research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of a cadmium(II) coordination polymer based on 4,4′-(1H-1,2,4-triazole-3,5-di­yl)dibenzoate

crossmark logo

aL. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospekt Nauki 31, 03028, Kyiv, Ukraine, bDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Pavlo Skoropadskyi st., 12, Kyiv 01033, Ukraine, cEnamine Ltd., Winston Churchill st., 78, Kyiv 02094, Ukraine, and d"Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghika Voda 41A, RO-700487 Iasi, Romania
*Correspondence e-mail: lampeka@adamant.net

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 1 January 2024; accepted 5 January 2024; online 9 January 2024)

The asymmetric unit of the title compound, catena-poly[[[aqua­bis­(pyridine-κN)cadmium(II)]-μ2-4,4′-(1H-1,2,4-triazole-3,5-di­yl)dibenzoato-κ4O,O′:O′′,O′′′] 4.5-hydrate], {[Cd(C16H9N3O4)(C5H5N)2(H2O)]·4.5H2O}n or {[Cd(bct)(py)2(H2O)]·4.5H2O}n (I), consists of a Cd2+ cation coordinated to one bct2– carboxyl­ate dianion, two mol­ecules of pyridine and a water mol­ecule as well as four and a half water mol­ecules of crystallization. The metal ion in I possesses a penta­gonal–bipyramidal environment with the four O atoms of the two bidentately coordinated carboxyl­ate groups and the N atom of a pyridine mol­ecule forming the O4N equatorial plane, while the N atom of another pyridine ligand and the O atom of the water mol­ecule occupy the axial positions. The bct2– bridging ligand connects two metal ions via its carb­oxy­lic groups, resulting in the formation of a parallel linear polymeric chain running along the [1[\overline{1}]1] direction. The coordinated water mol­ecule of one chain forms a strong O—H⋯O hydrogen bond with the carboxyl­ate O atom of a neighboring chain, leading to the formation of double chains with a closest distance of 5.425 (7) Å between the cadmium ions belonging to different chains. Aromatic ππ stacking inter­actions between the benzene fragments of the anions as well as between the coordinated pyridine mol­ecules belonging to different chains results in the formation of sheets oriented parallel to the ([\overline{1}]01) plane. As a result of hydrogen-bonding inter­actions involving the water mol­ecules of crystallization, the sheets are joined together in a three-dimensional network.

1. Chemical context

Crystalline coordination polymers with permanent porosity (metal–organic frameworks, MOFs) attract much current attention due to the possibilities of their applications in different areas, including gas storage, separation, sensing, catalysis, etc. (MacGillivray & Lukehart, 2014[MacGillivray, L. R. & Lukehart, C. M. (2014). Editors. Metal-Organic Framework Materials. Hoboken: John Wiley and Sons.]; Kaskel, 2016[Kaskel, S. (2016). Editor. The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization and Applications. Weinheim: Wiley-VCH.]). Oligo­carboxyl­ate ligands have become the most popular organic bridging units in MOFs because of their strong coord­ination ability, rich coordination modes and different deprotonation degrees (Rao et al., 2004[Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1496.]; Yoshinari & Konno, 2023[Yoshinari, N. & Konno, T. (2023). Coord. Chem. Rev. 474, 214850.]). To a lesser extent, heterocyclic ligands containing several N atoms, which are able to coordinate directly to metal ions, are also used in the construction of MOFs (Chen et al., 2014[Chen, B., Yang, Z., Zhu, Y. & Xia, Y. (2014). J. Mater. Chem. A, 2, 16811-16831.]; Zhao et al., 2022[Zhao, J., Yuan, J., Fang, Z., Huang, S., Chen, Z., Qiu, F., Lu, C., Zhu, J. & Zhuang, X. (2022). Coord. Chem. Rev. 471, 214735.]). At the same time, hybrid bridging mol­ecules containing both carboxyl­ate functional groups and N-heterocyclic fragment(s) have been studied to a lesser extent (Lu et al., 2023[Lu, X., Tang, Y., Yang, G. & Wang, Y.-Y. (2023). CrystEngComm, 25, 896-908.]), although one might expect that the combination of different donor groups in one ligand mol­ecule could open new possibilities for creation of MOFs with specific chemical and structural features.

4,4′-(1H-1,2,4-Triazole-3,5-di­yl)di­benzoic acid (H2bct; C16H11N3O4), a rigid V-shaped ligand possessing two carb­oxy­lic acid groups in symmetrical positions and a N-donor triazole group, belongs to such bridges and is an excellent candidate for the preparation of functional coordination polymers because of several features. It possesses seven potential coordination sites, can adopt various coordination modes due to possible free rotation around C—C bonds between the benzene and the triazole rings, and can partially or completely deprotonate, acting both as a hydrogen-bond acceptor and donor.

The coordination polymers of different metal ions formed by this bridging ligand have been prepared and shown to possess prospective properties including absorption of methane (Li et al., 2022[Li, H.-X., Zhang, Z.-H., Fang, H., Xue, D.-X. & Bai, J. (2022). J. Mater. Chem. A, 10, 14795-14798.]), catalysis of CO2 cyclo­addition reactions (Sun et al., 2019[Sun, X., Gu, J., Yuan, Y., Yu, C., Li, J., Shan, H., Li, G. & Liu, Y. (2019). Inorg. Chem. 58, 7480-7487.]; Tian et al., 2021[Tian, X.-R., Shi, Y., Hou, S.-L., Ma, Y. & Zhao, B. (2021). Inorg. Chem. 60, 15383-15389.]), photocatalysis of dyes degradation (Gao et al., 2023[Gao, Y.-H., Huang, P.-P., Xu, H.-T., Huang, P., Liu, B., Lu, J.-F. & Ge, H.-G. (2023). J. Mol. Struct. 1281, 135106.]) etc. It has also been shown that this ligand itself demonstrates luminescent properties and its complexes of metal ions with d10 electronic configuration (ZnII, CdII) or lanthanides can be used as luminescent sensors for different analytes (Zhang et al., 2019[Zhang, Y.-X., Lin, H., Wen, Y. & Zhu, Q.-L. (2019). Cryst. Growth Des. 19, 1057-1063.]; Luo et al., 2022[Luo, L., Xie, Y., Hou, S.-L., Ma, Y. & Zhao, B. (2022). Inorg. Chem. 61, 9990-9996.]; Wang et al., 2022[Wang, X., Xu, Q.-W., Wei, M.-M., Chen, J.-Y., Wang, H.-H. & Li, X. (2022). CrystEngComm, 24, 6367-6375.]).

Several coordination polymers formed by the deprotonated bct2– ligand and the Cd2+ cation have been described to date and they all possess very similar structures featuring a μ3- or μ4-bridging mode of the carboxyl­ate (see Database survey). The present work describes the preparation and structural characterization of a representative of another type of CdII coordination polymer, namely, catena-poly[[[aqua­bis­(pyri­dine-κN)cadmium(II)]-μ2-4,4′-(1H-1,2,4-triazole-3,5-di­yl)dibenzoato-κ4O,O′:O′′,O′′′] 4.5-hydrate], {[Cd(C16H9N3O4)(C5H5N)2(H2O)]·4.5 H2O}n, I.

[Scheme 1]

2. Structural commentary

The asymmetric unit of complex I contains a CdII cation coordinated to one doubly deprotonated bct2– anion, two mol­ecules of pyridine and a water mol­ecule (Fig. 1[link]) and includes additionally five water mol­ecules of crystallization, one of which (O6W) is disordered over two positions with an occupancy of 0.25 (total of 4.5 water mol­ecules of crystallization). Additionally, one carboxyl­ate group of the anion (C26/O3/O4) is disordered over two orientations with half-occupancy (indices A and B in the atom-labeling scheme) and these components were refined in an isotropic approximation.

[Figure 1]
Figure 1
The extended asymmetric unit in I showing the coordination environment of the Cd atom and the partial atom-labeling scheme (displacement ellipsoids are drawn at the 30% probability level). The minor occupancy components B of the disordered carb­oxy­lic group and water mol­ecules of crystallization are not shown. Symmetry codes: (i) x + 1, y − 1, z + 1; (ii) x − 1, y + 1, z − 1.

The coordination number of the CdII ion in I is seven and its coordination polyhedron is formed by the two bidentately coordinated carb­oxy­lic groups of different bct2– anions, two pyridine mol­ecules and one water mol­ecule. The metal ion possesses a penta­gonal–bipyramidal environment with the carboxyl­ate O atoms and the N1 atom of pyridine forming the O4N equatorial plane, while the N2 atom of another pyridine ligand and O1W atom of the water mol­ecule occupy the axial positions. The sum of the angles D—Cd—D (D = donor atom) in the O4N equatorial plane is very close to 360° (the difference does not exceed 0.6°), thus evidencing its nearly planar structure and agrees well with a small deviation of the CdII cation (ca 0.09 Å). The orientation of the axial bonds is nearly orthogonal to the equatorial plane (Table 1[link]). The dihedral angle between pyridine rings is 62.5 (2)°.

Table 1
Selected geometric parameters (Å, °)

Cd1—O1 2.366 (3) Cd1—O2 2.521 (3)
Cd1—O3Ai 2.471 (10) Cd1—O4Ai 2.538 (6)
Cd1—O3Bi 2.588 (10) Cd1—O4Bi 2.216 (6)
Cd1—N1 2.334 (3) Cd1—N2 2.340 (3)
Cd1—O1W 2.300 (3)    
       
O1W—Cd1—N1 88.03 (12) O1W—Cd1—N2 172.97 (14)
O1W—Cd1—O1 87.97 (13) O1W—Cd1—O2 92.10 (13)
O1W—Cd1—O3Ai 93.9 (2) O1W—Cd1—O3Bi 86.8 (2)
O1W—Cd1—O4Ai 98.35 (18) O1W—Cd1—O4Bi 83.36 (19)
N1—Cd1—N2 93.18 (12) O1—Cd1—O2 53.22 (8)
O3Ai—Cd1—O4Ai 54.05 (13) O3Bi—Cd1—O4Bi 53.15 (14)
Symmetry code: (i) [x+1, y-1, z+1].

The Cd—N bond lengths in I are very similar to the Cd—O1W distance (ca 2.3 Å) and do not depend on the position of the pyridine mol­ecule in the coordination sphere (equatorial or axial). The coordination bonds to these neutral ligands are shorter than those to the majority of O atoms of deprotonated carboxyl­ate groups which, in turn, are significantly non-equivalent within each carboxyl­ate group (Table 1[link]).

The near equality of the C—O bond lengths in the C11/O1/O2 fragment [1.255 (4) and 1.254 (4) Å] indicate complete electronic delocalization of this carboxyl­ate group. However, this is not the case for both disordered components of the C26/O3/O4 fragment where one C—O bond is significantly shorter than another [cf. 1.2485 (10) / 1.2476 (10) Å for the C26—O3A/C26—O4B bonds and 1.379 (5)/1.343 (6) Å for the C26—O4A/C26—O3B bonds] thus evidencing mainly localized single and double bond characters of the bonds. Inter­estingly, in these cases Cd1 forms shorter coordination bonds with the carbonyl O atoms. The chelate bite angles of the four-membered chelate rings are determined by the geometrical parameters of the carboxyl­ate groups and are close to 53° (Table 1[link]).

In the bct2– anion, the carboxyl­ate groups are twisted away from the attached benzene ring to different extent. Whereas the C12/C11/O1/O2 fragment is nearly coplanar with its aromatic ring (ca 1.7°) the angle of rotation of the opposite analogue exceeds 10.6°. The conformation of the carboxyl­ate ligand as a whole approximates to twofold rotation symmetry with dihedral angles between the mean planes of the central triazole and lateral benzene rings of 16.1 (2) and 16.5 (2)°, and between the benzene rings of 3.3 (1)°. Inter­estingly, the conformation of the bct2– anion in its disodium salt is notably less planar with angles between the triazole and benzene rings of 14.2 and 28.5° and between the benzene rings of 16.4° (Lu et al., 2021[Lu, J. F., Gao, J. H., Tang, B., Sun, M. & Ge, H. G. (2021). Crystallogr. Rep. 66, 1295-1299.]). Each carboxyl­ate group of the bct2– anion in I connects two metal ions and each metal ion is bidentately coordinated by two different anions, thus resulting in the formation of a linear polymeric chain running along the [1[\overline{1}]1] direction, with metal–metal distances of 18.0485 (13) Å.

3. Supra­molecular features

The water mol­ecules present in I form a branched network of hydrogen bonds (Table 2[link]). Because of the low occupancy and disordering of the O6W mol­ecule, its participation in the hydrogen-bonding inter­actions is not considered in further discussion.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯O1i 0.86 1.85 2.694 (4) 166
O2W—H2WA⋯O4Wii 0.85 1.89 2.712 (4) 164
O2W—H2WB⋯O2 0.85 1.92 2.767 (4) 173
O3W—H3WA⋯O2W 0.85 1.96 2.803 (4) 172
O3W—H3WB⋯O2Wii 0.85 1.96 2.804 (4) 170
O4W—H4WA⋯N4iii 0.85 2.25 3.079 (4) 165
O4W—H4WB⋯N5 0.85 2.03 2.877 (4) 171
O5W—H5WA⋯O3Wiv 0.79 2.12 2.878 (4) 161
O5W—H5WB⋯O3Wv 0.85 1.97 2.800 (4) 164
N3—H3⋯O5W 0.83 (5) 1.89 (5) 2.720 (4) 177 (5)
Symmetry codes: (i) [-x+1, -y+1, -z+2]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+1, -y+2, -z+1]; (iv) [-x, -y+2, -z+1]; (v) [x, y+1, z].

The coordinated water mol­ecule O1W plays a specific role in the supra­molecular organization of the crystal of I. In particular, acting as proton donors, these mol­ecules of each polymeric chain strongly inter­act with the O1 atoms of the coordinated carboxyl­ate groups of a neighboring one, resulting in the formation of double chains with a Cd1⋯Cd1 distance of 5.425 (7) Å (Fig. 2[link]). The inter­action between the chains in the dimers is further reinforced by a ππ stacking inter­action between the coaxial and nearly parallel benzene fragments of the anions belonging to different chains with a centroid–centroid distance of 3.667 (1) Å (lilac bold lines in Fig. 2[link]). Additionally, the coordinated N1 pyridine mol­ecules of each dimeric chain participate in ππ stacking inter­actions [centroid–centroid distance of 3.606 (1) Å] with analogous mol­ecules belonging to neighboring chains (green bold lines in Fig. 2[link]), resulting in the formation of sheets oriented parallel to the ([\overline{1}]01) plane.

[Figure 2]
Figure 2
Fragment of the extended sheet in I lying parallel to the ([\overline{1}]01) plane. C-bound H atoms, N2 pyridine rings, water mol­ecules of crystallization and minor occupancy components B of the disordered carboxyl­ate groups have been omitted for clarity. Hydrogen-bonding inter­actions are shown as black dotted lines, ππ stacking inter­actions between benzene rings in double chains and those between coordinated N1 pyridine mol­ecules are shown as lilac and green bold lines, respectively. Symmetry code: (i) –x + 1, –y + 1, –z + 2.

The water mol­ecules of crystallization in I form hydrogen bonds with the non-coordinated O2 atoms of the carb­oxy­lic groups, the N atoms of the triazole rings, as well as with other water mol­ecules (Table 2[link]). They all act as the two-proton donors; two of them (O2W and O3W) function as two-proton acceptors, while O4W and O5W are single proton acceptors. Inter­estingly, all three nitrogen atoms of the triazole fragment participate in the formation of the hydrogen bonds: N3 as a proton donor and N4 and N5 as proton acceptors. All these inter­actions lead to the arrangement of the above-mentioned constituents into layers lying parallel to the (001) plane (Fig. 3[link]). Since these layers include organic components (carboxyl­ate groups and triazole fragment) that belong to different coordination-polymeric chains, the network of hydrogen bonds provides the three-dimensional coherence of the crystal of I.

[Figure 3]
Figure 3
Fragment of the sheet in I lying parallel to the (001) plane formed due to hydrogen-bonding inter­actions with the participation of water mol­ecules of crystallization, triazole rings and the non-coordinated O2 atom of the carboxyl­ate groups. Expanded and hanging contacts are shown as black and blue dashed lines, respectively.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.44, last update September 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicated that among more than 55 compounds containing the bct2– anion, five complexes are formed by the CdII ion [CSD refcodes QIRJAE (Yu et al., 2013[Yu, M., Hu, M. & Wu, Z. (2013). RSC Adv. 3, 25175-25183.]); ZIMJAI (Hou et al., 2013[Hou, X.-Y., Wang, X., Fu, F., Wang, J.-J. & Tang, L. (2013). J. Coord. Chem. 66, 3126-3136.]); WESWOJ (Hou et al., 2017[Hou, X.-Y., Wang, X., Ren, Y.-X., Wang, J.-J., Jin, W., Kang, W.-W., Ma, X. & Han, X.-X. (2017). Jiegou Huaxue, 36, 2067-2072.]) and XIXLUO and XIXMAV (Zhang et al., 2019[Zhang, Y.-X., Lin, H., Wen, Y. & Zhu, Q.-L. (2019). Cryst. Growth Des. 19, 1057-1063.])]. All of them are coordination polymers and in the first two compounds the only bridging ligand is the bct2– anion, while the others contain bi- or tridentate aromatic amines as additional bridges.

Nevertheless, irrespective of whether the additional polydentate ligands are present, in all cases the bct2– dianion binds to three or four Cd2+ ions and this situation is clearly different from that observed in I, where the carboxyl­ate ligand displays a μ2-bridging function. Inter­estingly, the presence of a common bridging O atom in the coordination spheres of metal ions in the above-mentioned compounds leads to the formation of dimeric polymeric chains, the structures of which are, to some extent, similar to that observed in I, where the dimerization proceeds due to the formation of the hydrogen bonds between chains (vide supra).

A search of the CSD gave 19 hits related to the structural characterization of compounds containing a Cd2+ ion coord­inated by the donor fragment present in I, i.e., a water mol­ecule, two pyridine ligands or its derivates and two bidentately coordinated carboxyl­ate groups. All have a penta­gonal–bipyramidal structure and the majority of them (16 hits) are characterized by an O(water)/O(carboxyl­ate) equatorial plane and two trans-located pyridine ligands [see, for example, BUYVUM10 (Rodesiler et al., 1985[Rodesiler, P. F., Griffith, E. A. H., Charles, N. G. & Amma, E. L. (1985). Acta Cryst. C41, 673-678.]); XATBEA (Li et al., 2005[Li, Y., Wu, A.-Q., Zheng, F.-K., Fu, M.-L., Guo, G.-C. & Huang, J.-S. (2005). Inorg. Chem. Commun. 8, 708-712.]); LIGWEE (Bania et al., 2007[Bania, K., Barooah, N. & Baruah, J. B. (2007). Polyhedron, 26, 2612-2620.]); OHEFOY, OHEFUE and OHETEC (Saxena & Thirupathi, 2015[Saxena, P. & Thirupathi, N. (2015). Polyhedron, 98, 238-250.])]. Moreover, among them, two complexes formed by the potentially bridging ligands terephthalate [LAMRUP (Croitor et al., 2017[Croitor, L., Coropceanu, E. B., Duca, G., Siminel, A. V. & Fonari, M. S. (2017). Polyhedron, 129, 9-21.])] and 1,4-phenyl­enedi­acetate [YASMUB (Lin et al., 2005[Lin, X., Wang, Y.-Q., Cao, R., Li, F. & Bi, W.-H. (2005). Acta Cryst. C61, m292-m294.])] represent coordination polymers. On the other hand, only three among 19 compounds are characterized by a cis arrangement of the pyridine ligands. Two of them are cyclic dimers formed by two CdII ions and two anions of complex bis-oxydi­acetate ligands [NAYFAW (Nath & Baruah, 2012[Nath, B. & Baruah, J. B. (2012). Dalton Trans. 41, 7115-7126.]) and NOLCAU (Nath & Baruah, 2014[Nath, B. & Baruah, J. B. (2014). Polyhedron, 79, 291-299.])], while the third is a mol­ecular complex that includes two anions of 4-cyano­benzoate [TILCAT (Li et al., 2007[Li, Y., Li, G.-Q., Zheng, F.-K., Zou, J.-P., Zou, W.-Q., Guo, G.-C., Lu, C.-Z. & Huang, J.-S. (2007). J. Mol. Struct. 842, 38-45.])] and from the point of view of the structural parameters it is the closest structural analogue of I. Inter­estingly, in this compound the hydrogen-bonding inter­actions between the coordinated water mol­ecules and O atoms of the coordinated carboxyl­ate groups result in the formation of dimers with a metal-to-metal distance of 5.182 Å, which is close to 5.425 (7) Å observed in I.

5. Synthesis and crystallization

All chemicals and solvents used in this work were purchased from Sigma–Aldrich and used without further purification. The acid H2bct was synthesized according to a procedure described previously (Lopyrev et al., 1977[Lopyrev, V. A., Chipanina, N. N., Rozinova, L. G., Sarapulova, G. I., Sultangareev, R. G. & Voronkov, M. G. (1977). Chem. Heterocycl. Compd. 13, 1346-1349.]). For the preparation of the title compound, a solution of CdCl2 (28 mg, 0.15 mmol) in water (2 ml) was layered with a solution of 31 mg (0.1 mmol) H2bct in 5 ml DMF/py (4:1 by volume). A white precipitate, which had formed over several days, was filtered off, washed with small amounts of DMF and diethyl ether, and dried in air (yield: 24 mg, 35% based on the acid). Analysis calculated (%) for C26H30CdN5O9.5: C 46.13, H 4.47, N 10.34; found: C 45.97, H 4.68, N 10.18. Single crystals of I suitable for X-ray diffraction analysis were selected from the sample resulting from the synthesis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The ring H atoms in I were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distance of 0.93 Å with Uiso(H) = 1.2Ueq(N). Water H atoms were positioned geometrically (O—H = 0.79–0.85 Å) and refined as riding with Uiso(H) = 1.5Ueq(O). One carboxyl­ate group of the anion (C26/O3/O4) is disordered over two positions with half-occupancy and these components were refined in an isotropic approximation. The water mol­ecule O6W is also disordered over two positions with the site occupancies being 0.25. Disordered fragments were modeled using the RESI routine available in SHELXL.

Table 3
Experimental details

Crystal data
Chemical formula [Cd(C16H9N3O4)(C5H5N)2(H2O)]·4.5H2O
Mr 676.95
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.1674 (5), 12.3033 (6), 15.4877 (8)
α, β, γ (°) 75.226 (5), 86.412 (4), 75.346 (5)
V3) 1455.89 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.81
Crystal size (mm) 0.45 × 0.03 × 0.03
 
Data collection
Diffractometer Rigaku Xcalibur Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.850, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14750, 5963, 4538
Rint 0.047
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.099, 1.02
No. of reflections 5963
No. of parameters 378
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.80, −0.71
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

catena-Poly[[[aquabis(pyridine-κN)cadmium(II)]-µ2-4,4'-(1H-1,2,4-triazole-3,5-diyl)dibenzoato-κ4O,O':O'',O'''] 4.5-hydrate] top
Crystal data top
[Cd(C16H9N3O4)(C5H5N)2(H2O)]·4.5H2OZ = 2
Mr = 676.95F(000) = 690
Triclinic, P1Dx = 1.544 Mg m3
a = 8.1674 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.3033 (6) ÅCell parameters from 4044 reflections
c = 15.4877 (8) Åθ = 1.8–26.4°
α = 75.226 (5)°µ = 0.81 mm1
β = 86.412 (4)°T = 293 K
γ = 75.346 (5)°Prism, clear light colourless
V = 1455.89 (14) Å30.45 × 0.03 × 0.03 mm
Data collection top
Rigaku Xcalibur Eos
diffractometer
5963 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source4538 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 16.1593 pixels mm-1θmax = 26.4°, θmin = 1.9°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 1515
Tmin = 0.850, Tmax = 1.000l = 1919
14750 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.076P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5963 reflectionsΔρmax = 0.80 e Å3
378 parametersΔρmin = 0.70 e Å3
6 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.64074 (4)0.33051 (3)0.91578 (2)0.03626 (11)
O1W0.4111 (5)0.3603 (4)1.0083 (2)0.1047 (16)
H1WA0.3130540.3493931.0140890.157*
H1WB0.4198940.3827931.0554790.157*
O20.4683 (4)0.4504 (2)0.77939 (17)0.0454 (7)
O2W0.5031 (4)0.3838 (2)0.62018 (18)0.0518 (8)
H2WA0.5200040.3104060.6339380.078*
H2WB0.4839540.4024460.6696980.078*
O10.5848 (4)0.5341 (2)0.85969 (17)0.0465 (8)
O4A0.1584 (8)1.1735 (5)0.0270 (4)0.0499 (11)*0.5
O4B0.2360 (7)1.2083 (5)0.0386 (4)0.0499 (11)*0.5
O3W0.2593 (4)0.5195 (3)0.49121 (19)0.0542 (8)
H3WA0.3262070.4798560.5340580.081*
H3WB0.3207870.5539560.4531680.081*
O3B0.1896 (12)1.3767 (5)0.0317 (5)0.0563 (12)*0.5
O3A0.1638 (12)1.3622 (4)0.0171 (5)0.0563 (12)*0.5
O4W0.4914 (4)0.8427 (3)0.3594 (2)0.0652 (9)
H4WA0.5748230.8583160.3795840.098*
H4WB0.4054630.8771860.3844140.098*
O5W0.0700 (4)1.3812 (2)0.44619 (18)0.0569 (9)
H5WA0.0079801.4089090.4729570.085*
H5WB0.1413501.4181590.4529070.085*
O6WB0.107 (2)0.4481 (17)0.9711 (12)0.060 (6)*0.25
H6WA0.1133380.5162030.9705060.091*0.25
H6WB0.0102580.4391130.9899160.091*0.25
O6WA0.139 (2)0.4433 (15)0.9539 (11)0.043 (5)*0.25
H6WC0.0955540.5145060.9531840.064*0.25
H6WD0.0696340.4082560.9858540.064*0.25
N10.5552 (5)0.1728 (3)0.8928 (2)0.0443 (9)
N20.8545 (4)0.3186 (3)0.8082 (2)0.0412 (8)
N30.1923 (5)1.1490 (3)0.4659 (2)0.0424 (9)
H30.157 (6)1.221 (4)0.458 (3)0.074 (18)*
N40.2590 (4)1.0777 (3)0.5443 (2)0.0417 (9)
N50.2250 (4)0.9751 (3)0.4486 (2)0.0379 (8)
C10.3958 (7)0.1841 (4)0.8749 (3)0.0740 (17)
H10.3225410.2573940.8663490.089*
C20.3310 (9)0.0941 (6)0.8679 (4)0.093 (2)
H20.2162050.1057680.8574080.111*
C30.4382 (9)0.0124 (5)0.8767 (3)0.0694 (17)
H3A0.3983360.0746800.8709630.083*
C40.6026 (8)0.0266 (4)0.8939 (3)0.0706 (16)
H40.6784690.0986510.8997980.085*
C50.6579 (7)0.0691 (4)0.9029 (3)0.0602 (14)
H50.7710080.0588240.9163370.072*
C60.8673 (6)0.2579 (4)0.7471 (3)0.0479 (11)
H60.7925230.2112980.7500250.057*
C70.9838 (7)0.2607 (4)0.6807 (3)0.0602 (14)
H70.9873190.2172550.6391870.072*
C81.0954 (6)0.3276 (4)0.6753 (3)0.0627 (14)
H81.1773910.3297920.6308440.075*
C91.0841 (6)0.3916 (4)0.7371 (3)0.0605 (13)
H91.1572650.4391780.7348780.073*
C100.9630 (6)0.3840 (4)0.8021 (3)0.0532 (12)
H100.9566210.4270680.8441500.064*
C110.5034 (5)0.5385 (4)0.7923 (2)0.0368 (10)
C120.4477 (5)0.6532 (3)0.7247 (2)0.0336 (9)
C130.3618 (6)0.6598 (4)0.6490 (3)0.0480 (12)
H130.3382970.5931760.6403210.058*
C140.3102 (6)0.7635 (4)0.5858 (3)0.0471 (11)
H140.2542920.7655960.5346470.057*
C150.3407 (5)0.8642 (3)0.5976 (2)0.0368 (10)
C160.4270 (6)0.8581 (4)0.6736 (3)0.0445 (11)
H160.4498590.9246320.6826960.053*
C170.4793 (5)0.7534 (4)0.7362 (3)0.0417 (10)
H170.5369320.7506810.7869190.050*
C180.2774 (5)0.9730 (3)0.5311 (2)0.0360 (10)
C190.1713 (5)1.0868 (3)0.4092 (2)0.0346 (9)
C200.0987 (5)1.1348 (3)0.3197 (2)0.0344 (9)
C210.0451 (6)1.0618 (4)0.2790 (3)0.0478 (11)
H210.0602490.9838340.3080290.057*
C220.0295 (6)1.1028 (4)0.1969 (3)0.0541 (13)
H220.0642271.0520540.1708320.065*
C230.0546 (5)1.2180 (4)0.1514 (3)0.0436 (11)
C240.0025 (6)1.2910 (4)0.1910 (3)0.0508 (12)
H240.0107261.3686360.1614990.061*
C250.0788 (6)1.2489 (4)0.2741 (3)0.0519 (12)
H250.1172811.2985810.2995910.062*
C260.1447 (6)1.2612 (3)0.0646 (3)0.0610 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0489 (2)0.03543 (19)0.02777 (17)0.01675 (15)0.00309 (13)0.00652 (12)
O1W0.113 (3)0.178 (4)0.091 (3)0.104 (3)0.064 (2)0.102 (3)
O20.062 (2)0.0361 (17)0.0383 (16)0.0176 (15)0.0097 (14)0.0012 (13)
O2W0.063 (2)0.0454 (19)0.0480 (18)0.0131 (16)0.0013 (16)0.0126 (15)
O10.065 (2)0.0382 (17)0.0318 (15)0.0016 (15)0.0174 (15)0.0081 (13)
O3W0.046 (2)0.061 (2)0.0555 (19)0.0169 (16)0.0044 (15)0.0104 (16)
O4W0.075 (2)0.048 (2)0.075 (2)0.0079 (18)0.0133 (19)0.0310 (18)
O5W0.072 (2)0.0369 (19)0.063 (2)0.0028 (16)0.0130 (17)0.0209 (16)
N10.064 (3)0.037 (2)0.0347 (19)0.023 (2)0.0113 (18)0.0010 (16)
N20.046 (2)0.039 (2)0.039 (2)0.0142 (18)0.0006 (17)0.0057 (17)
N30.060 (3)0.025 (2)0.034 (2)0.0077 (19)0.0170 (17)0.0070 (16)
N40.055 (2)0.033 (2)0.0308 (18)0.0037 (18)0.0132 (16)0.0083 (15)
N50.045 (2)0.032 (2)0.0330 (19)0.0008 (16)0.0100 (16)0.0099 (16)
C10.080 (4)0.045 (3)0.093 (4)0.021 (3)0.051 (3)0.006 (3)
C20.102 (5)0.077 (5)0.107 (5)0.045 (4)0.057 (4)0.001 (4)
C30.113 (5)0.063 (4)0.050 (3)0.051 (4)0.000 (3)0.016 (3)
C40.098 (5)0.046 (3)0.076 (4)0.029 (3)0.033 (3)0.024 (3)
C50.068 (4)0.052 (3)0.069 (3)0.028 (3)0.021 (3)0.022 (3)
C60.060 (3)0.048 (3)0.041 (3)0.023 (2)0.007 (2)0.011 (2)
C70.074 (4)0.058 (3)0.049 (3)0.019 (3)0.014 (3)0.015 (2)
C80.056 (3)0.065 (4)0.050 (3)0.007 (3)0.010 (3)0.006 (3)
C90.044 (3)0.067 (4)0.067 (3)0.027 (3)0.002 (3)0.003 (3)
C100.055 (3)0.056 (3)0.053 (3)0.023 (3)0.004 (2)0.011 (2)
C110.036 (2)0.041 (3)0.030 (2)0.003 (2)0.0027 (18)0.0099 (19)
C120.032 (2)0.036 (2)0.031 (2)0.0028 (19)0.0030 (17)0.0096 (18)
C130.067 (3)0.037 (3)0.042 (3)0.010 (2)0.018 (2)0.013 (2)
C140.061 (3)0.041 (3)0.038 (2)0.008 (2)0.025 (2)0.005 (2)
C150.041 (3)0.031 (2)0.033 (2)0.0023 (19)0.0064 (18)0.0067 (18)
C160.058 (3)0.035 (3)0.042 (2)0.006 (2)0.013 (2)0.013 (2)
C170.050 (3)0.039 (3)0.035 (2)0.005 (2)0.014 (2)0.011 (2)
C180.039 (2)0.033 (2)0.031 (2)0.0001 (19)0.0046 (18)0.0079 (18)
C190.037 (2)0.035 (2)0.030 (2)0.0023 (19)0.0053 (18)0.0101 (18)
C200.037 (2)0.038 (3)0.026 (2)0.0028 (19)0.0077 (17)0.0077 (18)
C210.058 (3)0.048 (3)0.043 (3)0.020 (2)0.009 (2)0.010 (2)
C220.069 (3)0.066 (3)0.037 (3)0.037 (3)0.017 (2)0.009 (2)
C230.043 (3)0.062 (3)0.029 (2)0.024 (2)0.0029 (19)0.005 (2)
C240.067 (3)0.043 (3)0.036 (2)0.008 (2)0.019 (2)0.003 (2)
C250.075 (4)0.042 (3)0.039 (3)0.011 (3)0.023 (2)0.008 (2)
C260.056 (3)0.099 (4)0.042 (3)0.051 (3)0.002 (2)0.011 (3)
Geometric parameters (Å, º) top
Cd1—O1W2.300 (3)C2—H20.9300
Cd1—O22.521 (3)C2—C31.359 (8)
Cd1—O12.366 (3)C3—H3A0.9300
Cd1—O4Ai2.538 (6)C3—C41.345 (7)
Cd1—O4Bi2.216 (6)C4—H40.9300
Cd1—O3Bi2.588 (10)C4—C51.403 (6)
Cd1—O3Ai2.471 (10)C5—H50.9300
Cd1—N12.334 (3)C6—H60.9300
Cd1—N22.340 (3)C6—C71.356 (6)
O1W—H1WA0.8401C7—H70.9300
O1W—H1WB0.8579C7—C81.360 (6)
O2—C111.254 (4)C8—H80.9300
O2W—H2WA0.8498C8—C91.372 (6)
O2W—H2WB0.8496C9—H90.9300
O1—C111.255 (4)C9—C101.369 (6)
O4A—C261.379 (5)C10—H100.9300
O4B—C261.2476 (10)C11—C121.509 (5)
O3W—H3WA0.8498C12—C131.378 (5)
O3W—H3WB0.8500C12—C171.377 (5)
O3B—C261.343 (6)C13—H130.9300
O3A—C261.2485 (10)C13—C141.381 (5)
O4W—H4WA0.8500C14—H140.9300
O4W—H4WB0.8501C14—C151.381 (5)
O5W—H5WA0.7895C15—C161.386 (5)
O5W—H5WB0.8503C15—C181.461 (5)
O6WB—H6WA0.8499C16—H160.9300
O6WB—H6WB0.8497C16—C171.384 (5)
O6WA—H6WC0.8547C17—H170.9300
O6WA—H6WD0.8535C19—C201.459 (5)
N1—C11.314 (6)C20—C211.385 (5)
N1—C51.315 (6)C20—C251.374 (5)
N2—C61.332 (5)C21—H210.9300
N2—C101.324 (5)C21—C221.363 (5)
N3—H30.83 (5)C22—H220.9300
N3—N41.355 (4)C22—C231.382 (6)
N3—C191.347 (5)C23—C241.389 (5)
N4—C181.325 (5)C23—C261.481 (5)
N5—C181.364 (4)C24—H240.9300
N5—C191.324 (5)C24—C251.382 (5)
C1—H10.9300C25—H250.9300
C1—C21.372 (6)
O1W—Cd1—O292.10 (13)C5—C4—H4120.6
O1W—Cd1—O187.97 (13)N1—C5—C4122.3 (5)
O1W—Cd1—O4Ai98.35 (18)N1—C5—H5118.9
O1W—Cd1—O3Bi86.8 (2)C4—C5—H5118.9
O1W—Cd1—O3Ai93.9 (2)N2—C6—H6118.3
O1W—Cd1—N188.03 (12)N2—C6—C7123.4 (4)
O1W—Cd1—N2172.97 (14)C7—C6—H6118.3
O2—Cd1—O4Ai164.94 (13)C6—C7—H7120.3
O2—Cd1—O3Bi134.39 (13)C6—C7—C8119.5 (4)
O1—Cd1—O253.22 (8)C8—C7—H7120.3
O1—Cd1—O4Ai137.54 (13)C7—C8—H8120.8
O1—Cd1—O3Bi81.19 (13)C7—C8—C9118.3 (4)
O1—Cd1—O3Ai83.77 (11)C9—C8—H8120.8
O4Bi—Cd1—O1W83.36 (19)C8—C9—H9120.7
O4Bi—Cd1—O2171.16 (12)C10—C9—C8118.7 (4)
O4Bi—Cd1—O1133.80 (12)C10—C9—H9120.7
O4Bi—Cd1—O4Ai15.3 (2)N2—C10—C9123.4 (4)
O4Bi—Cd1—O3Bi53.15 (14)N2—C10—H10118.3
O4Bi—Cd1—O3Ai51.93 (13)C9—C10—H10118.3
O4Bi—Cd1—N185.58 (13)O2—C11—O1121.9 (4)
O4Bi—Cd1—N2103.63 (18)O2—C11—C12119.3 (3)
O3Ai—Cd1—O2136.29 (11)O1—C11—C12118.8 (3)
N1—Cd1—O286.69 (10)C13—C12—C11119.9 (3)
N1—Cd1—O1139.50 (11)C17—C12—C11121.9 (3)
N1—Cd1—O4Ai82.87 (14)C17—C12—C13118.2 (4)
N1—Cd1—O3Bi138.73 (14)C12—C13—H13119.4
N1—Cd1—O3Ai136.72 (13)C12—C13—C14121.1 (4)
N1—Cd1—N293.18 (12)C14—C13—H13119.4
N2—Cd1—O281.06 (10)C13—C14—H14119.6
N2—Cd1—O186.61 (11)C13—C14—C15120.7 (4)
N2—Cd1—O4Ai88.68 (16)C15—C14—H14119.6
N2—Cd1—O3Bi96.7 (2)C14—C15—C16118.4 (4)
N2—Cd1—O3Ai89.9 (2)C14—C15—C18119.0 (3)
Cd1—O1W—H1WA138.5C16—C15—C18122.7 (4)
Cd1—O1W—H1WB119.7C15—C16—H16119.8
H1WA—O1W—H1WB101.4C17—C16—C15120.4 (4)
C11—O2—Cd188.7 (2)C17—C16—H16119.8
H2WA—O2W—H2WB104.5C12—C17—C16121.2 (4)
C11—O1—Cd195.9 (2)C12—C17—H17119.4
C26—O4A—Cd1ii86.0 (3)C16—C17—H17119.4
C26—O4B—Cd1ii104.5 (4)N4—C18—N5113.3 (3)
H3WA—O3W—H3WB104.5N4—C18—C15124.8 (3)
C26—O3B—Cd1ii84.7 (4)N5—C18—C15121.8 (3)
C26—O3A—Cd1ii91.8 (5)N3—C19—C20125.6 (4)
H4WA—O4W—H4WB104.5N5—C19—N3108.8 (3)
H5WA—O5W—H5WB101.0N5—C19—C20125.7 (3)
H6WA—O6WB—H6WB109.5C21—C20—C19118.3 (4)
H6WC—O6WA—H6WD103.5C25—C20—C19123.5 (3)
C1—N1—Cd1119.7 (3)C25—C20—C21118.2 (4)
C1—N1—C5117.4 (4)C20—C21—H21119.6
C5—N1—Cd1122.8 (3)C22—C21—C20120.9 (4)
C6—N2—Cd1124.7 (3)C22—C21—H21119.6
C10—N2—Cd1118.3 (3)C21—C22—H22119.3
C10—N2—C6116.8 (4)C21—C22—C23121.5 (4)
N4—N3—H3123 (3)C23—C22—H22119.3
C19—N3—H3126 (3)C22—C23—C24117.9 (4)
C19—N3—N4110.5 (3)C22—C23—C26120.1 (3)
C18—N4—N3103.0 (3)C24—C23—C26122.0 (4)
C19—N5—C18104.4 (3)C23—C24—H24119.8
N1—C1—H1118.1C25—C24—C23120.4 (4)
N1—C1—C2123.9 (5)C25—C24—H24119.8
C2—C1—H1118.1C20—C25—C24121.1 (4)
C1—C2—H2120.7C20—C25—H25119.4
C3—C2—C1118.5 (6)C24—C25—H25119.4
C3—C2—H2120.7O4A—C26—C23113.2 (4)
C2—C3—H3A120.5O4B—C26—O3B114.1 (6)
C4—C3—C2119.1 (5)O4B—C26—C23123.3 (4)
C4—C3—H3A120.5O3B—C26—C23116.7 (5)
C3—C4—H4120.6O3A—C26—O4A119.9 (6)
C3—C4—C5118.8 (5)O3A—C26—C23123.9 (5)
Cd1—O2—C11—O14.7 (4)C10—N2—C6—C70.1 (7)
Cd1—O2—C11—C12174.7 (3)C11—C12—C13—C14179.6 (4)
Cd1—O1—C11—O25.1 (4)C11—C12—C17—C16179.8 (4)
Cd1—O1—C11—C12174.4 (3)C12—C13—C14—C151.2 (7)
Cd1ii—O4A—C26—O3A28.7 (7)C13—C12—C17—C160.1 (6)
Cd1ii—O4A—C26—C23170.0 (3)C13—C14—C15—C161.2 (7)
Cd1ii—O4B—C26—O3B20.2 (7)C13—C14—C15—C18177.3 (4)
Cd1ii—O4B—C26—C23172.0 (4)C14—C15—C16—C170.7 (6)
Cd1ii—O3B—C26—O4B16.7 (6)C14—C15—C18—N4162.0 (4)
Cd1ii—O3B—C26—C23170.4 (4)C14—C15—C18—N515.6 (6)
Cd1ii—O3A—C26—O4A29.5 (7)C15—C16—C17—C120.1 (7)
Cd1ii—O3A—C26—C23171.3 (4)C16—C15—C18—N416.5 (6)
Cd1—N1—C1—C2174.2 (4)C16—C15—C18—N5166.0 (4)
Cd1—N1—C5—C4176.2 (3)C17—C12—C13—C140.6 (7)
Cd1—N2—C6—C7174.0 (4)C18—N5—C19—N30.6 (4)
Cd1—N2—C10—C9174.4 (4)C18—N5—C19—C20178.6 (4)
O2—C11—C12—C131.2 (6)C18—C15—C16—C17177.8 (4)
O2—C11—C12—C17178.6 (4)C19—N3—N4—C180.6 (4)
O1—C11—C12—C13178.3 (4)C19—N5—C18—N40.2 (5)
O1—C11—C12—C171.9 (6)C19—N5—C18—C15177.6 (4)
N1—C1—C2—C32.6 (9)C19—C20—C21—C22177.5 (4)
N2—C6—C7—C80.5 (8)C19—C20—C25—C24177.1 (4)
N3—N4—C18—N50.2 (5)C20—C21—C22—C230.1 (7)
N3—N4—C18—C15178.0 (4)C21—C20—C25—C242.0 (7)
N3—C19—C20—C21163.4 (4)C21—C22—C23—C241.6 (7)
N3—C19—C20—C2515.7 (7)C21—C22—C23—C26176.5 (4)
N4—N3—C19—N50.7 (5)C22—C23—C24—C251.2 (7)
N4—N3—C19—C20178.4 (4)C22—C23—C26—O4A15.3 (7)
N5—C19—C20—C2115.5 (6)C22—C23—C26—O4B18.0 (8)
N5—C19—C20—C25165.3 (4)C22—C23—C26—O3B169.1 (6)
C1—N1—C5—C40.8 (7)C22—C23—C26—O3A175.7 (7)
C1—C2—C3—C41.5 (9)C23—C24—C25—C200.6 (7)
C2—C3—C4—C50.5 (8)C24—C23—C26—O4A166.7 (5)
C3—C4—C5—N11.7 (7)C24—C23—C26—O4B160.1 (5)
C5—N1—C1—C21.4 (8)C24—C23—C26—O3B8.9 (8)
C6—N2—C10—C90.1 (7)C24—C23—C26—O3A6.2 (9)
C6—C7—C8—C91.0 (8)C25—C20—C21—C221.7 (7)
C7—C8—C9—C101.0 (7)C26—C23—C24—C25176.8 (4)
C8—C9—C10—N20.6 (7)
Symmetry codes: (i) x+1, y1, z+1; (ii) x1, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O1iii0.861.852.694 (4)166
O2W—H2WA···O4Wiv0.851.892.712 (4)164
O2W—H2WB···O20.851.922.767 (4)173
O3W—H3WA···O2W0.851.962.803 (4)172
O3W—H3WB···O2Wiv0.851.962.804 (4)170
O4W—H4WA···N4v0.852.253.079 (4)165
O4W—H4WB···N50.852.032.877 (4)171
O5W—H5WA···O3Wvi0.792.122.878 (4)161
O5W—H5WB···O3Wvii0.851.972.800 (4)164
N3—H3···O5W0.83 (5)1.89 (5)2.720 (4)177 (5)
Symmetry codes: (iii) x+1, y+1, z+2; (iv) x+1, y+1, z+1; (v) x+1, y+2, z+1; (vi) x, y+2, z+1; (vii) x, y+1, z.
 

Funding information

Funding for this research was provided by a grant of the Ministry of Research, Innovation and Digitization, CCCDI–UEFISCDI, project No. PN-III-P2-2.1-PED-2021-3900, within PNCDI III, Contract PED 698/2022 (AI-Syn-PPOSS), as well as by grant 22BF037–06 from the Ministry of Education and Science of Ukraine.

References

First citationBania, K., Barooah, N. & Baruah, J. B. (2007). Polyhedron, 26, 2612–2620.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, B., Yang, Z., Zhu, Y. & Xia, Y. (2014). J. Mater. Chem. A, 2, 16811–16831.  Web of Science CrossRef CAS Google Scholar
First citationCroitor, L., Coropceanu, E. B., Duca, G., Siminel, A. V. & Fonari, M. S. (2017). Polyhedron, 129, 9–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationGao, Y.-H., Huang, P.-P., Xu, H.-T., Huang, P., Liu, B., Lu, J.-F. & Ge, H.-G. (2023). J. Mol. Struct. 1281, 135106.  Web of Science CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHou, X.-Y., Wang, X., Fu, F., Wang, J.-J. & Tang, L. (2013). J. Coord. Chem. 66, 3126–3136.  Web of Science CSD CrossRef CAS Google Scholar
First citationHou, X.-Y., Wang, X., Ren, Y.-X., Wang, J.-J., Jin, W., Kang, W.-W., Ma, X. & Han, X.-X. (2017). Jiegou Huaxue, 36, 2067–2072.  CAS Google Scholar
First citationKaskel, S. (2016). Editor. The Chemistry of Metal–Organic Frameworks: Synthesis, Characterization and Applications. Weinheim: Wiley-VCH.  Google Scholar
First citationLi, H.-X., Zhang, Z.-H., Fang, H., Xue, D.-X. & Bai, J. (2022). J. Mater. Chem. A, 10, 14795–14798.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Y., Li, G.-Q., Zheng, F.-K., Zou, J.-P., Zou, W.-Q., Guo, G.-C., Lu, C.-Z. & Huang, J.-S. (2007). J. Mol. Struct. 842, 38–45.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Y., Wu, A.-Q., Zheng, F.-K., Fu, M.-L., Guo, G.-C. & Huang, J.-S. (2005). Inorg. Chem. Commun. 8, 708–712.  Web of Science CSD CrossRef CAS Google Scholar
First citationLin, X., Wang, Y.-Q., Cao, R., Li, F. & Bi, W.-H. (2005). Acta Cryst. C61, m292–m294.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLopyrev, V. A., Chipanina, N. N., Rozinova, L. G., Sarapulova, G. I., Sultangareev, R. G. & Voronkov, M. G. (1977). Chem. Heterocycl. Compd. 13, 1346–1349.  CrossRef Google Scholar
First citationLu, J. F., Gao, J. H., Tang, B., Sun, M. & Ge, H. G. (2021). Crystallogr. Rep. 66, 1295–1299.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, X., Tang, Y., Yang, G. & Wang, Y.-Y. (2023). CrystEngComm, 25, 896–908.  Web of Science CrossRef CAS Google Scholar
First citationLuo, L., Xie, Y., Hou, S.-L., Ma, Y. & Zhao, B. (2022). Inorg. Chem. 61, 9990–9996.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacGillivray, L. R. & Lukehart, C. M. (2014). Editors. Metal–Organic Framework Materials. Hoboken: John Wiley and Sons.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNath, B. & Baruah, J. B. (2012). Dalton Trans. 41, 7115–7126.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNath, B. & Baruah, J. B. (2014). Polyhedron, 79, 291–299.  Web of Science CSD CrossRef CAS Google Scholar
First citationRao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRodesiler, P. F., Griffith, E. A. H., Charles, N. G. & Amma, E. L. (1985). Acta Cryst. C41, 673–678.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSaxena, P. & Thirupathi, N. (2015). Polyhedron, 98, 238–250.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, X., Gu, J., Yuan, Y., Yu, C., Li, J., Shan, H., Li, G. & Liu, Y. (2019). Inorg. Chem. 58, 7480–7487.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTian, X.-R., Shi, Y., Hou, S.-L., Ma, Y. & Zhao, B. (2021). Inorg. Chem. 60, 15383–15389.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWang, X., Xu, Q.-W., Wei, M.-M., Chen, J.-Y., Wang, H.-H. & Li, X. (2022). CrystEngComm, 24, 6367–6375.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoshinari, N. & Konno, T. (2023). Coord. Chem. Rev. 474, 214850.  Web of Science CrossRef Google Scholar
First citationYu, M., Hu, M. & Wu, Z. (2013). RSC Adv. 3, 25175–25183.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, Y.-X., Lin, H., Wen, Y. & Zhu, Q.-L. (2019). Cryst. Growth Des. 19, 1057–1063.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, J., Yuan, J., Fang, Z., Huang, S., Chen, Z., Qiu, F., Lu, C., Zhu, J. & Zhuang, X. (2022). Coord. Chem. Rev. 471, 214735.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds