research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-2-[2-(2-amino-1-cyano-2-oxo­ethyl­­idene)hydrazin-1-yl]benzoic acid N,N-di­methylformamide monosolvate

crossmark logo

aDepartment of Ecology and Soil Sciences, Baku State University, Z. Xalilov Str. 33, Az 1148 Baku, Azerbaijan, bDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Türkiye, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and dDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal
*Correspondence e-mail: akkurt@erciyes.edu.tr, ajaya.bhattarai@mmamc.tu.edu.np

Edited by G. Ferrence, Illinois State University, USA (Received 2 October 2023; accepted 29 December 2023; online 5 January 2024)

In the title compound, C10H8N4O3·C3H7NO, the asymmetric unit contains two crystallographically independent mol­ecules A and B, each of which has one DMF solvate mol­ecule. Mol­ecules A and B both feature intra­molecular N—H⋯O hydrogen bonds, forming S(6) ring motifs and consolidating the mol­ecular configuration. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds connect mol­ecules A and B, forming R22(8) ring motifs. Weak C—H⋯O inter­actions link the mol­ecules, forming layers parallel to the ([\overline{2}]12) plane. The DMF solvent mol­ecules are also connected to the main mol­ecules (A and B) by N—H⋯O hydrogen bonds. ππ stacking inter­actions [centroid-to-centroid distance = 3.8702 (17) Å] between the layers also increase the stability of the mol­ecular structure in the third dimension. According to the Hirshfeld surface study, O⋯H/H⋯O inter­actions are the most significant contributors to the crystal packing (27.5% for mol­ecule A and 25.1% for mol­ecule B).

1. Chemical context

Aryl­hydrazones have been used extensively as substrates or ligands in the synthesis of organic or coordination compounds (Gurbanov et al., 2022a[Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019-1031.],b[Gurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932-3940.]; Khalilov et al., 2021a[Khalilov, A. N. (2021a). Rev. Roum. Chim. 66, 719-723.],b[Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021b). J. Mol. Liq. 344, 117761.]; Kopylovich et al., 2011[Kopylovich, M. N., Karabach, Y. Y., Mahmudov, K. T., Haukka, M., Kirillov, A. M., Figiel, P. J. & Pombeiro, A. J. L. (2011). Cryst. Growth Des. 11, 4247-4252.]). Depending on the position and nature of the substituent at the Ar–NH–N=synthon, and on the metal ion, different types of coordination compounds can be isolated, which have applications in catalysis, mol­ecular recognition, crystal growth and design, etc. (Afkhami et al., 2019[Afkhami, F. A., Mahmoudi, G., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). Eur. J. Inorg. Chem. 2019, 262-270.]; Ma et al., 2017[Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017). Mol. Catal. 428, 17-23.], 2021[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.]; Mahmoudi et al., 2017[Mahmoudi, G., Zangrando, E., Bauzá, A., Maniukiewicz, W., Carballo, R., Gurbanov, A. V. & Frontera, A. (2017). CrystEngComm, 19, 3322-3330.], 2021[Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.]; Mahmudov et al., 2010[Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923-2938.], 2023[Mahmudov, K. T. & Pombeiro, A. J. L. (2023). Chem. A Eur. J. 29, e202203861.]). Not only the hydrogen-bond donor or acceptor ability of the hydrazone moiety, but also the participation of the attached functional groups in various sorts of inter­molecular inter­actions improve their biological activities, catalytic performances, and reactivities (Martins et al., 2017[Martins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). New J. Chem. 41, 4076-4086.]; Gurbanov et al., 2017[Gurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, F. M., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). Dyes Pigments, 138, 107-111.], 2020[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. A Eur. J. 26, 14833-14837.]; Velásquez et al., 2019[Velásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018-6025.]). We have found that an aryl­hydrazone ligand can be produced by the activation of one cyano group on an active methyl­ene fragment of the parent mol­ecule to produce the carb­oxy amide moiety of the title mol­ecule, (E)-2-[2-(2-amino-1-cyano-2-oxo­ethyl­idene)hydrazin-1-yl]benzoic acid N,N-di­methyl­formamide monosolvate, which participates in inter­molecular hydrogen bonding in its crystal structure.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound, Fig. 1[link], contains two crystallographically independent main residue mol­ecules, A and B, and two di­methyl­formamide (DMF) solvate mol­ecules. As shown in Fig. 2[link] (r.m.s. deviation = 0.108 Å), mol­ecules A and B and their DMF solvent mol­ecules overlap quite well. The overlay diagram suggests possibly slight differences and PLATON ADDSYM (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) did not find any indication of pseudosymmetry with a cell of that volume. All attempts with CELL_NOW to find a twinned cell with the volume failed. In both mol­ecules A and B, intra­molecular N—H⋯O hydrogen bonds (Table 1[link]) form S(6) ring motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), consolidating the mol­ecular configuration. The geometric properties of the title compound are normal and consistent with those of the related compounds listed in the Database survey (Section 4).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O6 0.85 1.73 2.580 (3) 175
O4—H4B⋯O3i 0.85 1.75 2.590 (3) 171
N1—H1N⋯O2 0.90 1.89 2.617 (3) 136
N4—H4C⋯O7ii 0.90 2.04 2.915 (3) 162
N4—H4D⋯O5iii 0.90 2.09 2.952 (3) 161
N5—H5N⋯O5 0.90 1.93 2.640 (3) 134
N8—H8A⋯O8 0.90 2.01 2.889 (3) 164
N8—H8B⋯O2 0.90 2.14 2.990 (3) 158
C2—H2A⋯O7ii 0.93 2.60 3.505 (4) 165
C4—H4A⋯O6iv 0.93 2.52 3.372 (3) 153
C12—H12A⋯O8 0.93 2.39 3.311 (4) 171
C24—H24A⋯N3 0.93 2.62 3.498 (4) 158
Symmetry codes: (i) [x-1, y, z+1]; (ii) [x+1, y, z]; (iii) [x+1, y, z-1]; (iv) [-x+1, -y+2, -z+1].
[Figure 1]
Figure 1
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. The O—H⋯O, N—H⋯O and C—H⋯N hydrogen bonds are shown as dashed lines.
[Figure 2]
Figure 2
Image of the two independent mol­ecules A and B and the two solvent mol­ecules overlapping themselves in the asymmetric unit of the title compound. Color code: carbon (gray), hydrogen (white), nitro­gen (blue) and oxygen (red).

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, N—H⋯O and O—H⋯O hydrogen bonds (Table 1[link], Fig. 3[link]a,b) connect mol­ecules A and B, forming [R_{2}^{2}](8) ring motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). Weak C—H⋯O inter­actions link the mol­ecules, forming layers parallel to the ([\overline{2}]12) plane (Table 1[link], Fig. 3[link]a,b). The DMF solvent mol­ecules are also connected to the main mol­ecules (A and B) by N—H⋯O hydrogen bonds. ππ stacking inter­actions [Cg1⋯Cg2(1 − x, 1 − y, 1 − z) = 3.8702 (17) Å; Cg1 and Cg2 are the centroids of the (C1–C6) and (C11-C16) benzene rings of mol­ecules A and B, respectively] between the layers also increase the stability of the mol­ecular structure in the third dimension (Fig. 4[link]).

[Figure 3]
Figure 3
Partial packing diagrams, viewed down (a) the b-axis and (b) the c-axis. O—H⋯O, N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds are shown as dashed lines. H atoms not involved in these inter­actions have been omitted for clarity.
[Figure 4]
Figure 4
A partial packing diagram viewed down the b-axis. ππ stacking inter­actions are shown as dashed lines. H atoms have been omitted for clarity.

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface analysis was carried out using CrystalExplorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). In the Hirshfeld surface plotted over dnorm (Fig. 5[link]), the white surface indicates contacts with distances equal to the sum of the van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the sum of the van der Waals radii (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]). The bright-red spots indicate their roles as respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). Cryst­EngComm,10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO-A System for Computational Chemistry. Available at:http://hirshfeldsurface.net/.]), shown in Fig. 6[link]. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the Hirshfeld surface is a tool to visualize ππ stacking inter­actions by the presence of adjacent red and blue triangles (Fig. 7[link]).

[Figure 5]
Figure 5
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over dnorm for A, (c) front and (d) back sides for B.
[Figure 6]
Figure 6
Views of the three-dimensional Hirshfeld surfaces of the four components in the asymmetric unit of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u., using the STO-3 G basis set at the Hartree–Fock level of theory: (a) mol­ecule A, (b) mol­ecule B, (c) DMF solvent mol­ecule (with O7), (d) DMF solvent mol­ecule (with O8).
[Figure 7]
Figure 7
Hirshfeld surface of the title compound plotted over shape-index (a) for mol­ecule A and (b) for mol­ecule B.

The overall two-dimensional fingerprint plots for mol­ecules A and B are shown in (Fig. 8[link]a) and those delineated into O⋯H/H⋯O, H⋯H, C⋯H/H⋯C and N⋯H/H⋯N contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 8[link]be, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯O/O⋯H (Table 2[link]), contributing 27.5% (for A) and 25.1% (for B) to the overall crystal packing; this is shown in Fig. 8[link]b where the pairs of spikes have tips at de + di = 1.55 Å (for A and B). The H⋯H contacts contribute 27.3% for A and 24.3% for B to the Hirshfeld surface and are shown in Fig. 8[link]c as widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tips at de = di = 2.50 Å (for A) and 2.25 Å (for B). The high contribution of these inter­actions suggest that van der Waals inter­actions play the major role in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]). In the absence of C—H⋯π inter­actions, the pairs of distorted spikes in the fingerprint plots delineated into H⋯C/C⋯H contacts (Fig. 8[link]d; 15.4% for A and 15.3% for B) have the tips at de + di = 2.90 Å for A and 3.00 Å for B. The pair of distorted wings in the fingerprint plot delineated into N⋯H/H⋯N contacts (Fig. 8[link]e; 13.3% contributions for A and 14.0% for B) have the tips at de + di = 2.40 Å for A and 2.70 Å for B. The surroundings of mol­ecules A and B are very similar, as can be observed from a comparison of the supplied data.

Table 2
Inter­atomic contacts (Å) for the title compound

Contact Distance Symmetry operation
H1A⋯O6 1.73 x, y, z
H5A⋯O1 2.74 1 − x, 2 − y, 1 − z
O3⋯H4B 1.75 1 + x, y, −1 + z
N3⋯C20 3.23 1 − x, 1 − y, 1 − z+
N3⋯H24A 2.62 x, y, z
H4C⋯O7 2.04 1 + x, y, z
H4A⋯O6 2.52 1 − x, 2 − y, 1 − z
O4⋯C21 3.21 -x, 1 − y, 1 − z
C20⋯N3 3.23 1 − x, 1 − y, 1 − z
H8A⋯O8 2.01 x, y, z
[Figure 8]
Figure 8
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) O⋯H/H⋯H, (c) H⋯H, (d) C⋯H/H⋯C and (e) N⋯H/H⋯N inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

The nearest neighbour coordination environment of a mol­ecule can be determined from the color patches on the Hirshfeld surface based on how close to other mol­ecules they are. The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the O⋯H/H⋯O, H⋯H, C⋯H/H⋯C and N⋯H/H⋯N inter­actions in Fig. 9[link] ad, respectively.

[Figure 9]
Figure 9
Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) O⋯H/H⋯O, (b) H⋯H, (c) C⋯H/H⋯C and (d) N⋯H/H⋯N inter­actions.

The strength of the crystal packing is important for determining the response to an applied mechanical force. If the crystal packing results in significant voids, then the mol­ecules are not tightly packed and a small amount of applied external mechanical force may easily break the crystal. To check the mechanical stability of the crystal, a void analysis was performed by adding up the electron densities of the spherically symmetric atoms contained in the asymmetric unit (Turner et al., 2011[Turner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804-1813.]). The void surface is defined as an isosurface of the procrystal electron density and is calculated for the enclosed volume. The volume of the crystal voids (Fig. 10[link]a,b) and the percentage of free space in the unit cell are calculated as 178.70 Å3 and 11.93%, respectively. Thus, the crystal packing appears compact and the mechanical stability should be substantial.

[Figure 10]
Figure 10
Graphical views of voids in the crystal packing of the title compound (a) along the a-axis direction and (b) along the b-axis direction.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the (2E)-2-cyano-2-hydrazinylideneacetamide unit yielded five compounds related to the title compound, viz. (E,E)-1-(2-hy­droxy­imino-1-phenyl­ethyl­idene)semicarbazide monohydrate (CSD refcode VORMEV; Öztürk et al., 2009[Öztürk, A., Babahan, İ., Sarıkavaklı, N. & Hökelek, T. (2009). Acta Cryst. E65, o1059-o1060.]), 2-[(4,7-di­methyl­quinolin-2-yl)methyl­idene]hydrazine-1-carboxamide dihydrate (MIQPIO; Aydemir et al., 2018[Aydemir, E., Kansiz, S., Dege, N., Genc, H. & Gaidai, S. V. (2018). Acta Cryst. E74, 1674-1677.]), 2-(but-2-en-1-yl­idene)hydrazinecarboxamide (WOTRII; Arfan & Rukiah, 2015[Arfan, A. & Rukiah, M. (2015). Acta Cryst. E71, 168-172.]), 2-(pyridin-4-yl­methyl­ene)hydrazinecarboxamide hemihydrate (GUHXOY; Inoue et al., 2015[Inoue, M. H., Back, D. F., Burrow, R. A. & Nunes, F. S. (2015). Acta Cryst. E71, o317-o318.]) and (E)-1-(4-meth­oxy­benzyl­idene)semicarbazide (YIFTOX; Liang et al., 2007[Liang, Z.-P., Li, J., Wang, H.-L. & Wang, H.-Q. (2007). Acta Cryst. E63, o2939.]).

In the crystal of VORMEV, inter­molecular O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules, and [R_{2}^{2}](8) ring motifs are apparent. In the crystal of MIQPIO, the mol­ecules are linked by O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds, forming a two-dimensional network parallel to (101). In the crystal of WOTRII, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into layers parallel to the bc plane. In the crystal of GUHXOY, mol­ecules are linked into an infinite three-dimensional network by classical N—H⋯Os (s = semicarbazone) and Ow—H⋯N (w = water) hydrogen bonds. In the crystal of YIFTOX, the almost planar mol­ecules inter­act by way of N—H⋯O hydrogen bonds.

5. Synthesis and crystallization

214 mg (1 mmol) of 2-[2-(di­cyano­methyl­ene)hydrazin­yl]benzoic acid was dissolved in 15 mL of acetone and 0.1 mL of water were added, then stirred at 353 K for 1 h. Then, the solvent was evacuated by a rotary evaporator, and the obtained yellow powder was crystallized in a mixture of acetone and di­methyl­formamide (20/1; v/v). Yield, 83%, yellow powder soluble in DMSO, methanol, ethanol and DMF. Analysis calculated for C13H15N5O4 (Mr = 305.29): C 51.15, H 4.95, N 22.94; found: C 51.13, H 4.91, N 22.92%. IR (KBr): 3211 ν(OH), 2948 and 2876 ν(NH), 2216 ν(CN), 1667 ν(C=O) and 1610 ν(C=N) cm−1. 1H NMR (300.130 MHz) in DMSO-d6, inter­nal TMS, δ (ppm): 2.66 and 2.83 (6H, 2CH3), 4.31 (1H, OH), 7.86 (2H, NH2), 8.18-8.56 (4H, Ar), 8.70 (1H, CH of DMF) and 14.46 (1H, N—H). 13C{1H} NMR (75.468 MHz, DMSO-d6). δ: 35.0 and 36.9 (2CH3), 109.8 (CN), 112.2 C—COOH, 115.5 (CH, Ar), 123.9 (CH, Ar), 128.5 (CH, Ar), 132.0 (CH, Ar), 133.4 (C=O), 143.5 (C—NH), 161.2 (COOH), 163.9 (C=O of DMF), 165.0 (C=O).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were placed in geometrically calculated positions (C—H = 0.93 and 0.96 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) for aromatic groups and Uiso(H) = 1.5Ueq(C) for methyl groups. N- and O-bound hydrogen atoms were located in difference-Fourier maps, but their positional parameters were fixed and their isotropic displacement parameters were refined with Uiso(H) =1.2 or 1.5Ueq(N,O). Two reflections, (010) and (202), affected by the beam stop, were omitted in the final cycles of refinement.

Table 3
Experimental details

Crystal data
Chemical formula C10H8N4O3·C3H7NO
Mr 305.30
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.9481 (7), 12.8523 (13), 14.8737 (15)
α, β, γ (°) 96.651 (4), 96.960 (3), 90.548 (3)
V3) 1497.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.35 × 0.23 × 0.15
 
Data collection
Diffractometer Bruker D8 Quest PHOTON 100 detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.956, 0.975
No. of measured, independent and observed [I > 2σ(I)] reflections 51380, 6106, 4113
Rint 0.083
(sin θ/λ)max−1) 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.186, 1.12
No. of reflections 6106
No. of parameters 401
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.24
Computer programs: APEX4 and SAINT (Bruker, 2018[Bruker (2018). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

(E)-2-[2-(2-Amino-1-cyano-2-oxoethylidene)hydrazin-1-yl]benzoic acid N,N-dimethylformamide monosolvate top
Crystal data top
C10H8N4O3·C3H7NOZ = 4
Mr = 305.30F(000) = 640
Triclinic, P1Dx = 1.354 Mg m3
a = 7.9481 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.8523 (13) ÅCell parameters from 9961 reflections
c = 14.8737 (15) Åθ = 2.2–26.3°
α = 96.651 (4)°µ = 0.10 mm1
β = 96.960 (3)°T = 296 K
γ = 90.548 (3)°Plate, yellow
V = 1497.6 (3) Å30.35 × 0.23 × 0.15 mm
Data collection top
Bruker D8 Quest PHOTON 100 detector
diffractometer
4113 reflections with I > 2σ(I)
φ and ω scansRint = 0.083
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 26.5°, θmin = 2.6°
Tmin = 0.956, Tmax = 0.975h = 99
51380 measured reflectionsk = 1616
6106 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: mixed
wR(F2) = 0.186H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0525P)2 + 1.4706P]
where P = (Fo2 + 2Fc2)/3
6106 reflections(Δ/σ)max < 0.001
401 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5077 (3)0.83808 (16)0.46961 (15)0.0606 (6)
H1A0.4612710.7980670.5016190.091*
O20.5136 (3)0.69907 (15)0.36569 (14)0.0526 (5)
O30.7061 (3)0.44678 (15)0.00144 (14)0.0566 (6)
O40.2192 (3)0.33799 (16)0.85161 (15)0.0617 (6)
H4B0.2405990.3794540.8974200.093*
O50.0804 (3)0.47622 (16)0.81769 (15)0.0609 (6)
O60.3548 (3)0.72532 (15)0.56897 (14)0.0541 (5)
O70.0481 (4)0.8179 (2)0.0095 (2)0.0812 (8)
O80.2197 (4)0.35888 (19)0.40513 (18)0.0809 (8)
N10.6435 (3)0.72330 (17)0.21577 (15)0.0425 (5)
H1N0.5995030.6814390.2519260.051*
N20.6978 (3)0.68585 (17)0.13792 (15)0.0413 (5)
N30.5278 (4)0.4699 (2)0.2074 (2)0.0715 (8)
N40.8120 (4)0.6045 (2)0.02242 (18)0.0626 (8)
H4C0.8349370.6733990.0069460.075*
H4D0.8471770.5798090.0759560.075*
N50.0657 (3)0.45672 (17)0.66661 (16)0.0452 (5)
H5N0.0398200.4982410.7157730.054*
N60.1512 (3)0.49363 (17)0.60548 (15)0.0415 (5)
N70.1432 (4)0.7136 (2)0.7607 (2)0.0749 (9)
N80.3283 (3)0.57007 (18)0.47862 (17)0.0509 (6)
H8A0.2928530.5025810.4672580.061*
H8B0.3933530.5915710.4385080.061*
N90.2321 (4)0.8553 (2)0.0099 (2)0.0683 (8)
N100.2728 (3)0.2365 (2)0.29056 (19)0.0576 (7)
C10.6661 (3)0.82926 (19)0.24815 (18)0.0397 (6)
C20.7397 (4)0.8984 (2)0.1980 (2)0.0491 (7)
H2A0.7754470.8742910.1421620.059*
C30.7590 (4)1.0028 (2)0.2316 (2)0.0579 (8)
H3A0.8069851.0490240.1976940.069*
C40.7085 (5)1.0401 (2)0.3146 (2)0.0636 (9)
H4A0.7227211.1107540.3364680.076*
C50.6365 (4)0.9715 (2)0.3652 (2)0.0536 (7)
H5A0.6026770.9965930.4212300.064*
C60.6139 (3)0.8654 (2)0.33319 (19)0.0420 (6)
C70.6755 (3)0.5866 (2)0.10982 (18)0.0397 (6)
C80.7337 (4)0.5420 (2)0.02367 (19)0.0461 (6)
C90.5411 (4)0.7930 (2)0.38984 (19)0.0453 (6)
C100.5941 (4)0.5167 (2)0.1609 (2)0.0485 (7)
C110.0087 (3)0.3522 (2)0.65460 (18)0.0398 (6)
C120.0409 (4)0.2854 (2)0.5782 (2)0.0478 (7)
H12A0.1005220.3102400.5346740.057*
C130.0153 (4)0.1830 (2)0.5672 (2)0.0577 (8)
H13A0.0059080.1388340.5159290.069*
C140.1030 (5)0.1447 (2)0.6314 (2)0.0624 (9)
H14A0.1389440.0747820.6239940.075*
C150.1371 (4)0.2102 (2)0.7063 (2)0.0528 (7)
H15A0.1971010.1839870.7490650.063*
C160.0837 (3)0.3151 (2)0.71983 (19)0.0419 (6)
C170.2032 (3)0.5910 (2)0.61849 (18)0.0395 (6)
C180.3021 (3)0.6324 (2)0.55211 (18)0.0409 (6)
C190.1254 (4)0.3835 (2)0.8002 (2)0.0465 (6)
C200.1723 (4)0.6620 (2)0.6966 (2)0.0484 (7)
C210.0905 (5)0.7971 (3)0.0140 (2)0.0663 (9)
H21A0.0982510.7350570.0521370.080*
C230.2309 (7)0.9502 (4)0.0710 (4)0.1176 (19)
H23A0.1265540.9534560.0976000.176*
H23B0.2406551.0093840.0379170.176*
H23C0.3245430.9513110.1183980.176*
C220.3904 (6)0.8209 (4)0.0208 (4)0.1016 (15)
H22A0.3712000.7567770.0610500.152*
H22B0.4700030.8095030.0307990.152*
H22C0.4352420.8736480.0527210.152*
C240.2762 (4)0.3327 (2)0.3335 (2)0.0605 (8)
H24A0.3261150.3849860.3066390.073*
C250.3442 (7)0.2137 (3)0.2058 (3)0.0922 (13)
H25A0.3899790.2771010.1890530.138*
H25B0.2572820.1848640.1588070.138*
H25C0.4328070.1640550.2132780.138*
C260.2027 (6)0.1503 (3)0.3292 (3)0.0849 (12)
H26A0.1602690.1761650.3851590.127*
H26B0.2893770.1005390.3413050.127*
H26C0.1118000.1170080.2870350.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0856 (16)0.0436 (11)0.0549 (13)0.0106 (10)0.0279 (11)0.0039 (9)
O20.0690 (13)0.0373 (10)0.0534 (12)0.0072 (9)0.0216 (10)0.0006 (9)
O30.0758 (15)0.0416 (11)0.0537 (12)0.0098 (10)0.0228 (11)0.0031 (9)
O40.0814 (16)0.0479 (12)0.0592 (13)0.0111 (11)0.0265 (11)0.0033 (10)
O50.0795 (15)0.0445 (12)0.0611 (13)0.0106 (10)0.0271 (11)0.0018 (10)
O60.0711 (14)0.0408 (11)0.0515 (12)0.0104 (9)0.0188 (10)0.0006 (9)
O70.0848 (19)0.0619 (15)0.099 (2)0.0123 (13)0.0337 (16)0.0017 (14)
O80.108 (2)0.0609 (15)0.0751 (17)0.0173 (14)0.0416 (15)0.0157 (13)
N10.0473 (13)0.0356 (12)0.0453 (13)0.0052 (9)0.0113 (10)0.0018 (9)
N20.0433 (12)0.0364 (11)0.0439 (12)0.0036 (9)0.0074 (10)0.0017 (9)
N30.086 (2)0.0595 (17)0.073 (2)0.0141 (15)0.0230 (17)0.0118 (15)
N40.087 (2)0.0456 (14)0.0581 (16)0.0191 (13)0.0296 (14)0.0031 (12)
N50.0528 (14)0.0381 (12)0.0449 (13)0.0049 (10)0.0123 (11)0.0003 (10)
N60.0450 (12)0.0378 (12)0.0419 (12)0.0002 (9)0.0071 (10)0.0042 (9)
N70.097 (2)0.0653 (19)0.0621 (18)0.0025 (16)0.0248 (17)0.0080 (15)
N80.0624 (16)0.0403 (13)0.0517 (14)0.0032 (11)0.0197 (12)0.0004 (11)
N90.081 (2)0.0551 (16)0.0695 (19)0.0144 (15)0.0131 (15)0.0069 (14)
N100.0616 (16)0.0492 (15)0.0596 (16)0.0057 (12)0.0086 (13)0.0047 (12)
C10.0392 (14)0.0327 (13)0.0453 (15)0.0004 (10)0.0019 (11)0.0004 (11)
C20.0531 (17)0.0408 (15)0.0537 (17)0.0052 (12)0.0101 (13)0.0035 (13)
C30.068 (2)0.0406 (16)0.067 (2)0.0084 (14)0.0140 (16)0.0105 (14)
C40.082 (2)0.0319 (15)0.077 (2)0.0048 (15)0.0198 (19)0.0015 (14)
C50.0617 (19)0.0377 (15)0.0612 (19)0.0010 (13)0.0153 (15)0.0027 (13)
C60.0412 (14)0.0347 (13)0.0498 (16)0.0020 (11)0.0063 (12)0.0035 (11)
C70.0430 (14)0.0354 (13)0.0399 (14)0.0037 (11)0.0056 (11)0.0014 (11)
C80.0507 (16)0.0415 (15)0.0453 (15)0.0067 (12)0.0077 (12)0.0003 (12)
C90.0445 (15)0.0421 (15)0.0491 (16)0.0018 (12)0.0105 (12)0.0010 (12)
C100.0520 (17)0.0412 (15)0.0508 (17)0.0084 (12)0.0083 (13)0.0018 (13)
C110.0387 (14)0.0357 (13)0.0440 (15)0.0014 (10)0.0010 (11)0.0053 (11)
C120.0528 (17)0.0397 (15)0.0516 (17)0.0020 (12)0.0085 (13)0.0060 (12)
C130.070 (2)0.0430 (16)0.0576 (19)0.0028 (14)0.0082 (16)0.0044 (14)
C140.074 (2)0.0357 (15)0.076 (2)0.0067 (14)0.0094 (18)0.0021 (15)
C150.0549 (18)0.0445 (16)0.0602 (19)0.0029 (13)0.0079 (14)0.0108 (14)
C160.0411 (14)0.0380 (14)0.0462 (15)0.0003 (11)0.0016 (12)0.0071 (11)
C170.0446 (15)0.0344 (13)0.0395 (14)0.0009 (11)0.0058 (11)0.0033 (11)
C180.0446 (15)0.0363 (14)0.0415 (14)0.0028 (11)0.0057 (11)0.0027 (11)
C190.0475 (16)0.0448 (16)0.0484 (16)0.0010 (12)0.0086 (12)0.0080 (12)
C200.0548 (17)0.0411 (15)0.0496 (17)0.0029 (12)0.0114 (13)0.0021 (13)
C210.086 (3)0.0492 (18)0.065 (2)0.0128 (17)0.0207 (19)0.0022 (15)
C230.133 (4)0.073 (3)0.137 (5)0.029 (3)0.019 (4)0.029 (3)
C220.079 (3)0.109 (4)0.116 (4)0.011 (3)0.015 (3)0.011 (3)
C240.066 (2)0.0469 (17)0.068 (2)0.0111 (15)0.0156 (17)0.0022 (15)
C250.127 (4)0.075 (3)0.074 (3)0.001 (2)0.031 (3)0.013 (2)
C260.109 (3)0.051 (2)0.094 (3)0.014 (2)0.018 (2)0.0004 (19)
Geometric parameters (Å, º) top
O1—C91.317 (3)C3—C41.379 (5)
O1—H1A0.8502C3—H3A0.9300
O2—C91.228 (3)C4—C51.385 (4)
O3—C81.247 (3)C4—H4A0.9300
O4—C191.311 (3)C5—C61.394 (4)
O4—H4B0.8501C5—H5A0.9300
O5—C191.230 (3)C6—C91.483 (4)
O6—C181.249 (3)C7—C101.438 (4)
O7—C211.219 (4)C7—C81.471 (4)
O8—C241.219 (4)C11—C121.394 (4)
N1—N21.325 (3)C11—C161.407 (4)
N1—C11.393 (3)C12—C131.371 (4)
N1—H1N0.8999C12—H12A0.9300
N2—C71.299 (3)C13—C141.380 (5)
N3—C101.138 (4)C13—H13A0.9300
N4—C81.313 (4)C14—C151.372 (4)
N4—H4C0.8999C14—H14A0.9300
N4—H4D0.9000C15—C161.395 (4)
N5—N61.325 (3)C15—H15A0.9300
N5—C111.398 (3)C16—C191.473 (4)
N5—H5N0.9000C17—C201.439 (4)
N6—C171.300 (3)C17—C181.476 (4)
N7—C201.145 (4)C21—H21A0.9300
N8—C181.318 (3)C23—H23A0.9600
N8—H8A0.9000C23—H23B0.9600
N8—H8B0.9000C23—H23C0.9600
N9—C211.333 (5)C22—H22A0.9600
N9—C231.435 (5)C22—H22B0.9600
N9—C221.446 (5)C22—H22C0.9600
N10—C241.323 (4)C24—H24A0.9300
N10—C261.442 (5)C25—H25A0.9600
N10—C251.445 (5)C25—H25B0.9600
C1—C21.392 (4)C25—H25C0.9600
C1—C61.408 (4)C26—H26A0.9600
C2—C31.377 (4)C26—H26B0.9600
C2—H2A0.9300C26—H26C0.9600
C9—O1—H1A115.0C13—C12—H12A120.0
C19—O4—H4B111.9C11—C12—H12A120.0
N2—N1—C1120.3 (2)C12—C13—C14120.7 (3)
N2—N1—H1N122.1C12—C13—H13A119.6
C1—N1—H1N117.4C14—C13—H13A119.6
C7—N2—N1118.8 (2)C15—C14—C13119.7 (3)
C8—N4—H4C126.8C15—C14—H14A120.1
C8—N4—H4D120.3C13—C14—H14A120.1
H4C—N4—H4D112.9C14—C15—C16121.5 (3)
N6—N5—C11120.4 (2)C14—C15—H15A119.2
N6—N5—H5N121.4C16—C15—H15A119.2
C11—N5—H5N118.1C15—C16—C11118.0 (3)
C17—N6—N5119.1 (2)C15—C16—C19119.9 (3)
C18—N8—H8A124.0C11—C16—C19122.1 (2)
C18—N8—H8B120.7N6—C17—C20123.2 (2)
H8A—N8—H8B115.1N6—C17—C18119.7 (2)
C21—N9—C23120.1 (4)C20—C17—C18117.1 (2)
C21—N9—C22120.7 (3)O6—C18—N8124.0 (3)
C23—N9—C22119.1 (4)O6—C18—C17117.6 (2)
C24—N10—C26120.5 (3)N8—C18—C17118.4 (2)
C24—N10—C25121.4 (3)O5—C19—O4121.9 (3)
C26—N10—C25118.1 (3)O5—C19—C16123.8 (3)
C2—C1—N1120.9 (2)O4—C19—C16114.3 (2)
C2—C1—C6120.4 (2)N7—C20—C17175.9 (3)
N1—C1—C6118.7 (2)O7—C21—N9125.8 (3)
C3—C2—C1119.4 (3)O7—C21—H21A117.1
C3—C2—H2A120.3N9—C21—H21A117.1
C1—C2—H2A120.3N9—C23—H23A109.5
C2—C3—C4121.3 (3)N9—C23—H23B109.5
C2—C3—H3A119.4H23A—C23—H23B109.5
C4—C3—H3A119.4N9—C23—H23C109.5
C3—C4—C5119.6 (3)H23A—C23—H23C109.5
C3—C4—H4A120.2H23B—C23—H23C109.5
C5—C4—H4A120.2N9—C22—H22A109.5
C4—C5—C6120.9 (3)N9—C22—H22B109.5
C4—C5—H5A119.6H22A—C22—H22B109.5
C6—C5—H5A119.6N9—C22—H22C109.5
C5—C6—C1118.5 (3)H22A—C22—H22C109.5
C5—C6—C9119.9 (3)H22B—C22—H22C109.5
C1—C6—C9121.6 (2)O8—C24—N10125.8 (3)
N2—C7—C10121.8 (2)O8—C24—H24A117.1
N2—C7—C8120.5 (2)N10—C24—H24A117.1
C10—C7—C8117.7 (2)N10—C25—H25A109.5
O3—C8—N4123.7 (3)N10—C25—H25B109.5
O3—C8—C7118.1 (2)H25A—C25—H25B109.5
N4—C8—C7118.3 (2)N10—C25—H25C109.5
O2—C9—O1122.1 (3)H25A—C25—H25C109.5
O2—C9—C6123.8 (2)H25B—C25—H25C109.5
O1—C9—C6114.1 (2)N10—C26—H26A109.5
N3—C10—C7173.2 (3)N10—C26—H26B109.5
C12—C11—N5120.5 (2)H26A—C26—H26B109.5
C12—C11—C16120.1 (2)N10—C26—H26C109.5
N5—C11—C16119.4 (2)H26A—C26—H26C109.5
C13—C12—C11120.0 (3)H26B—C26—H26C109.5
C1—N1—N2—C7179.7 (2)N6—N5—C11—C16179.2 (2)
C11—N5—N6—C17179.8 (2)N5—C11—C12—C13179.8 (3)
N2—N1—C1—C22.6 (4)C16—C11—C12—C130.9 (4)
N2—N1—C1—C6177.1 (2)C11—C12—C13—C140.4 (5)
N1—C1—C2—C3179.5 (3)C12—C13—C14—C151.2 (5)
C6—C1—C2—C30.9 (4)C13—C14—C15—C160.6 (5)
C1—C2—C3—C40.7 (5)C14—C15—C16—C110.7 (4)
C2—C3—C4—C50.2 (5)C14—C15—C16—C19178.9 (3)
C3—C4—C5—C60.2 (5)C12—C11—C16—C151.5 (4)
C4—C5—C6—C10.0 (5)N5—C11—C16—C15179.3 (2)
C4—C5—C6—C9178.2 (3)C12—C11—C16—C19178.1 (3)
C2—C1—C6—C50.5 (4)N5—C11—C16—C191.1 (4)
N1—C1—C6—C5179.8 (3)N5—N6—C17—C200.1 (4)
C2—C1—C6—C9177.7 (3)N5—N6—C17—C18178.5 (2)
N1—C1—C6—C92.0 (4)N6—C17—C18—O6177.4 (3)
N1—N2—C7—C100.1 (4)C20—C17—C18—O61.3 (4)
N1—N2—C7—C8179.9 (2)N6—C17—C18—N83.1 (4)
N2—C7—C8—O3178.4 (3)C20—C17—C18—N8178.1 (3)
C10—C7—C8—O31.6 (4)C15—C16—C19—O5178.7 (3)
N2—C7—C8—N41.6 (4)C11—C16—C19—O51.7 (4)
C10—C7—C8—N4178.3 (3)C15—C16—C19—O42.9 (4)
C5—C6—C9—O2178.2 (3)C11—C16—C19—O4176.7 (3)
C1—C6—C9—O23.6 (4)C23—N9—C21—O72.1 (6)
C5—C6—C9—O11.8 (4)C22—N9—C21—O7178.5 (4)
C1—C6—C9—O1176.4 (3)C26—N10—C24—O82.1 (6)
N6—N5—C11—C120.0 (4)C25—N10—C24—O8179.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O60.851.732.580 (3)175
O4—H4B···O3i0.851.752.590 (3)171
N1—H1N···O20.901.892.617 (3)136
N4—H4C···O7ii0.902.042.915 (3)162
N4—H4D···O5iii0.902.092.952 (3)161
N5—H5N···O50.901.932.640 (3)134
N8—H8A···O80.902.012.889 (3)164
N8—H8B···O20.902.142.990 (3)158
C2—H2A···O7ii0.932.603.505 (4)165
C4—H4A···O6iv0.932.523.372 (3)153
C12—H12A···O80.932.393.311 (4)171
C24—H24A···N30.932.623.498 (4)158
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y, z; (iii) x+1, y, z1; (iv) x+1, y+2, z+1.
Interatomic contacts (Å) for the title compound top
ContactDistanceSymmetry operation
H1A···O61.73x, y, z
H5A···O12.741 - x, 2 - y, 1 - z
O3···H4B1.751 + x, y, -1 + z
N3···C203.231 - x, 1 - y, 1 - z+
N3···H24A2.62x, y, z
H4C···O72.041 + x, y, z
H4A···O62.521 - x, 2 - y, 1 - z
O4···C213.21-x, 1 - y, 1 - z
C20···N33.231 - x, 1 - y, 1 - z
H8A···O82.01x, y, z
 

Acknowledgements

The authors' contributions are as follows. Conceptualization, SRH, MA and AB; synthesis, FEH; X-ray analysis, ZA and MA; writing (review and editing of the manuscript) FEH, MA and AB; funding acquisition, SRH and FEH; supervision, SRH, MA and AB.

Funding information

Funding for this research was provided by: Baku State University.

References

First citationAfkhami, F. A., Mahmoudi, G., Khandar, A. A., Franconetti, A., Zangrando, E., Qureshi, N., Lipkowski, J., Gurbanov, A. V. & Frontera, A. (2019). Eur. J. Inorg. Chem. 2019, 262–270.  Web of Science CSD CrossRef CAS Google Scholar
First citationArfan, A. & Rukiah, M. (2015). Acta Cryst. E71, 168–172.  CSD CrossRef IUCr Journals Google Scholar
First citationAydemir, E., Kansiz, S., Dege, N., Genc, H. & Gaidai, S. V. (2018). Acta Cryst. E74, 1674–1677.  CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2018). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). Dalton Trans. 51, 1019–1031.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. A Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932–3940.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, F. M., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). Dyes Pigments, 138, 107–111.  Web of Science CSD CrossRef CAS Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationInoue, M. H., Back, D. F., Burrow, R. A. & Nunes, F. S. (2015). Acta Cryst. E71, o317–o318.  CSD CrossRef IUCr Journals Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTOA System for Computational Chemistry. Available at:http://hirshfeldsurface.net/.  Google Scholar
First citationKhalilov, A. N. (2021a). Rev. Roum. Chim. 66, 719–723.  Google Scholar
First citationKhalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021b). J. Mol. Liq. 344, 117761.  Web of Science CrossRef Google Scholar
First citationKopylovich, M. N., Karabach, Y. Y., Mahmudov, K. T., Haukka, M., Kirillov, A. M., Figiel, P. J. & Pombeiro, A. J. L. (2011). Cryst. Growth Des. 11, 4247–4252.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLiang, Z.-P., Li, J., Wang, H.-L. & Wang, H.-Q. (2007). Acta Cryst. E63, o2939.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017). Mol. Catal. 428, 17–23.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.  Web of Science CrossRef Google Scholar
First citationMahmoudi, G., Zangrando, E., Bauzá, A., Maniukiewicz, W., Carballo, R., Gurbanov, A. V. & Frontera, A. (2017). CrystEngComm, 19, 3322–3330.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.  Web of Science CSD CrossRef Google Scholar
First citationMahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T. & Pombeiro, A. J. L. (2023). Chem. A Eur. J. 29, e202203861.  Web of Science CrossRef Google Scholar
First citationMartins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). New J. Chem. 41, 4076–4086.  Web of Science CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationÖztürk, A., Babahan, İ., Sarıkavaklı, N. & Hökelek, T. (2009). Acta Cryst. E65, o1059–o1060.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). Cryst­EngComm,10, 377–388.  Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804–1813.  Web of Science CrossRef CAS Google Scholar
First citationVelásquez, J. D., Mahmoudi, G., Zangrando, E., Gurbanov, A. V., Zubkov, F. I., Zorlu, Y., Masoudiasl, A. & Echeverría, J. (2019). CrystEngComm, 21, 6018–6025.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds