research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-methyl-1H-imidazol-3-ium 3,5-di­carb­­oxy­benzoate

crossmark logo

aSchool of Physics, V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61022, Ukraine, bDeutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, and cInstitut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, Göttingen, 37077, Germany
*Correspondence e-mail: jose.velazquez@desy.de

Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 31 July 2023; accepted 19 October 2023; online 31 October 2023)

The structure of the title salt, C4H7N2+·C9H5O6 (1), is reported. The compound is built from a protonated 2-methyl­imidazole and a singly deprotonated trimesic acid. Detailed analysis of bond distances and angles for both ions reveals subtle differences compared with their neutral mol­ecule counterpart. Analysis of the crystal packing in compound 1 reveals the formation of undulating chains by the ions through hydrogen bonding. The chains stack along the b axis through ππ inter­actions and inter­connect with other chains in an out-of-phase arrangement along the ac plane through further hydrogen-bonding inter­actions.

1. Chemical context

Trimesic acid, also known as 1,3,5-benzene­tri­carb­oxy­lic acid (Hbtc), and 2-methyl­imidazole (mIm) are two well-known organic compounds with significant applications in various industries. For example, mIm, a nitro­gen-containing heterocyclic organic compound, serves as a versatile chemical inter­mediate that is used extensively in the synthesis of pharmaceuticals, photographic and photothermographic chemicals, dyes and pigments, agricultural chemicals, and in rubber production (Hachuła et al., 2010[Hachuła, B., Nowak, M. & Kusz, J. (2010). J. Chem. Crystallogr. 40, 201-206.]; Chan, 2004[Chan, P. C. (2004). TOXIC Rep. Ser. 1-G12.]). On the other hand, Hbtc is a planar and highly symmetrical trifunctional compound, which finds use in coating materials, adhesives, plastics, and even in the pharmaceutical industry for drugs and gene carriers. Notably, some dendrimers based on Hbtc have been employed as biomolecular delivery systems (Salamończyk, 2011[Salamończyk, G. M. (2011). Tetrahedron Lett. 52, 155-158.]; Mat Yusuf et al., 2017[Mat Yusuf, S., Ng, Y., Ayub, A., Ngalim, S. & Lim, V. (2017). Polymers, 9, 311. https://doi.org/10.3390/polym9080311]). Both Hbtc and mIm are also well-established ligands frequently employed in the synthesis of metal–organic frameworks (MOFs). For example, mIm is used in the synthesis of ZIF-8 (zeolitic imidazolate framework − 8; Park et al., 2006[Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O'Keeffe, M. & Yaghi, O. M. (2006). Proc. Natl Acad. Sci. USA, 103, 10186-10191.]), while Hbtc is employed in the production of HKUST-1 (Hong Kong University of Science and Technology − 1; Chui et al., 1999[Chui, S. S.-Y., Lo, S. M.-F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. (1999). Science, 283, 1148-1150.]).

[Scheme 1]

In a previous publication, we reported the complex hexa­aqua­cobalt bis­(2-methyl-1H-imidazol-3-ium) tetra­aqua­bis­(benzene-1,3,5-tri­carboxyl­ato-κO)cobalt (2), synthesized at ambient conditions (Velazquez-Garcia & Techert, 2022[Velazquez-Garcia, J. de J. & Techert, S. (2022). Acta Cryst. E78, 814-817.]). That work led us to modify the synthesis of the complex, resulting in the unexpected synthesis of the title compound.

2. Structural commentary

Compound 1 crystallizes with one singly deprotonated trimesate (btc) mol­ecule and one 2-methyl-1H-imidazol-3-ium (HmIm) mol­ecule in the asymmetric unit, space group C2/c. An ellipsoid plot illustrating these mol­ecules can be seen in Fig. 1[link]. The hydrogen atoms attached to O2 and O3 lie in close vicinity to an inversion center or twofold axis, respectively, and as a consequence, each is disordered between two neighboring mol­ecules with equal occupancy.

[Figure 1]
Figure 1
The mol­ecular structure of 1 with displacement ellipsoids drawn at the 50% probability level.

Table 1[link] exhibits selected bond distances and angles of the btc ion. Among these bonds, the shortest non-hydrogen bond occurs between C9 and O6 with 1.224 (2) Å, while the largest is between C1 and C7 with 1.511 (2) Å. The O—C and C—C bond lengths are in the ranges 1.224 (2)–1.320 (2) Å and 1.388 (2)–1.511 (2) Å, respectively. These distances are slightly larger than those corresponding to the reported Hbtc mol­ecule (Tothadi et al., 2020[Tothadi, S., Koner, K., Dey, K., Addicoat, M. & Banerjee, R. (2020). Appl. Mater. Interfaces, 12, 15588-15594.]), which range between 1.229 (5) and 1.303 (5) Å for the O—C bond distances and between 1.381 (6) and 1.494 (9) Å for the C—C bond distances. Additionally, Hbtc exhibits O—C—O angles of the carboxyl­ate group ranging from 124.4 (4) to 125.0 (4)° and C—C—C angles of the aromatic ring ranging from 119.0 (4) to 121.1 (4)°, while btc shows slightly wider ranges with O—C—O falling in the 123.9 (2)–126.1 (2)° range and C—C—C angles in the 118.9 (2)–121.4 (4)° range.

Table 1
Selected bond lengths (Å), bond angles (°), and torsion angles (°) of the btc ion

C1—C6 1.388 (2) C2—C3—C4 118.91 (16)
C1—C7 1.511 (2) C2—C1—C6 119.22 (16)
C2—C1 1.391 (3) C5—C4—C3 120.01 (16)
C2—C3 1.393 (2) C1—C6—C5 120.09 (16)
C4—C5 1.393 (3) C4—C5—C6 120.36 (16)
C4—C3 1.396 (2) C1—C2—C3 121.37 (17)
C6—C5 1.392 (2) C2—C1—C7—O1 −168.16 (17)
C8—C3 1.505 (3) C2—C1—C7—O2 12.3 (3)
C9—C5 1.485 (2) C6—C1—C7—O1 10.5 (2)
O1—C7 1.236 (2) C6—C1—C7—O2 −169.07 (16)
O2—C7 1.279 (2) O3—C8—C3—C2 4.4 (2)
O3—C8 1.277 (2) O3—C8—C3—C4 −174.16 (17)
O4—C8 1.247 (2) O4—C8—C3—C2 −175.82 (17)
O5—C9 1.320 (2) O4—C8—C3—C4 5.7 (3)
O6—C9 1.224 (2) O5—C9—C5—C4 −16.1 (2)
O1—C7—O2 126.09 (16) O5—C9—C5—C6 165.92 (15)
O4—C8—O3 124.26 (15) O6—C9—C5—C4 163.43 (17)
O5—C9—O6 123.87 (16) O6—C9—C5—C6 −14.5 (3)

The main difference between the Hbtc mol­ecule of Tothadi and co-workers and the btc ion within the present compound lies in their torsion angles. In the Hbtc mol­ecule, the oxygen atoms are nearly coplanar with the aromatic ring, with torsion angles deviating from 0 or 180° by no more than 4.2 (4)°. In contrast, the btc ion in compound 1 shows a wider deviation range, spanning from 4.2 (2) to 16.6 (2)°. Oxygen atoms O3 and O4 in 1 are the most coplanar with the aromatic ring, as illustrated by the torsion angles O3—C8—C3—C2 and O4—C8—C3—C4 of 4.4 (2) and 5.7 (3)°, respectively. The difference between Hbtc and btc is further highlighted through a mol­ecular overlay (Fig. 2[link]) generated by the Mercury software (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). The root-mean-squared deviation (r.m.s.d.), as calculated by Mercury is 0.1356 Å, with the major distinction being in the positions of atoms O5 and O6 (Fig. 2[link]a).

[Figure 2]
Figure 2
Mol­ecular overlay plot comparing (a) the btc ion in 1 (blue) versus the Hbtc mol­ecule (green; Tothadi et al., 2020[Tothadi, S., Koner, K., Dey, K., Addicoat, M. & Banerjee, R. (2020). Appl. Mater. Interfaces, 12, 15588-15594.]), and (b) the HmIm ion in 1 (blue) versus the mIm mol­ecule (yellow; Hachuła et al., 2010[Hachuła, B., Nowak, M. & Kusz, J. (2010). J. Chem. Crystallogr. 40, 201-206.])

Selected bond distances and angles for the mIm ion are presented in Table 2[link]. The C—C bond distances are 1.345 (3) and 1.481 (3) Å, whereas the N—C distances range from 1.327 (2) to 1.377 (2) Å. These distances are slightly shorter than those found in the neutral mIm mol­ecule reported by Hachuła et al. (2010[Hachuła, B., Nowak, M. & Kusz, J. (2010). J. Chem. Crystallogr. 40, 201-206.]), where the C—C bond distances are 1.367 (1) and 1.488 (1) Å, and the N—C distances range from 1.329 (1) to 1.385 (1) Å. It is worth noting that imidazole derivatives often exhibit an asymmetry in the two endocyclic N—C bonds (Hachuła et al., 2010[Hachuła, B., Nowak, M. & Kusz, J. (2010). J. Chem. Crystallogr. 40, 201-206.]), a characteristic also observed in compound 1, where N1—C12 [1.326 (2) Å] shows greater double-bond character than N2—C12 [1.335 (2) Å]. However, this difference is more pronounced in the neutral mol­ecule [0.022 (1) Å] compared with the HmIm ion in 1 [0.008 (3) Å], possibly due to the protonation in the HmIm ion.

Table 2
Selected bond lengths (Å), bond angles (°), and torsion angles (°) of the HmIm ion

C10—C11 1.345 (3) N1—C12—C13 125.88 (17)
C12—C13 1.481 (3) N2—C11—C10 106.37 (16)
N1—C12 1.327 (2) N2—C12—C13 126.86 (17)
N1—C10 1.372 (2) C12—N2—C11—C10 −0.0 (2)
N2—C12 1.335 (2) C12—N1—C10—C11 −0.1 (2)
N2—C11 1.377 (2) C10—N1—C12—C13 −179.50 (18)
C12—N1—C10 109.41 (15) C11—N2—C12—C13 179.56 (18)
C12—N2—C11 109.55 (15) C11—N2—C12—N1 −0.1 (2)
N1—C12—N2 107.26 (15) C10—N1—C12—N2 0.1 (2)
N1—C10—C11 107.41 (16) N1—C10—C11—N2 0.1 (2)

Compared with the neutral mIm mol­ecule, protonation in the HmIm ion results in a more symmetrical heterocyclic ring. This increase in the symmetry is observed in the C—C—N and N—C—N angles of the heterocyclic ring, which closely approach the ideal penta­gon angle of 108° in the HmIm ion, with a maximum deviation of 1.6 (2)°, while in the neutral mIm mol­ecule, this deviation is slightly larger, at 3.4 (1)°. However, in both cases the carbon of the methyl group is almost coplanar with the heterocycle ring as observed in the torsion angles C10—N1—C12—C13 and C11—N2—C12—C13 of −179.5 (2) and 179.6 (2)° for HmIm and −179.4 (1) and 179.3 (1) for mIm.

Fig. 2[link]b illustrates the mol­ecular overlay between the HmIm ion in compound 1 and the neutral mIm mol­ecule as reported by Hachuła and co-workers. The figure demonstrates that contrary to the btc ion, the HmIm ion bears a closer resemblance to its neutral counterpart. This similarity is further supported by the r.m.s.d. value calculated by Mercury, which has a value of 0.0320 Å.

3. Supra­molecular features

The crystal packing in 1 is primarily based on hydrogen bonds and ππ inter­actions. Table 3[link] provides a summary of the hydrogen bonds found within the compound. Hydrogen atoms H2 and H3 are involved in an infinite chain of hydrogen bonds. As a result of the symmetry of the crystal, and the negative charge of the trimesate anion, the protons H2 and H3 have an occupancy of only 50%, meaning that in the asymmetric unit, the negative charge is distributed evenly between the two carboxyl­ates. In other words, if O3 is protonated, O2 from the same mol­ecule is not and the neighboring trimesate mol­ecules participating in the hydrogen-bonded chain will have O2 protonated and O3 not (Fig. 3[link]). As illustrated in Fig. 4[link]a, hydrogen bonds N1—H1⋯O1, N2—H2B⋯O6, and O3—H1⋯O3 form undulating chains that extend along the [[\overline{3}]0[\overline{2}]] direction, while ππ inter­actions [centroid–centroid distance of 3.770 (2) Å], both among mIm and between btc ions, stack the chains along the b-axis direction (Fig. 4[link]b). Finally, hydrogen bonds O5—H5⋯O4 and O2—H2⋯O2 inter­connect the chains in an out-of-phase manner (Fig. 4[link]c), expanding the structure throughout the ac plane.

Table 3
Hydrogen-bond geometry (Å, °)

  D–H H⋯A D⋯A D–H⋯A
N1–H1⋯O1 0.88 1.84 2.6771 (19) 159
O2–H2⋯O2i 0.84 1.64 2.4718 (16) 171
N2–H2B⋯O6iv 0.88 1.95 2.7460 (20) 151
O3–H3⋯O3ii 0.84 1.66 2.4601 (16) 159
O5–H5⋯O4iii 0.84 1.75 2.5840 (18) 170
(i) 1 − x,2 − y,1 − z, (ii) 1 − x,y,1/2 − z, (iii) [{1\over 2}] − x,-[{1\over 2}] + y,1/2 − z, (iv) [{1\over 2}] − x,1/2 − y,1 − z
[Figure 3]
Figure 3
The two possible mutual positions of the hydrogen atoms H2 and H3 (orange or violet) and the resulting hydrogen bonds in the infinite chain of the trimesate anions.
[Figure 4]
Figure 4
Crystal packing in compound 1. (a) View down the b axis showing undulating chains formed by HmIm and btc ions through hydrogen bonding (blue lines), (b) view along the [101] direction illustrating the stacking of the chains via ππ inter­actions (green lines), and (c) view of the inter­connection of chains in an out-of-phase arrangement.

4. Database survey

A search for the title compound in the Cambridge Structural Database (CSD, Version 5.43, update of November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) did not match with any reported structures. The structure of the neutral mIm mol­ecule has been reported with refcode FULPIM (Hachuła et al., 2010[Hachuła, B., Nowak, M. & Kusz, J. (2010). J. Chem. Crystallogr. 40, 201-206.]), while several structures of Hbtc have been reported with refcodes BTCOAC01 (Duchamp & Marsh, 1969[Duchamp, D. J. & Marsh, R. E. (1969). Acta Cryst. B25, 5-19.]), BTCOAC03, FONHEW01, SOWCUF, SOWDIU, SOWDUG, SOWFAO, SOWFIW, SOWFOC (Cui et al., 2019[Cui, P., McMahon, D. P., Spackman, P. R., Alston, B. M., Little, M. A., Day, G. M. & Cooper, A. I. (2019). Chem. Sci. 10, 9988-9997.]), BTCOAC05 (Tothadi et al., 2020[Tothadi, S., Koner, K., Dey, K., Addicoat, M. & Banerjee, R. (2020). Appl. Mater. Interfaces, 12, 15588-15594.]), CAFVOW, CAFVUC (Rajput et al., 2010[Rajput, L., Jana, N. & Biradha, K. (2010). Cryst. Growth Des. 10, 4565-4570.]), FONHEW (Fan et al., 2005[Fan, Z.-Z., Li, X.-H. & Wang, G.-P. (2005). Acta Cryst. E61, o1607-o1608.]), IYUQIC, IYUQOI (Dale et al., 2004[Dale, S. H., Elsegood, M. R. J. & Richards, S. J. (2004). Chem. Commun. pp. 1278-1279.]), LERSAD (Vishweshwar et al., 2006[Vishweshwar, P., Beauchamp, D. A. & Zaworotko, M. J. (2006). Cryst. Growth Des. 6, 2429-2431.]), LUWWEI, LUWWEI01 (Yan et al., 2020[Yan, Y., Kariuki, B. M., Hughes, C. E., Logsdail, A. J. & Harris, K. D. M. (2020). Cryst. Growth Des. 20, 5736-5744.]), MIMXEO, MIMXIS, MIMXOY, MIMXUE (Sanchez-Sala et al., 2018[Sanchez-Sala, M., Vallcorba, O., Domingo, C. & Ayllón, J. A. (2018). Cryst. Growth Des. 18, 6621-6626.]), MIXCOM (Rodríguez-Cuamatzi et al., 2007[Rodríguez-Cuamatzi, P., Arillo-Flores, O. I., Bernal-Uruchurtu, M. I. & Höpfl, H. (2007). Supramol. Chem. 19, 559-578.]), OLAJIX01 (Ward & Oswald, 2020[Ward, M. R. & Oswald, I. D. H. (2020). Crystals, 10, 1098.]), QEYFIK (Goldberg & Bernstein, 2007[Goldberg, I. & Bernstein, J. (2007). Chem. Commun. pp. 132-134.]), TMADMS (Herbstein et al., 1978[Herbstein, F. H., Kapon, M. & Wasserman, S. (1978). Acta Cryst. B34, 1613-1617.]), TMADMS01 (Bernès et al., 2008[Bernès, S., Hernández, G., Portillo, R. & Gutiérrez, R. (2008). Acta Cryst. E64, o1366.]), TMADMS02, XASFAA01 (Li et al., 2018[Li, H., Li, M., Yang, Q., Sun, X., Guan, B. & Song, Y. (2018). Chem. Asian J. 13, 761-764.]), TRIMES10 (Herbstein & Marsh, 1977[Herbstein, F. H. & Marsh, R. E. (1977). Acta Cryst. B33, 2358-2367.]), TUBBAT (Melendez et al., 1996[Melendez, R. E., Sharma, C. V. K., Zaworotko, M. J., Bauer, C. & Rogers, R. D. (1996). Angew. Chem. Int. Ed. Engl. 35, 2213-2215.]), UDUMUC (Chen et al., 2007[Chen, J.-M., Sun, J.-J., Huang, W.-W., Lao, Y.-N. & Yang, S.-P. (2007). Acta Cryst. E63, o3053.]), XASFAA01 (Davey et al., 2013[Davey, R. J., Brychczynska, M., Sadiq, G., Dent, G. & Pritchard, R. G. (2013). CrystEngComm, 15, 856-859.]), XAVPOZ, XAVQEQ (Chatterjee et al., 2000[Chatterjee, S., Pedireddi, V. R., Ranganathan, A. & Rao, C. N. R. (2000). J. Mol. Struct. 520, 107-115.]) and XAVPOZ01 (Dale & Elsegood, 2003[Dale, S. H. & Elsegood, M. R. J. (2003). Acta Cryst. E59, o127-o128.]). Other organic compounds with a low degree of similarity to the title compound were also found, for example refcodes: ILELAO (Li & Li, 2016[Li, S.-Y. & Li, P. (2016). Z. Krist. New Cryst. Struc. 231, 525-528.]), INACOQ (Li et al., 2010[Li, C.-P., Zhao, X.-H., Chen, X.-D., Yu, Q. & Du, M. (2010). Cryst. Growth Des. 10, 5034-5042.]), LUBHEX, LUBHIB, LUBHOH, LUBHUN, LUBJAV (Singh et al., 2015[Singh, U. P., Tomar, K. & Kashyap, S. (2015). CrystEngComm, 17, 1421-1433.]), NUHBAU (Du et al., 2009[Du, M., Jiang, X.-J., Tan, X., Zhang, Z.-H. & Cai, H. (2009). CrystEngComm, 11, 454-462.]), RUDRAJ, RUDREN, RUDRIR (Akutagawa et al., 1996[Akutagawa, T., Saito, G., Kusunoki, M. & Sakaguchi, K. (1996). Bull. Chem. Soc. Jpn, 69, 2487-2511.]), RUDRAJ and RUDREN (Herbstein et al., 2002[Herbstein, F. H., Hu, S. & Kapon, M. (2002). Acta Cryst. B58, 884-892.]). However, these organic compounds do not contain either trimesic acid or 2-methyl­imidazole or their respective ions.

5. Synthesis and crystallization

In a typical synthesis, solutions of CoCl2·6H2O (2.5 ml, 0.02 M), mIm (65 µl, 1.58 M) and btc (500 µl, 0.12 M) were mixed without stirring. Within less than a minute, a blue precipitate was formed. The resulting heterogeneous mixture was allowed to slowly air-dry. After complete solvent evaporation, we obtained a mixture of the title compound, the previously reported cobalt complex 2, and an unidentified phase. Although the blocky colorless crystals of the title compound can be easily identified in the mixture, all attempts to separate them from the other components by other than mechanical means were unsuccessful.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The positions of hydrogen atoms were refined with Uiso(H) = 1.2Ueq(C or N) for CH and NH groups and Uiso(H) = 1.5Ueq(C or O) for others. Hydrogen atoms H2 and H3, each lying close to a symmetry element, were refined with a fixed occupancy of 0.5. The protons of the methyl group were refined as disordered over two geometrically idealized positions. The most disagreeable reflection (002) with an error/s.u. of more than 10 was omitted using the OMIT instruction in SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Table 4
Experimental details

Crystal data
Chemical formula C4H7N2+·C9H5O6
Mr 292.25
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 24.0655 (18), 3.7704 (3), 27.4258 (19)
β (°) 99.481 (8)
V3) 2454.5 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.13
Crystal size (mm) 0.1 × 0.1 × 0.03
 
Data collection
Diffractometer Bruker APEX Duo CCD area detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.628, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 23840, 2531, 1969
Rint 0.074
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.103, 1.04
No. of reflections 2531
No. of parameters 204
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.28
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).

2-Methyl-1H-imidazol-3-ium 3,5-dicarboxybenzoate top
Crystal data top
C4H7N2+·C9H5O6F(000) = 1216
Mr = 292.25Dx = 1.582 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 24.0655 (18) ÅCell parameters from 2955 reflections
b = 3.7704 (3) Åθ = 2.5–30.4°
c = 27.4258 (19) ŵ = 0.13 mm1
β = 99.481 (8)°T = 100 K
V = 2454.5 (3) Å3Block, clear light colourless
Z = 80.1 × 0.1 × 0.03 mm
Data collection top
Bruker APEX Duo CCD area detector
diffractometer
1969 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
phi and ω scansθmax = 26.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 3030
Tmin = 0.628, Tmax = 0.745k = 44
23840 measured reflectionsl = 3434
2531 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0457P)2 + 3.154P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2531 reflectionsΔρmax = 0.24 e Å3
204 parametersΔρmin = 0.28 e Å3
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O50.21243 (5)1.0194 (4)0.29386 (4)0.0167 (3)
H50.1788040.9505160.2901430.025*
O40.39014 (5)1.2973 (4)0.22895 (4)0.0172 (3)
O30.47026 (5)1.2416 (4)0.28243 (4)0.0175 (3)
H30.4844911.2735550.2567920.026*0.5
O10.39873 (5)0.7849 (4)0.48212 (4)0.0196 (3)
O20.47345 (5)1.0439 (4)0.45787 (4)0.0174 (3)
H20.4883901.0061910.4873040.026*0.5
O60.21810 (5)0.7269 (4)0.36581 (4)0.0186 (3)
N10.41365 (6)0.4251 (4)0.56743 (5)0.0157 (3)
H10.4178210.5327130.5397900.019*
N20.37701 (6)0.1426 (4)0.62208 (5)0.0154 (3)
H2B0.3524630.0298000.6369060.018*
C20.41679 (7)1.0776 (5)0.36004 (6)0.0127 (4)
H2A0.4564521.1115050.3655960.015*
C10.39023 (7)0.9786 (5)0.39933 (6)0.0127 (4)
C90.24019 (7)0.8931 (5)0.33578 (6)0.0135 (4)
C40.32831 (7)1.0735 (5)0.30481 (6)0.0125 (4)
H40.3069331.1088980.2728460.015*
C70.42279 (7)0.9286 (5)0.45087 (6)0.0139 (4)
C80.41665 (7)1.2307 (5)0.27097 (6)0.0125 (4)
C60.33258 (7)0.9172 (5)0.39079 (6)0.0129 (4)
H60.3142190.8410150.4170750.016*
C50.30162 (7)0.9672 (5)0.34375 (6)0.0128 (4)
C30.38646 (7)1.1280 (5)0.31275 (6)0.0126 (4)
C120.36643 (8)0.2760 (5)0.57639 (6)0.0156 (4)
C100.45497 (8)0.3855 (5)0.60797 (6)0.0162 (4)
H100.4927020.4677590.6111050.019*
C110.43223 (7)0.2087 (5)0.64244 (7)0.0161 (4)
H110.4506240.1424820.6744910.019*
C130.31239 (8)0.2603 (6)0.54168 (8)0.0238 (4)
H13A0.3083200.4735260.5209520.036*0.47 (2)
H13B0.2811260.2473900.5604310.036*0.47 (2)
H13C0.3119580.0497370.5206780.036*0.47 (2)
H13D0.2871 (17)0.450 (11)0.5494 (18)0.036*0.53 (2)
H13E0.3175 (18)0.267 (16)0.5074 (8)0.036*0.53 (2)
H13F0.2873 (16)0.073 (11)0.5495 (18)0.036*0.53 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0115 (6)0.0275 (7)0.0096 (6)0.0027 (5)0.0024 (5)0.0013 (5)
O40.0140 (6)0.0295 (8)0.0073 (6)0.0010 (5)0.0001 (5)0.0032 (5)
O30.0119 (6)0.0305 (8)0.0101 (6)0.0004 (5)0.0024 (5)0.0024 (6)
O10.0187 (7)0.0292 (8)0.0105 (6)0.0031 (6)0.0013 (5)0.0052 (6)
O20.0132 (6)0.0293 (8)0.0085 (6)0.0020 (5)0.0020 (5)0.0017 (6)
O60.0159 (6)0.0265 (8)0.0133 (6)0.0046 (6)0.0019 (5)0.0027 (6)
N10.0192 (8)0.0185 (8)0.0093 (7)0.0011 (6)0.0024 (6)0.0015 (6)
N20.0154 (7)0.0171 (8)0.0142 (7)0.0015 (6)0.0043 (6)0.0024 (6)
C20.0115 (8)0.0138 (9)0.0120 (8)0.0002 (7)0.0002 (7)0.0018 (7)
C10.0154 (8)0.0134 (9)0.0087 (8)0.0003 (7)0.0001 (7)0.0004 (7)
C90.0159 (9)0.0153 (9)0.0088 (8)0.0006 (7)0.0006 (7)0.0035 (7)
C40.0143 (8)0.0133 (9)0.0092 (8)0.0008 (7)0.0004 (6)0.0003 (7)
C70.0147 (8)0.0170 (9)0.0095 (8)0.0023 (7)0.0011 (7)0.0001 (7)
C80.0114 (8)0.0152 (9)0.0108 (8)0.0000 (7)0.0013 (6)0.0004 (7)
C60.0161 (9)0.0139 (9)0.0087 (8)0.0005 (7)0.0018 (7)0.0003 (7)
C50.0145 (8)0.0129 (9)0.0108 (8)0.0002 (7)0.0014 (7)0.0015 (7)
C30.0155 (9)0.0118 (9)0.0101 (8)0.0009 (7)0.0013 (7)0.0004 (7)
C120.0176 (9)0.0152 (9)0.0136 (9)0.0015 (7)0.0009 (7)0.0013 (7)
C100.0152 (9)0.0172 (9)0.0156 (9)0.0003 (7)0.0002 (7)0.0017 (7)
C110.0170 (9)0.0181 (9)0.0121 (9)0.0029 (7)0.0002 (7)0.0000 (7)
C130.0201 (10)0.0277 (11)0.0213 (10)0.0001 (8)0.0036 (8)0.0003 (9)
Geometric parameters (Å, º) top
O5—H50.8400C1—C61.388 (2)
O5—C91.320 (2)C9—C51.485 (2)
O4—C81.247 (2)C4—H40.9500
O3—H30.8400C4—C51.393 (2)
O3—C81.277 (2)C4—C31.396 (2)
O1—C71.235 (2)C8—C31.505 (2)
O2—H20.8400C6—H60.9500
O2—C71.279 (2)C6—C51.392 (2)
O6—C91.224 (2)C12—C131.481 (3)
N1—H10.8800C10—H100.9500
N1—C121.326 (2)C10—C111.345 (3)
N1—C101.372 (2)C11—H110.9500
N2—H2B0.8800C13—H13A0.9800
N2—C121.335 (2)C13—H13B0.9800
N2—C111.377 (2)C13—H13C0.9800
C2—H2A0.9500C13—H13D0.984 (19)
C2—C11.391 (2)C13—H13E0.968 (19)
C2—C31.393 (2)C13—H13F0.976 (19)
C1—C71.511 (2)
C9—O5—H5109.5C5—C6—H6120.0
C8—O3—H3109.5C4—C5—C9121.01 (15)
C7—O2—H2109.5C6—C5—C9118.60 (15)
C12—N1—H1125.3C6—C5—C4120.36 (16)
C12—N1—C10109.41 (15)C2—C3—C4118.91 (16)
C10—N1—H1125.3C2—C3—C8119.96 (15)
C12—N2—H2B125.2C4—C3—C8121.11 (15)
C12—N2—C11109.55 (15)N1—C12—N2107.26 (15)
C11—N2—H2B125.2N1—C12—C13125.88 (17)
C1—C2—H2A119.3N2—C12—C13126.86 (17)
C1—C2—C3121.37 (16)N1—C10—H10126.3
C3—C2—H2A119.3C11—C10—N1107.41 (16)
C2—C1—C7121.63 (15)C11—C10—H10126.3
C6—C1—C2119.22 (16)N2—C11—H11126.8
C6—C1—C7119.14 (15)C10—C11—N2106.37 (16)
O5—C9—C5114.15 (15)C10—C11—H11126.8
O6—C9—O5123.87 (16)C12—C13—H13A109.5
O6—C9—C5121.98 (15)C12—C13—H13B109.5
C5—C4—H4120.0C12—C13—H13C109.5
C5—C4—C3120.01 (16)C12—C13—H13D110 (3)
C3—C4—H4120.0C12—C13—H13E113 (3)
O1—C7—O2126.09 (16)C12—C13—H13F113 (3)
O1—C7—C1118.28 (15)H13A—C13—H13B109.5
O2—C7—C1115.64 (15)H13A—C13—H13C109.5
O4—C8—O3124.26 (15)H13B—C13—H13C109.5
O4—C8—C3121.17 (15)H13D—C13—H13E112 (4)
O3—C8—C3114.57 (15)H13D—C13—H13F93 (4)
C1—C6—H6120.0H13E—C13—H13F114 (4)
C1—C6—C5120.09 (16)
O5—C9—C5—C416.1 (2)C7—C1—C6—C5178.97 (16)
O5—C9—C5—C6165.92 (15)C6—C1—C7—O110.5 (3)
O4—C8—C3—C2175.82 (17)C6—C1—C7—O2169.07 (16)
O4—C8—C3—C45.7 (3)C5—C4—C3—C20.6 (3)
O3—C8—C3—C24.4 (2)C5—C4—C3—C8177.89 (16)
O3—C8—C3—C4174.11 (16)C3—C2—C1—C7179.11 (16)
O6—C9—C5—C4163.43 (17)C3—C2—C1—C62.2 (3)
O6—C9—C5—C614.5 (3)C3—C4—C5—C9177.44 (16)
N1—C10—C11—N20.1 (2)C3—C4—C5—C60.5 (3)
C2—C1—C7—O1168.16 (17)C12—N1—C10—C110.2 (2)
C2—C1—C7—O212.3 (3)C12—N2—C11—C100.0 (2)
C2—C1—C6—C52.3 (3)C10—N1—C12—N20.1 (2)
C1—C2—C3—C40.7 (3)C10—N1—C12—C13179.50 (18)
C1—C2—C3—C8179.26 (16)C11—N2—C12—N10.1 (2)
C1—C6—C5—C9178.97 (16)C11—N2—C12—C13179.56 (18)
C1—C6—C5—C41.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.881.842.6771 (19)159
O2—H2···O2i0.841.642.4718 (16)171
N2—H2B···O6ii0.881.952.746 (2)151
O3—H3···O3iii0.841.662.4601 (16)159
O5—H5···O4iv0.841.752.5840 (18)170
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x+1, y, z+1/2; (iv) x+1/2, y1/2, z+1/2.
Selected bond lengths (Å), bond angles (°), and torsion angles (°) of the btc ion top
C1—C61.388 (2)C2—C3—C4118.91 (16)
C1—C71.511 (2)C2—C1—C6119.22 (16)
C2—C11.391 (3)C5—C4—C3120.01 (16)
C2—C31.393 (2)C1—C6—C5120.09 (16)
C4—C51.393 (3)C4—C5—C6120.36 (16)
C4—C31.396 (2)C1—C2—C3121.37 (17)
C6—C51.392 (2)C2—C1—C7—O1-168.16 (17)
C8—C31.505 (3)C2—C1—C7—O212.3 (3)
C9—C51.485 (2)C6—C1—C7—O110.5 (2)
O1—C71.236 (2)C6—C1—C7—O2-169.07 (16)
O2—C71.279 (2)O3—C8—C3—C24.4 (2)
O3—C81.277 (2)O3—C8—C3—C4-174.16 (17)
O4—C81.247 (2)O4—C8—C3—C2-175.82 (17)
O5—C91.320 (2)O4—C8—C3—C45.7 (3)
O6—C91.224 (2)O5—C9—C5—C4-16.1 (2)
O1—C7—O2126.09 (16)O5—C9—C5—C6165.92 (15)
O4—C8—O3124.26 (15)O6—C9—C5—C4163.43 (17)
O5—C9—O6123.87 (16)O6—C9—C5—C6-14.5 (3)
Selected bond lengths (Å), bond angles (°), and torsion angles (°) of the HmIm ion top
C10—C111.345 (3)N1—C12—C13125.88 (17)
C12—C131.481 (3)N2—C11—C10106.37 (16)
N1—C121.327 (2)N2—C12—C13126.86 (17)
N1—C101.372 (2)C12—N2—C11—C10-0.0 (2)
N2—C121.335 (2)C12—N1—C10—C11-0.1 (2)
N2—C111.377 (2)C10—N1—C12—C13-179.50 (18)
C12—N1—C10109.41 (15)C11—N2—C12—C13179.56 (18)
C12—N2—C11109.55 (15)C11—N2—C12—N1-0.1 (2)
N1—C12—N2107.26 (15)C10—N1—C12—N20.1 (2)
N1—C10—C11107.41 (16)N1—C10—C11—N20.1 (2)
Hydrogen-bond geometry (Å, °) top
D–HH···AD···AD–H···A
N1–H1···O10.881.842.6771 (19)159
O2–H2···O2i0.841.642.4718 (16)171
N2–H2B···O6iv0.881.952.7460 (20)151
O3–H3···O3ii0.841.662.4601 (16)159
O5–H5···O4iii0.841.752.5840 (18)170
(i) 1-x,2-y,1-z, (ii) 1-x,y,1/2-z, (iii) 1/2-x,-1/2+y,1/2-z, (iv) 1/2-x,1/2-y,1-z
 

Acknowledgements

SB thanks the DESY-Helmholtz-Ukraine student fund for financial support. Funding for this research was provided by: HG-recruitment, HG-Innovation `ECRAPS', HG-Innovation DSF/DASHH and CMWS (grant to ST).

References

First citationAkutagawa, T., Saito, G., Kusunoki, M. & Sakaguchi, K. (1996). Bull. Chem. Soc. Jpn, 69, 2487–2511.  CrossRef CAS Google Scholar
First citationBernès, S., Hernández, G., Portillo, R. & Gutiérrez, R. (2008). Acta Cryst. E64, o1366.  CrossRef IUCr Journals Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, P. C. (2004). TOXIC Rep. Ser. 1–G12.  Google Scholar
First citationChatterjee, S., Pedireddi, V. R., Ranganathan, A. & Rao, C. N. R. (2000). J. Mol. Struct. 520, 107–115.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, J.-M., Sun, J.-J., Huang, W.-W., Lao, Y.-N. & Yang, S.-P. (2007). Acta Cryst. E63, o3053.  CrossRef IUCr Journals Google Scholar
First citationChui, S. S.-Y., Lo, S. M.-F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. (1999). Science, 283, 1148–1150.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCui, P., McMahon, D. P., Spackman, P. R., Alston, B. M., Little, M. A., Day, G. M. & Cooper, A. I. (2019). Chem. Sci. 10, 9988–9997.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDale, S. H. & Elsegood, M. R. J. (2003). Acta Cryst. E59, o127–o128.  CrossRef IUCr Journals Google Scholar
First citationDale, S. H., Elsegood, M. R. J. & Richards, S. J. (2004). Chem. Commun. pp. 1278–1279.  Web of Science CSD CrossRef Google Scholar
First citationDavey, R. J., Brychczynska, M., Sadiq, G., Dent, G. & Pritchard, R. G. (2013). CrystEngComm, 15, 856–859.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDu, M., Jiang, X.-J., Tan, X., Zhang, Z.-H. & Cai, H. (2009). CrystEngComm, 11, 454–462.  Web of Science CSD CrossRef CAS Google Scholar
First citationDuchamp, D. J. & Marsh, R. E. (1969). Acta Cryst. B25, 5–19.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFan, Z.-Z., Li, X.-H. & Wang, G.-P. (2005). Acta Cryst. E61, o1607–o1608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoldberg, I. & Bernstein, J. (2007). Chem. Commun. pp. 132–134.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHachuła, B., Nowak, M. & Kusz, J. (2010). J. Chem. Crystallogr. 40, 201–206.  Google Scholar
First citationHerbstein, F. H., Hu, S. & Kapon, M. (2002). Acta Cryst. B58, 884–892.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHerbstein, F. H., Kapon, M. & Wasserman, S. (1978). Acta Cryst. B34, 1613–1617.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHerbstein, F. H. & Marsh, R. E. (1977). Acta Cryst. B33, 2358–2367.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, C.-P., Zhao, X.-H., Chen, X.-D., Yu, Q. & Du, M. (2010). Cryst. Growth Des. 10, 5034–5042.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, H., Li, M., Yang, Q., Sun, X., Guan, B. & Song, Y. (2018). Chem. Asian J. 13, 761–764.  CrossRef CAS PubMed Google Scholar
First citationLi, S.-Y. & Li, P. (2016). Z. Krist. New Cryst. Struc. 231, 525–528.  CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMat Yusuf, S., Ng, Y., Ayub, A., Ngalim, S. & Lim, V. (2017). Polymers, 9, 311. https://doi.org/10.3390/polym9080311  Google Scholar
First citationMelendez, R. E., Sharma, C. V. K., Zaworotko, M. J., Bauer, C. & Rogers, R. D. (1996). Angew. Chem. Int. Ed. Engl. 35, 2213–2215.  CSD CrossRef CAS Web of Science Google Scholar
First citationPark, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O'Keeffe, M. & Yaghi, O. M. (2006). Proc. Natl Acad. Sci. USA, 103, 10186–10191.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRajput, L., Jana, N. & Biradha, K. (2010). Cryst. Growth Des. 10, 4565–4570.  CrossRef CAS Google Scholar
First citationRodríguez-Cuamatzi, P., Arillo-Flores, O. I., Bernal-Uruchurtu, M. I. & Höpfl, H. (2007). Supramol. Chem. 19, 559–578.  Google Scholar
First citationSalamończyk, G. M. (2011). Tetrahedron Lett. 52, 155–158.  Google Scholar
First citationSanchez-Sala, M., Vallcorba, O., Domingo, C. & Ayllón, J. A. (2018). Cryst. Growth Des. 18, 6621–6626.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, U. P., Tomar, K. & Kashyap, S. (2015). CrystEngComm, 17, 1421–1433.  Web of Science CSD CrossRef CAS Google Scholar
First citationTothadi, S., Koner, K., Dey, K., Addicoat, M. & Banerjee, R. (2020). Appl. Mater. Interfaces, 12, 15588–15594.  Web of Science CSD CrossRef CAS Google Scholar
First citationVelazquez-Garcia, J. de J. & Techert, S. (2022). Acta Cryst. E78, 814–817.  CrossRef IUCr Journals Google Scholar
First citationVishweshwar, P., Beauchamp, D. A. & Zaworotko, M. J. (2006). Cryst. Growth Des. 6, 2429–2431.  CrossRef CAS Google Scholar
First citationWard, M. R. & Oswald, I. D. H. (2020). Crystals, 10, 1098.  Web of Science CSD CrossRef Google Scholar
First citationYan, Y., Kariuki, B. M., Hughes, C. E., Logsdail, A. J. & Harris, K. D. M. (2020). Cryst. Growth Des. 20, 5736–5744.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds