metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
RETRACTED ARTICLE

This article has been retracted. To view the retraction notice, click here.

Retracted: catena-Poly[[(nitrato-κO)(1,10-phenanthroline-κ2N,N′)manganese(II)]-μ-nitrato-κ2O:O′]

aCollege of Engineering, Jinggangshan University, Jian 343009, People's Republic of China, and bDepartment of Information Engineering, Jiangxi University of Science and Technology, Nanchang 330013, People's Republic of China
*Correspondence e-mail: taoliu07@126.com

(Received 20 November 2007; accepted 23 November 2007; online 6 December 2007)

In the crystal structure of the title compound, [Mn(NO3)2(C12H8N2)]n, the MnII atoms are linked by nitrate ligands to form a chain. Each MnII atom is five-coordinated by two N atoms of a 1,10-phenanthroline ligand and three O atoms of two nitrates within a trigonal-bipyramidal coordination geometry. In the crystal structure, the chains are linked by hydrogen bonds into a polymeric ribbon structure.

Related literature

For general background, see: Desiraju (1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2315.], 1997[Desiraju, G. R. (1997). J. Chem. Soc. Chem. Commun. pp. 1475-1476.]); Braga et al. (1998[Braga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev. 98, 1375-1386.]); Wu et al. (2003[Wu, Z.-Y., Xue, Y.-H. & Xu, D.-J. (2003). Acta Cryst. E59, m809-m811.]); Pan & Xu (2004[Pan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56-m58.]); Liu et al. (2004[Liu, B.-X., Su, J.-R. & Xu, D.-J. (2004). Acta Cryst. C60, m183-m185.]); Li et al. (2005[Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(NO3)2(C12H8N2)]

  • Mr = 359.16

  • Monoclinic, P 21 /n

  • a = 8.7116 (13) Å

  • b = 9.1824 (11) Å

  • c = 17.1183 (17) Å

  • β = 102.159 (4)°

  • V = 1338.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 273 (2) K

  • 0.42 × 0.23 × 0.20 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.672, Tmax = 0.819

  • 8124 measured reflections

  • 2545 independent reflections

  • 2194 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.093

  • S = 1.01

  • 2545 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—O1 2.0145 (18)
Mn1—O2 1.9470 (17)
Mn1—O5i 2.3361 (19)
Mn1—N1 2.018 (2)
Mn1—N2 1.988 (2)
O1—Mn1—O5i 86.83 (7)
O2—Mn1—O5i 82.09 (7)
O1—Mn1—N1 165.99 (8)
O1—Mn1—N2 93.16 (8)
O2—Mn1—N1 94.35 (9)
O2—Mn1—N2 174.52 (8)
O5—Mn1—N1i 138.26 (3)
O5—Mn1—N2i 125.23 (4)
N1—Mn1—N2 82.65 (8)
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O4ii 0.93 2.51 3.331 (4) 148
C10—H10⋯O2iii 0.93 2.37 3.276 (3) 165
Symmetry codes: (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SAINT and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Siemens, 1996[Siemens (1996). SAINT and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the synthesis of crystal structures by design, the assembly of molecular units in predefined arrangements is a key goal (Desiraju, 1995, 1997; Braga et al., 1998). Aromatic polycyclic compounds, such as phenanthroline, quinoline and benzimidazole, are one of the most important classes of biological ligands, the coordinations of metal-aromatic polycyclic compounds are of critical importance in biological systems, organic materials and coordination chemistry (Wu et al., 2003; Pan & Xu, 2004; Liu et al., 2004; Li et al., 2005). We report herein the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). The title compound, [Mn(NO3)2(C12H8N2)]n, are linked by nitrate ligands to form a chain. Each MnII atom is five-coordinated by two N atoms of 1,10-phenanthroline (phen) ligand and three O atoms of two nitrates within a bipyramidal coordination geometry (Table 1). The Mn—O and Mn—N bond are in the range 1.9470 (17) - 2.3361 (19) Å and 1.988 (2) - 2.018 (2) Å, respectively (Table 1).

In the crystal structure, no classic C—H···O hydrogen bonds (Fig. 2 and Table 2) seem to be effective in the stabilization of the structure, resulting in the formation of a polymeric ribbon structure.

Related literature top

For general background, see: Desiraju (1995, 1997); Braga et al. (1998); Wu et al. (2003); Pan & Xu (2004); Liu et al. (2004); Li et al. (2005). For bond-length data, see: Allen et al. (1987).

Experimental top

Crystals of the title compound were synthesized using hydrothermal method in a 23 ml Teflon-lined Parr bomb, which was then sealed. Europium (III) nitrate pentahydrate (213.9 mg, 0.5 mmol), manganese (II) nitrate hexahydrate (287.1 mg, 1 mmol), phen (180.2 mg, 1 mmol) and distilled water (7 g) were placed into the bomb and sealed. The bomb was then heated under autogenous pressure up to 453 K over the course of 7 d and allowed to cool at room temperature for 24 h. Upon opening the bomb, a clear colourless solution was decanted from small colourless crystals. These crystals were washed with distilled water followed by ethanol, and allowed to air-dry at room temperature.

Refinement top

The H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H atoms, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

In the synthesis of crystal structures by design, the assembly of molecular units in predefined arrangements is a key goal (Desiraju, 1995, 1997; Braga et al., 1998). Aromatic polycyclic compounds, such as phenanthroline, quinoline and benzimidazole, are one of the most important classes of biological ligands, the coordinations of metal-aromatic polycyclic compounds are of critical importance in biological systems, organic materials and coordination chemistry (Wu et al., 2003; Pan & Xu, 2004; Liu et al., 2004; Li et al., 2005). We report herein the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). The title compound, [Mn(NO3)2(C12H8N2)]n, are linked by nitrate ligands to form a chain. Each MnII atom is five-coordinated by two N atoms of 1,10-phenanthroline (phen) ligand and three O atoms of two nitrates within a bipyramidal coordination geometry (Table 1). The Mn—O and Mn—N bond are in the range 1.9470 (17) - 2.3361 (19) Å and 1.988 (2) - 2.018 (2) Å, respectively (Table 1).

In the crystal structure, no classic C—H···O hydrogen bonds (Fig. 2 and Table 2) seem to be effective in the stabilization of the structure, resulting in the formation of a polymeric ribbon structure.

For general background, see: Desiraju (1995, 1997); Braga et al. (1998); Wu et al. (2003); Pan & Xu (2004); Liu et al. (2004); Li et al. (2005). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry code (A): -x + 3/2, y + 1/2, -z + 1/2].
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
catena-Poly[[(nitrato-κO)(1,10-phenanthroline-κ2N,\<i>N')manganese(II)]-µ-nitrato-κ2O:O'] top
Crystal data top
[Mn(NO3)2(C12H8N2)]F(000) = 724
Mr = 359.16Dx = 1.782 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ynCell parameters from 5711 reflections
a = 8.7116 (13) Åθ = 2.1–27.1°
b = 9.1824 (11) ŵ = 1.03 mm1
c = 17.1183 (17) ÅT = 273 K
β = 102.159 (4)°Prism, colourless
V = 1338.6 (3) Å30.42 × 0.23 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
2545 independent reflections
Radiation source: fine-focus sealed tube2194 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
φ and ω scansθmax = 26.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.672, Tmax = 0.819k = 1111
8124 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0602P)2 + 0.5483P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2545 reflectionsΔρmax = 0.36 e Å3
209 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0179 (16)
Crystal data top
[Mn(NO3)2(C12H8N2)]V = 1338.6 (3) Å3
Mr = 359.16Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.7116 (13) ŵ = 1.03 mm1
b = 9.1824 (11) ÅT = 273 K
c = 17.1183 (17) Å0.42 × 0.23 × 0.20 mm
β = 102.159 (4)°
Data collection top
Bruker APEXII area-detector
diffractometer
2545 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2194 reflections with I > 2σ(I)
Tmin = 0.672, Tmax = 0.819Rint = 0.017
8124 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.01Δρmax = 0.36 e Å3
2545 reflectionsΔρmin = 0.29 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.66502 (3)0.92794 (3)0.803177 (16)0.03141 (15)
O10.6879 (2)0.73412 (19)0.75168 (10)0.0520 (4)
O20.5484 (2)1.0052 (2)0.70206 (11)0.0587 (5)
O30.3466 (3)0.9003 (3)0.72914 (16)0.0906 (8)
O40.3287 (3)1.0285 (3)0.62191 (14)0.0772 (6)
O50.6208 (2)0.5057 (2)0.74824 (12)0.0593 (5)
O60.5458 (3)0.6518 (2)0.83135 (14)0.0755 (6)
N10.6080 (2)1.0941 (2)0.86880 (13)0.0464 (5)
N20.7953 (2)0.8670 (2)0.90779 (12)0.0452 (4)
N30.6159 (2)0.6285 (2)0.77856 (13)0.0470 (5)
N40.4025 (3)0.9772 (3)0.68402 (13)0.0516 (5)
C10.5211 (3)1.2101 (3)0.84667 (17)0.0538 (6)
H10.48291.22630.79240.065*
C20.4835 (3)1.3108 (3)0.90171 (19)0.0600 (7)
H20.42271.39220.88380.072*
C30.5365 (3)1.2882 (3)0.98057 (19)0.0601 (7)
H30.51001.35231.01760.072*
C40.6324 (3)1.1667 (3)1.00645 (15)0.0488 (6)
C50.6988 (3)1.1334 (3)1.08805 (16)0.0568 (6)
H50.67491.19191.12820.068*
C60.7949 (3)1.0191 (3)1.10763 (16)0.0553 (6)
H60.83611.00001.16130.066*
C70.8364 (3)0.9249 (3)1.04801 (15)0.0466 (5)
C80.9424 (3)0.8080 (3)1.06332 (15)0.0537 (6)
H80.99240.78631.11560.064*
C90.9722 (3)0.7263 (3)1.00167 (17)0.0564 (6)
H91.04380.64991.01160.068*
C100.8953 (3)0.7578 (3)0.92411 (16)0.0522 (6)
H100.91460.70040.88250.063*
C110.7670 (3)0.9514 (3)0.96834 (14)0.0420 (5)
C120.6658 (3)1.0727 (2)0.94761 (15)0.0428 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0374 (2)0.0301 (2)0.02529 (19)0.00252 (12)0.00320 (13)0.00100 (11)
O10.0628 (10)0.0482 (10)0.0459 (9)0.0052 (8)0.0131 (8)0.0007 (7)
O20.0537 (10)0.0658 (13)0.0514 (10)0.0071 (9)0.0008 (8)0.0128 (9)
O30.0735 (14)0.130 (2)0.0678 (14)0.0247 (14)0.0136 (12)0.0269 (15)
O40.0677 (12)0.0828 (14)0.0691 (14)0.0060 (11)0.0129 (11)0.0214 (12)
O50.0581 (10)0.0475 (11)0.0722 (12)0.0049 (8)0.0134 (9)0.0144 (9)
O60.0910 (15)0.0644 (13)0.0845 (15)0.0048 (11)0.0492 (13)0.0075 (11)
N10.0483 (11)0.0441 (11)0.0460 (11)0.0003 (9)0.0084 (9)0.0041 (9)
N20.0508 (11)0.0414 (10)0.0424 (10)0.0015 (9)0.0074 (8)0.0026 (8)
N30.0473 (10)0.0451 (11)0.0493 (11)0.0015 (9)0.0116 (9)0.0043 (9)
N40.0535 (12)0.0524 (12)0.0466 (11)0.0017 (10)0.0053 (10)0.0018 (10)
C10.0558 (14)0.0469 (14)0.0563 (14)0.0055 (12)0.0066 (12)0.0070 (12)
C20.0587 (15)0.0467 (14)0.0740 (18)0.0118 (12)0.0123 (13)0.0039 (13)
C30.0628 (16)0.0506 (15)0.0707 (17)0.0072 (12)0.0227 (14)0.0085 (13)
C40.0494 (13)0.0478 (13)0.0526 (13)0.0020 (11)0.0185 (11)0.0032 (11)
C50.0626 (15)0.0618 (16)0.0490 (14)0.0020 (13)0.0187 (12)0.0102 (12)
C60.0608 (15)0.0638 (16)0.0419 (13)0.0004 (13)0.0121 (11)0.0010 (12)
C70.0505 (13)0.0471 (13)0.0419 (12)0.0048 (10)0.0087 (10)0.0029 (10)
C80.0596 (14)0.0527 (14)0.0449 (13)0.0003 (12)0.0025 (11)0.0060 (11)
C90.0594 (15)0.0464 (14)0.0592 (15)0.0089 (12)0.0026 (12)0.0028 (12)
C100.0589 (14)0.0439 (13)0.0519 (14)0.0078 (11)0.0072 (12)0.0025 (11)
C110.0445 (12)0.0393 (11)0.0431 (12)0.0042 (9)0.0114 (10)0.0007 (9)
C120.0428 (11)0.0400 (12)0.0468 (12)0.0047 (9)0.0119 (10)0.0017 (9)
Geometric parameters (Å, º) top
Mn1—O12.0145 (18)C2—C31.348 (4)
Mn1—O21.9470 (17)C2—H20.9300
Mn1—O5i2.3361 (19)C3—C41.408 (4)
Mn1—N12.018 (2)C3—H30.9300
Mn1—N21.988 (2)C4—C121.403 (3)
O1—N31.291 (3)C4—C51.428 (4)
O2—N41.269 (3)C5—C61.341 (4)
O3—N41.221 (3)C5—H50.9300
O4—N41.216 (3)C6—C71.441 (4)
O5—N31.246 (3)C6—H60.9300
O5—Mn1ii2.3362 (19)C7—C111.392 (4)
O6—N31.212 (3)C7—C81.404 (4)
N1—C11.316 (3)C8—C91.364 (4)
N1—C121.351 (3)C8—H80.9300
N2—C101.319 (3)C9—C101.386 (4)
N2—C111.358 (3)C9—H90.9300
C1—C21.407 (4)C10—H100.9300
C1—H10.9300C11—C121.419 (3)
O1—Mn1—O5i86.83 (7)C2—C3—C4119.5 (3)
O2—Mn1—O5i82.09 (7)C2—C3—H3120.2
O1—Mn1—N1165.99 (8)C4—C3—H3120.2
O1—Mn1—N293.16 (8)C12—C4—C3117.4 (2)
O2—Mn1—N194.35 (9)C12—C4—C5117.9 (2)
O2—Mn1—N2174.52 (8)C3—C4—C5124.7 (2)
O5—Mn1—N1i138.26 (3)C6—C5—C4121.0 (2)
O5—Mn1—N2i125.23 (4)C6—C5—H5119.5
N1—Mn1—N282.65 (8)C4—C5—H5119.5
N3—O1—Mn1114.06 (14)C5—C6—C7122.0 (2)
N4—O2—Mn1116.78 (15)C5—C6—H6119.0
N3—O5—Mn1ii122.25 (15)C7—C6—H6119.0
C1—N1—C12118.4 (2)C11—C7—C8116.7 (2)
C1—N1—Mn1130.26 (19)C11—C7—C6117.8 (2)
C12—N1—Mn1111.27 (16)C8—C7—C6125.4 (2)
C10—N2—C11119.4 (2)C9—C8—C7120.1 (2)
C10—N2—Mn1129.13 (17)C9—C8—H8120.0
C11—N2—Mn1111.47 (16)C7—C8—H8120.0
O6—N3—O5122.5 (2)C8—C9—C10119.6 (2)
O6—N3—O1119.4 (2)C8—C9—H9120.2
O5—N3—O1118.0 (2)C10—C9—H9120.2
O4—N4—O3124.7 (2)N2—C10—C9121.7 (2)
O4—N4—O2116.9 (2)N2—C10—H10119.1
O3—N4—O2118.4 (2)C9—C10—H10119.1
N1—C1—C2122.7 (3)N2—C11—C7122.5 (2)
N1—C1—H1118.7N2—C11—C12117.4 (2)
C2—C1—H1118.7C7—C11—C12120.1 (2)
C3—C2—C1119.4 (3)N1—C12—C4122.5 (2)
C3—C2—H2120.3N1—C12—C11116.4 (2)
C1—C2—H2120.3C4—C12—C11121.0 (2)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+3/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4iii0.932.513.331 (4)148
C10—H10···O2ii0.932.373.276 (3)165
Symmetry codes: (ii) x+3/2, y1/2, z+3/2; (iii) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Mn(NO3)2(C12H8N2)]
Mr359.16
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)8.7116 (13), 9.1824 (11), 17.1183 (17)
β (°) 102.159 (4)
V3)1338.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.42 × 0.23 × 0.20
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.672, 0.819
No. of measured, independent and
observed [I > 2σ(I)] reflections
8124, 2545, 2194
Rint0.017
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.093, 1.01
No. of reflections2545
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.29

Computer programs: APEX2 (Bruker, 2005), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996), SHELXTL.

Selected geometric parameters (Å, º) top
Mn1—O12.0145 (18)Mn1—N12.018 (2)
Mn1—O21.9470 (17)Mn1—N21.988 (2)
Mn1—O5i2.3361 (19)
O1—Mn1—O5i86.83 (7)O2—Mn1—N2174.52 (8)
O2—Mn1—O5i82.09 (7)O5—Mn1—N1i138.26 (3)
O1—Mn1—N1165.99 (8)O5—Mn1—N2i125.23 (4)
O1—Mn1—N293.16 (8)N1—Mn1—N282.65 (8)
O2—Mn1—N194.35 (9)
Symmetry code: (i) x+3/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4ii0.932.513.331 (4)148
C10—H10···O2iii0.932.373.276 (3)165
Symmetry codes: (ii) x+1/2, y+1/2, z+3/2; (iii) x+3/2, y1/2, z+3/2.
 

Acknowledgements

The authors thank the Youth Programme of Jinggangshan University for financial support of this work.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBraga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev. 98, 1375–1386.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2315.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. (1997). J. Chem. Soc. Chem. Commun. pp. 1475–1476.  CrossRef Google Scholar
First citationLi, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19–m21.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLiu, B.-X., Su, J.-R. & Xu, D.-J. (2004). Acta Cryst. C60, m183–m185.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56–m58.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSiemens (1996). SAINT and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWu, Z.-Y., Xue, Y.-H. & Xu, D.-J. (2003). Acta Cryst. E59, m809–m811.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds