47464 (12)0.6794 (2)0.44172 (17)0.0193 (4)
H110.4851600.6340240.3802440.023*
C120.41249 (12)0.7369 (2)0.45077 (19)0.0203 (5)
C130.39634 (12)0.8027 (2)0.5405 (2)0.0218 (5)
H130.3541120.8406740.5492910.026*
C140.44349 (12)0.8114 (2)0.61682 (19)0.0227 (5)
H140.4343680.8569330.6787830.027*
C150.50423 (12)0.7527 (2)0.60161 (18)0.0214 (5)
H150.5363720.7601560.6541470.026*
C160.36587 (13)0.7271 (2)0.3681 (2)0.0233 (5)
N120.32775 (12)0.7231 (2)0.30298 (19)0.0312 (5)
N210.57491 (9)0.37054 (19)0.50576 (17)0.0190 (4)
C210.54990 (11)0.3198 (2)0.59197 (19)0.0198 (4)
H210.5476280.3736020.6513700.024*
C220.52700 (11)0.1912 (2)0.59825 (19)0.0210 (5)
C230.53071 (12)0.1103 (2)0.5122 (2)0.0244 (5)
H230.5160950.0219920.5147190.029*
C240.55633 (13)0.1629 (2)0.4232 (2)0.0258 (5)
H240.5594090.1111950.3627870.031*
C250.57755 (13)0.2922 (2)0.4227 (2)0.0231 (5)
H250.5947980.3271450.3607630.028*
C260.49712 (13)0.1461 (3)0.6918 (2)0.0250 (5)
N220.47136 (13)0.1104 (2)0.7652 (2)0.0325 (5)
N310.71545 (9)0.4783 (2)0.49342 (16)0.0208 (4)
C310.75413 (12)0.4869 (2)0.4104 (2)0.0219 (5)
H310.7386160.5334810.3521420.026*
C320.81617 (13)0.4300 (2)0.4066 (2)0.0237 (5)
C330.84021 (12)0.3634 (3)0.4921 (2)0.0275 (5)
H330.8827450.3250460.4915730.033*
C340.80029 (14)0.3547 (3)0.5778 (2)0.0293 (5)
H340.8150360.3102880.6375840.035*
C350.73825 (13)0.4119 (2)0.5752 (2)0.0248 (5)
H350.7107690.4036110.6337450.030*
C360.85443 (14)0.4395 (3)0.3136 (2)0.0285 (6)
N320.88400 (12)0.4469 (3)0.2389 (2)0.0368 (6)
N410.67037 (9)0.76769 (19)0.49903 (17)0.0190 (4)
C410.66633 (11)0.8538 (2)0.42188 (19)0.0212 (4)
H410.6352850.8387710.3687330.025*
C420.70611 (12)0.9649 (3)0.4167 (2)0.0220 (5)
C430.75141 (12)0.9892 (3)0.4943 (2)0.0263 (5)
H430.7791621.0640130.4920900.032*
C440.75473 (13)0.9008 (3)0.5748 (2)0.0273 (5)
H440.7846040.9145850.6297640.033*
C450.71398 (12)0.7922 (3)0.5742 (2)0.0229 (5)
H450.7169650.7319570.6296110.027*
C460.70086 (13)1.0523 (3)0.3298 (2)0.0260 (5)
N420.69645 (12)1.1210 (3)0.2610 (2)0.0350 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01820 (17)0.01806 (17)0.01250 (17)0.00105 (13)0.00061 (15)0.00084 (13)
N10.0273 (11)0.0241 (11)0.0147 (12)0.0001 (8)0.0005 (8)0.0004 (7)
C10.0154 (10)0.0165 (11)0.0225 (15)0.0006 (8)0.0018 (9)0.0016 (9)
S10.0246 (3)0.0278 (3)0.0145 (3)0.0040 (2)0.0001 (2)0.0018 (2)
N20.0233 (10)0.0220 (11)0.0167 (11)0.0001 (8)0.0013 (7)0.0010 (7)
C20.0208 (11)0.0159 (11)0.0185 (14)0.0020 (8)0.0029 (9)0.0024 (9)
S20.0467 (4)0.0235 (3)0.0162 (3)0.0019 (3)0.0055 (3)0.0007 (3)
N110.0195 (8)0.0169 (9)0.0196 (10)0.0021 (7)0.0008 (7)0.0002 (7)
C110.0222 (11)0.0183 (10)0.0175 (11)0.0019 (8)0.0008 (8)0.0011 (8)
C120.0210 (11)0.0187 (11)0.0210 (12)0.0023 (8)0.0002 (9)0.0008 (9)
C130.0233 (11)0.0177 (11)0.0243 (12)0.0001 (9)0.0002 (9)0.0006 (9)
C140.0286 (12)0.0189 (11)0.0206 (12)0.0012 (9)0.0004 (9)0.0040 (9)
C150.0251 (11)0.0193 (10)0.0199 (11)0.0022 (9)0.0021 (9)0.0013 (9)
C160.0260 (12)0.0195 (11)0.0245 (12)0.0018 (9)0.0002 (10)0.0001 (10)
N120.0324 (12)0.0298 (11)0.0314 (13)0.0020 (10)0.0101 (10)0.0030 (9)
N210.0187 (8)0.0200 (9)0.0182 (9)0.0009 (7)0.0006 (7)0.0000 (8)
C210.0197 (10)0.0197 (11)0.0201 (11)0.0005 (8)0.0015 (8)0.0020 (9)
C220.0197 (10)0.0203 (11)0.0230 (12)0.0006 (8)0.0039 (9)0.0018 (9)
C230.0264 (11)0.0193 (11)0.0276 (13)0.0010 (9)0.0038 (10)0.0011 (10)
C240.0327 (13)0.0204 (12)0.0244 (12)0.0013 (10)0.0036 (10)0.0037 (10)
C250.0284 (12)0.0219 (12)0.0191 (11)0.0001 (9)0.0037 (9)0.0001 (9)
C260.0284 (12)0.0185 (11)0.0280 (13)0.0004 (9)0.0060 (10)0.0019 (10)
N220.0417 (14)0.0225 (11)0.0333 (13)0.0015 (9)0.0141 (10)0.0011 (9)
N310.0208 (9)0.0207 (9)0.0210 (10)0.0006 (7)0.0005 (8)0.0005 (8)
C310.0219 (11)0.0206 (11)0.0232 (11)0.0020 (9)0.0021 (9)0.0010 (9)
C320.0223 (12)0.0216 (12)0.0274 (14)0.0017 (9)0.0038 (10)0.0050 (9)
C330.0246 (11)0.0255 (11)0.0324 (14)0.0068 (10)0.0025 (10)0.0063 (10)
C340.0328 (13)0.0287 (13)0.0263 (13)0.0102 (11)0.0037 (10)0.0002 (11)
C350.0278 (12)0.0248 (11)0.0219 (12)0.0048 (10)0.0026 (10)0.0001 (10)
C360.0234 (13)0.0257 (12)0.0363 (15)0.0005 (9)0.0058 (11)0.0049 (11)
N320.0333 (13)0.0315 (12)0.0456 (16)0.0010 (9)0.0146 (11)0.0031 (11)
N410.0182 (8)0.0193 (9)0.0196 (8)0.0012 (7)0.0011 (8)0.0018 (8)
C410.0195 (10)0.0224 (11)0.0217 (11)0.0011 (9)0.0003 (9)0.0011 (10)
C420.0212 (10)0.0228 (11)0.0221 (12)0.0003 (9)0.0037 (9)0.0042 (10)
C430.0231 (11)0.0271 (12)0.0288 (13)0.0069 (9)0.0007 (10)0.0023 (10)
C440.0240 (12)0.0329 (13)0.0250 (13)0.0080 (10)0.0047 (10)0.0025 (11)
C450.0230 (11)0.0242 (11)0.0215 (11)0.0018 (9)0.0030 (9)0.0028 (10)
C460.0241 (12)0.0241 (12)0.0297 (14)0.0011 (9)0.0041 (10)0.0039 (11)
N420.0339 (12)0.0356 (13)0.0356 (14)0.0006 (10)0.0048 (10)0.0130 (11)
Geometric parameters (Å, º) top
Fe1—N12.065 (2)C23—C241.380 (4)
Fe1—N22.069 (2)C24—H240.9500
Fe1—N112.2660 (19)C24—C251.389 (4)
Fe1—N212.273 (2)C25—H250.9500
Fe1—N312.257 (2)C26—N221.149 (4)
Fe1—N412.2339 (19)N31—C311.341 (3)
N1—C11.169 (4)N31—C351.346 (3)
C1—S11.622 (3)C31—H310.9500
N2—C21.163 (4)C31—C321.391 (4)
C2—S21.622 (3)C32—C331.394 (4)
N11—C111.335 (3)C32—C361.444 (4)
N11—C151.347 (3)C33—H330.9500
C11—H110.9500C33—C341.384 (4)
C11—C121.399 (3)C34—H340.9500
C12—C131.388 (3)C34—C351.392 (4)
C12—C161.439 (3)C35—H350.9500
C13—H130.9500C36—N321.146 (4)
C13—C141.385 (4)N41—C411.338 (3)
C14—H140.9500N41—C451.345 (3)
C14—C151.388 (3)C41—H410.9500
C15—H150.9500C41—C421.395 (4)
C16—N121.151 (4)C42—C431.390 (4)
N21—C211.338 (3)C42—C461.447 (4)
N21—C251.346 (3)C43—H430.9500
C21—H210.9500C43—C441.386 (4)
C21—C221.396 (3)C44—H440.9500
C22—C231.395 (3)C44—C451.385 (4)
C22—C261.438 (3)C45—H450.9500
C23—H230.9500C46—N421.141 (4)
N1—Fe1—N2179.21 (9)C24—C23—C22117.7 (2)
N1—Fe1—N1190.70 (8)C24—C23—H23121.1
N1—Fe1—N2190.56 (8)C23—C24—H24120.3
N1—Fe1—N3191.05 (8)C23—C24—C25119.4 (2)
N1—Fe1—N4190.15 (9)C25—C24—H24120.3
N2—Fe1—N1188.70 (8)N21—C25—C24123.3 (2)
N2—Fe1—N2189.00 (8)N21—C25—H25118.4
N2—Fe1—N3189.57 (8)C24—C25—H25118.4
N2—Fe1—N4190.37 (8)N22—C26—C22177.9 (3)
N11—Fe1—N2197.44 (7)C31—N31—Fe1122.38 (17)
N31—Fe1—N11176.72 (7)C31—N31—C35118.0 (2)
N31—Fe1—N2185.31 (7)C35—N31—Fe1119.59 (17)
N41—Fe1—N1190.12 (7)N31—C31—H31118.8
N41—Fe1—N21172.40 (7)N31—C31—C32122.3 (2)
N41—Fe1—N3187.11 (7)C32—C31—H31118.8
Fe1—N1—C1175.0 (2)C31—C32—C33119.6 (2)
N1—C1—S1179.7 (3)C31—C32—C36119.4 (3)
Fe1—N2—C2163.2 (2)C33—C32—C36121.0 (2)
N2—C2—S2178.6 (2)C32—C33—H33121.0
C11—N11—Fe1121.06 (16)C34—C33—C32118.0 (2)
C11—N11—C15117.6 (2)C34—C33—H33121.0
C15—N11—Fe1121.22 (16)C33—C34—H34120.5
N11—C11—H11118.6C33—C34—C35119.1 (3)
N11—C11—C12122.7 (2)C35—C34—H34120.5
C12—C11—H11118.6N31—C35—C34122.9 (3)
C11—C12—C16120.3 (2)N31—C35—H35118.5
C13—C12—C11119.2 (2)C34—C35—H35118.5
C13—C12—C16120.5 (2)N32—C36—C32179.0 (3)
C12—C13—H13120.9C41—N41—Fe1123.72 (16)
C14—C13—C12118.2 (2)C41—N41—C45117.8 (2)
C14—C13—H13120.9C45—N41—Fe1118.22 (16)
C13—C14—H14120.4N41—C41—H41118.8
C13—C14—C15119.1 (2)N41—C41—C42122.3 (2)
C15—C14—H14120.4C42—C41—H41118.8
N11—C15—C14123.1 (2)C41—C42—C46119.7 (2)
N11—C15—H15118.4C43—C42—C41119.7 (2)
C14—C15—H15118.4C43—C42—C46120.5 (2)
N12—C16—C12177.8 (3)C42—C43—H43121.1
C21—N21—Fe1121.22 (16)C44—C43—C42117.8 (2)
C21—N21—C25117.4 (2)C44—C43—H43121.1
C25—N21—Fe1121.28 (17)C43—C44—H44120.4
N21—C21—H21118.6C45—C44—C43119.2 (2)
N21—C21—C22122.7 (2)C45—C44—H44120.4
C22—C21—H21118.6N41—C45—C44123.2 (2)
C21—C22—C26119.5 (2)N41—C45—H45118.4
C23—C22—C21119.5 (2)C44—C45—H45118.4
C23—C22—C26121.0 (2)N42—C46—C42179.7 (3)
C22—C23—H23121.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···N10.952.633.190 (3)118
C15—H15···N20.952.583.113 (3)115
C21—H21···N20.952.543.108 (3)118
C24—H24···N22i0.952.673.514 (4)148
C25—H25···N10.952.613.181 (3)119
C31—H31···N10.952.673.214 (3)117
C35—H35···N20.952.533.091 (3)118
C35—H35···N12ii0.952.673.538 (4)151
C41—H41···N22iii0.952.613.487 (3)154
C44—H44···S1iv0.952.823.498 (3)129
C45—H45···N20.952.553.123 (3)119
Symmetry codes: (i) x+1, y, z1/2; (ii) x+1, y+1, z+1/2; (iii) x+1, y+1, z1/2; (iv) x+3/2, y+1/2, z+1/2.
Diaquabis(pyridine-3-carbonitrile)dithiocyanatoiron(II) pyridine-3-carbonitrile monosolvate (2) top
Crystal data top
[Fe(NCS)2(C6H4N2)2(H2O)2]·2C6H4N2Z = 1
Mr = 624.49F(000) = 320
Triclinic, P1Dx = 1.463 Mg m3
a = 8.1065 (1) ÅCu Kα radiation, λ = 1.54184 Å
b = 8.2880 (1) ÅCell parameters from 25131 reflections
c = 11.4347 (2) Åθ = 4.0–79.7°
α = 84.765 (1)°µ = 6.01 mm1
β = 77.787 (1)°T = 100 K
γ = 70.826 (1)°Block, yellow
V = 709.02 (2) Å30.11 × 0.10 × 0.08 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
2999 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2999 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.022
Detector resolution: 10.0000 pixels mm-1θmax = 80.4°, θmin = 4.0°
ω scansh = 1010
Absorption correction: multi-scan
(CrysalisPro; Rigaku OD, 2023)
k = 1010
Tmin = 0.727, Tmax = 1.000l = 1114
29397 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0302P)2 + 0.2457P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.060(Δ/σ)max = 0.001
S = 1.15Δρmax = 0.29 e Å3
2999 reflectionsΔρmin = 0.24 e Å3
196 parametersExtinction correction: SHELXL-2016/6 (Sheldrick 2016), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0036 (4)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.5000000.5000000.5000000.01216 (8)
N10.23749 (14)0.50517 (14)0.58058 (10)0.0175 (2)
C10.10930 (16)0.48617 (15)0.64015 (11)0.0145 (2)
S10.06651 (4)0.45890 (4)0.72985 (3)0.01772 (9)
O10.58744 (12)0.38660 (11)0.65983 (8)0.01684 (18)
N110.55002 (13)0.24567 (12)0.42347 (9)0.0137 (2)
C110.41230 (15)0.20838 (15)0.39913 (10)0.0144 (2)
H110.2954300.2845140.4239360.017*
C120.43436 (16)0.06162 (15)0.33861 (11)0.0151 (2)
C130.60473 (17)0.05288 (15)0.30294 (11)0.0179 (2)
H130.6227990.1541270.2623620.022*
C140.74656 (16)0.01402 (16)0.32865 (12)0.0183 (2)
H140.8646680.0888370.3060600.022*
C150.71430 (16)0.13553 (15)0.38781 (11)0.0163 (2)
H150.8129980.1614140.4039310.020*
C160.27896 (17)0.03358 (16)0.31361 (12)0.0195 (3)
N120.15470 (16)0.01357 (16)0.29369 (12)0.0292 (3)
N210.40361 (14)0.59653 (13)0.85071 (9)0.0177 (2)
C210.22852 (17)0.62145 (16)0.88138 (11)0.0176 (2)
H210.1765350.5643930.8384770.021*
C220.11976 (16)0.72784 (15)0.97378 (11)0.0160 (2)
C230.19423 (17)0.81232 (16)1.03776 (11)0.0177 (2)
H230.1228700.8851801.1014620.021*
C240.37532 (17)0.78663 (16)1.00549 (12)0.0190 (3)
H240.4309070.8422361.0466360.023*
C250.47433 (16)0.67873 (16)0.91238 (11)0.0177 (2)
H250.5985010.6619920.8910420.021*
C260.06797 (17)0.74885 (16)1.00254 (11)0.0191 (3)
N220.21762 (15)0.76797 (16)1.02557 (11)0.0256 (3)
H1A0.531 (3)0.450 (3)0.724 (2)0.045 (6)*
H1B0.693 (3)0.369 (3)0.6554 (18)0.042 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01011 (13)0.01477 (14)0.01245 (14)0.00513 (10)0.00059 (9)0.00395 (9)
N10.0134 (5)0.0216 (5)0.0188 (5)0.0079 (4)0.0004 (4)0.0065 (4)
C10.0146 (5)0.0146 (5)0.0155 (6)0.0034 (4)0.0054 (4)0.0043 (4)
S10.01226 (14)0.02427 (16)0.01741 (16)0.00805 (11)0.00037 (10)0.00184 (11)
O10.0146 (4)0.0193 (4)0.0166 (4)0.0046 (3)0.0025 (3)0.0045 (3)
N110.0132 (5)0.0148 (5)0.0131 (5)0.0048 (4)0.0013 (4)0.0020 (4)
C110.0134 (5)0.0162 (5)0.0137 (6)0.0048 (4)0.0023 (4)0.0018 (4)
C120.0159 (6)0.0173 (5)0.0141 (6)0.0077 (5)0.0025 (4)0.0018 (4)
C130.0188 (6)0.0160 (6)0.0190 (6)0.0064 (5)0.0004 (5)0.0046 (5)
C140.0141 (5)0.0161 (6)0.0223 (6)0.0029 (4)0.0000 (5)0.0038 (5)
C150.0132 (5)0.0192 (6)0.0172 (6)0.0066 (5)0.0019 (4)0.0013 (5)
C160.0188 (6)0.0182 (6)0.0217 (6)0.0058 (5)0.0019 (5)0.0074 (5)
N120.0209 (6)0.0302 (6)0.0397 (7)0.0088 (5)0.0059 (5)0.0151 (5)
N210.0180 (5)0.0207 (5)0.0139 (5)0.0057 (4)0.0024 (4)0.0019 (4)
C210.0191 (6)0.0207 (6)0.0153 (6)0.0084 (5)0.0041 (5)0.0019 (5)
C220.0152 (6)0.0189 (6)0.0152 (6)0.0073 (5)0.0034 (4)0.0005 (4)
C230.0181 (6)0.0193 (6)0.0162 (6)0.0068 (5)0.0015 (5)0.0040 (5)
C240.0183 (6)0.0225 (6)0.0194 (6)0.0097 (5)0.0045 (5)0.0029 (5)
C250.0147 (5)0.0213 (6)0.0172 (6)0.0066 (5)0.0026 (4)0.0006 (5)
C260.0198 (6)0.0216 (6)0.0180 (6)0.0084 (5)0.0037 (5)0.0031 (5)
N220.0188 (6)0.0314 (6)0.0290 (6)0.0103 (5)0.0041 (5)0.0055 (5)
Geometric parameters (Å, º) top
Fe1—N1i2.1207 (10)C13—C141.3841 (17)
Fe1—N12.1207 (10)C14—H140.9500
Fe1—O1i2.1267 (9)C14—C151.3883 (17)
Fe1—O12.1267 (9)C15—H150.9500
Fe1—N112.2358 (10)C16—N121.1435 (18)
Fe1—N11i2.2358 (10)N21—C211.3380 (16)
N1—C11.1649 (17)N21—C251.3436 (16)
C1—S11.6387 (12)C21—H210.9500
O1—H1A0.89 (2)C21—C221.3916 (18)
O1—H1B0.81 (2)C22—C231.3956 (17)
N11—C111.3390 (15)C22—C261.4419 (17)
N11—C151.3463 (15)C23—H230.9500
C11—H110.9500C23—C241.3844 (17)
C11—C121.3960 (16)C24—H240.9500
C12—C131.3949 (17)C24—C251.3850 (18)
C12—C161.4421 (17)C25—H250.9500
C13—H130.9500C26—N221.1456 (17)
N1i—Fe1—N1180.0C13—C12—C16121.70 (11)
N1—Fe1—O189.42 (4)C12—C13—H13121.1
N1i—Fe1—O190.58 (4)C14—C13—C12117.77 (11)
N1—Fe1—O1i90.58 (4)C14—C13—H13121.1
N1i—Fe1—O1i89.42 (4)C13—C14—H14120.4
N1—Fe1—N1189.86 (4)C13—C14—C15119.26 (11)
N1i—Fe1—N1190.14 (4)C15—C14—H14120.4
N1i—Fe1—N11i89.86 (4)N11—C15—C14123.23 (11)
N1—Fe1—N11i90.14 (4)N11—C15—H15118.4
O1i—Fe1—O1180.0C14—C15—H15118.4
O1i—Fe1—N1187.62 (3)N12—C16—C12179.12 (14)
O1i—Fe1—N11i92.38 (3)C21—N21—C25117.81 (11)
O1—Fe1—N1192.38 (3)N21—C21—H21118.8
O1—Fe1—N11i87.62 (3)N21—C21—C22122.43 (11)
N11—Fe1—N11i180.0C22—C21—H21118.8
Fe1—N1—C1167.09 (10)C21—C22—C23119.45 (11)
N1—C1—S1177.12 (11)C21—C22—C26119.67 (11)
Fe1—O1—H1A113.2 (14)C23—C22—C26120.87 (11)
Fe1—O1—H1B112.3 (14)C22—C23—H23121.0
H1A—O1—H1B106.9 (19)C24—C23—C22117.93 (12)
C11—N11—Fe1118.64 (8)C24—C23—H23121.0
C11—N11—C15117.74 (10)C23—C24—H24120.5
C15—N11—Fe1123.18 (8)C23—C24—C25119.07 (11)
N11—C11—H11118.8C25—C24—H24120.5
N11—C11—C12122.34 (11)N21—C25—C24123.30 (11)
C12—C11—H11118.8N21—C25—H25118.3
C11—C12—C16118.64 (11)C24—C25—H25118.3
C13—C12—C11119.66 (11)N22—C26—C22179.03 (14)
Fe1—N11—C11—C12172.36 (9)C16—C12—C13—C14178.74 (12)
Fe1—N11—C15—C14172.87 (9)N21—C21—C22—C230.10 (19)
N11—C11—C12—C130.88 (18)N21—C21—C22—C26179.84 (11)
N11—C11—C12—C16178.52 (11)C21—N21—C25—C240.17 (18)
C11—N11—C15—C140.63 (18)C21—C22—C23—C240.31 (18)
C11—C12—C13—C140.64 (18)C22—C23—C24—C250.28 (19)
C12—C13—C14—C150.17 (18)C23—C24—C25—N210.04 (19)
C13—C14—C15—N110.84 (19)C25—N21—C21—C220.14 (18)
C15—N11—C11—C120.24 (17)C26—C22—C23—C24179.96 (12)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N210.89 (2)1.88 (2)2.7615 (14)175 (2)
O1—H1B···S1ii0.81 (2)2.62 (2)3.3184 (9)145.7 (18)
C11—H11···N10.952.543.1243 (16)120
C11—H11···S1iii0.953.033.6833 (12)128
C14—H14···S1iv0.952.983.7688 (13)141
C15—H15···N1i0.952.673.1894 (16)115
C21—H21···S10.952.923.8513 (13)165
C24—H24···N22ii0.952.673.3082 (17)125
C25—H25···S1ii0.953.013.8056 (13)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x, y+1, z+1; (iv) x+1, y, z+1.
 

Acknowledgements

This work was supported by the State of Schleswig-Holstein.

References

First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDiehr, S., Wöhlert, S., Boeckmann, J. & Näther, C. (2011). Acta Cryst. E67, m1898.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGonzález, R., Acosta, A., Chiozzone, R., Kremer, C., Armentano, D., De Munno, G., Julve, M., Lloret, F. & Faus, J. (2012). Inorg. Chem. 51, 5737–5747.  PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHandy, J. V., Ayala, G. & Pike, R. D. (2017). Inorg. Chim. Acta, 456, 64–75.  Web of Science CSD CrossRef CAS Google Scholar
First citationJochim, A., Jess, I. & Näther, C. (2019). Z. Anorg. Allge Chem. 645, 212–218.  CrossRef CAS Google Scholar
First citationJochim, A., Jess, I. & Näther, C. (2020). Z. Naturforsch. B, 75, 163–172.  CrossRef CAS Google Scholar
First citationKabešová, M. & Gažo, J. (1980). Chemical Papers. 34, 800–841.  Google Scholar
First citationKilkenny, M. L. & Nassimbeni, L. R. (2001). J. Chem. Soc. Dalton Trans. pp. 3065–3068.  Web of Science CSD CrossRef Google Scholar
First citationKrebs, C., Foltyn, M., Jess, I., Mangelsen, S., Rams, M. & Näther, C. (2023). Inorg. Chim. Acta, 554, 121495.  CrossRef Google Scholar
First citationKrebs, C., Thiele, S., Ceglarska, M. & Näther, C. (2021). Z. Anorg. Allge Chem. 647, 2122–2129.  CrossRef CAS Google Scholar
First citationMautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436–442.  Web of Science CSD CrossRef CAS Google Scholar
First citationNäther, C. & Jess, I. (2004). Eur. J. Inorg. Chem. 2004, 2868–2876.  Google Scholar
First citationNäther, C., Jess, I. & Greve, J. (2001). Polyhedron, 20, 1017–1022.  Web of Science CrossRef CAS Google Scholar
First citationPalion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.  CAS Google Scholar
First citationRams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. A Eur. J. 26, 2837–2851.  CrossRef CAS Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333–17342.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Runčevski, T., Dinnebier, R., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015). Eur. J. Inorg. Chem. 2015, 3236–3245.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWöhlert, S., Peters, L. & Näther, C. (2013). Dalton Trans. 42, 10746–10758.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds