metal-organic compounds
Retracted: catena-Poly[[(nitrato-κO)(1,10-phenanthroline-κ2N,N′)manganese(II)]-μ-nitrato-κ2O:O′]
aCollege of Engineering, Jinggangshan University, Jian 343009, People's Republic of China, and bDepartment of Information Engineering, Jiangxi University of Science and Technology, Nanchang 330013, People's Republic of China
*Correspondence e-mail: taoliu07@126.com
In the 3)2(C12H8N2)]n, the MnII atoms are linked by nitrate ligands to form a chain. Each MnII atom is five-coordinated by two N atoms of a 1,10-phenanthroline ligand and three O atoms of two nitrates within a trigonal-bipyramidal coordination geometry. In the the chains are linked by hydrogen bonds into a polymeric ribbon structure.
of the title compound, [Mn(NORelated literature
For general background, see: Desiraju (1995, 1997); Braga et al. (1998); Wu et al. (2003); Pan & Xu (2004); Liu et al. (2004); Li et al. (2005). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S160053680706254X/at2505sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053680706254X/at2505Isup2.hkl
Crystals of the title compound were synthesized using hydrothermal method in a 23 ml Teflon-lined Parr bomb, which was then sealed. Europium (III) nitrate pentahydrate (213.9 mg, 0.5 mmol), manganese (II) nitrate hexahydrate (287.1 mg, 1 mmol), phen (180.2 mg, 1 mmol) and distilled water (7 g) were placed into the bomb and sealed. The bomb was then heated under autogenous pressure up to 453 K over the course of 7 d and allowed to cool at room temperature for 24 h. Upon opening the bomb, a clear colourless solution was decanted from small colourless crystals. These crystals were washed with distilled water followed by ethanol, and allowed to air-dry at room temperature.
The H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H atoms, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).
In the synthesis of crystal structures by design, the assembly of molecular units in predefined arrangements is a key goal (Desiraju, 1995, 1997; Braga et al., 1998). Aromatic polycyclic compounds, such as phenanthroline, quinoline and benzimidazole, are one of the most important classes of biological ligands, the coordinations of metal-aromatic polycyclic compounds are of critical importance in biological systems, organic materials and coordination chemistry (Wu et al., 2003; Pan & Xu, 2004; Liu et al., 2004; Li et al., 2005). We report herein the
of the title compound, (I).In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). The title compound, [Mn(NO3)2(C12H8N2)]n, are linked by nitrate ligands to form a chain. Each MnII atom is five-coordinated by two N atoms of 1,10-phenanthroline (phen) ligand and three O atoms of two nitrates within a bipyramidal coordination geometry (Table 1). The Mn—O and Mn—N bond are in the range 1.9470 (17) - 2.3361 (19) Å and 1.988 (2) - 2.018 (2) Å, respectively (Table 1).
In the
no classic C—H···O hydrogen bonds (Fig. 2 and Table 2) seem to be effective in the stabilization of the structure, resulting in the formation of a polymeric ribbon structure.For general background, see: Desiraju (1995, 1997); Braga et al. (1998); Wu et al. (2003); Pan & Xu (2004); Liu et al. (2004); Li et al. (2005). For bond-length data, see: Allen et al. (1987).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL.Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry code (A): -x + 3/2, y + 1/2, -z + 1/2]. | |
Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines. |
[Mn(NO3)2(C12H8N2)] | F(000) = 724 |
Mr = 359.16 | Dx = 1.782 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -p 2yn | Cell parameters from 5711 reflections |
a = 8.7116 (13) Å | θ = 2.1–27.1° |
b = 9.1824 (11) Å | µ = 1.03 mm−1 |
c = 17.1183 (17) Å | T = 273 K |
β = 102.159 (4)° | Prism, colourless |
V = 1338.6 (3) Å3 | 0.42 × 0.23 × 0.20 mm |
Z = 4 |
Bruker APEXII area-detector diffractometer | 2545 independent reflections |
Radiation source: fine-focus sealed tube | 2194 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
φ and ω scans | θmax = 26.1°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→10 |
Tmin = 0.672, Tmax = 0.819 | k = −11→11 |
8124 measured reflections | l = −21→21 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.093 | w = 1/[σ2(Fo2) + (0.0602P)2 + 0.5483P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.001 |
2545 reflections | Δρmax = 0.36 e Å−3 |
209 parameters | Δρmin = −0.29 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0179 (16) |
[Mn(NO3)2(C12H8N2)] | V = 1338.6 (3) Å3 |
Mr = 359.16 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.7116 (13) Å | µ = 1.03 mm−1 |
b = 9.1824 (11) Å | T = 273 K |
c = 17.1183 (17) Å | 0.42 × 0.23 × 0.20 mm |
β = 102.159 (4)° |
Bruker APEXII area-detector diffractometer | 2545 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2194 reflections with I > 2σ(I) |
Tmin = 0.672, Tmax = 0.819 | Rint = 0.017 |
8124 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.36 e Å−3 |
2545 reflections | Δρmin = −0.29 e Å−3 |
209 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mn1 | 0.66502 (3) | 0.92794 (3) | 0.803177 (16) | 0.03141 (15) | |
O1 | 0.6879 (2) | 0.73412 (19) | 0.75168 (10) | 0.0520 (4) | |
O2 | 0.5484 (2) | 1.0052 (2) | 0.70206 (11) | 0.0587 (5) | |
O3 | 0.3466 (3) | 0.9003 (3) | 0.72914 (16) | 0.0906 (8) | |
O4 | 0.3287 (3) | 1.0285 (3) | 0.62191 (14) | 0.0772 (6) | |
O5 | 0.6208 (2) | 0.5057 (2) | 0.74824 (12) | 0.0593 (5) | |
O6 | 0.5458 (3) | 0.6518 (2) | 0.83135 (14) | 0.0755 (6) | |
N1 | 0.6080 (2) | 1.0941 (2) | 0.86880 (13) | 0.0464 (5) | |
N2 | 0.7953 (2) | 0.8670 (2) | 0.90779 (12) | 0.0452 (4) | |
N3 | 0.6159 (2) | 0.6285 (2) | 0.77856 (13) | 0.0470 (5) | |
N4 | 0.4025 (3) | 0.9772 (3) | 0.68402 (13) | 0.0516 (5) | |
C1 | 0.5211 (3) | 1.2101 (3) | 0.84667 (17) | 0.0538 (6) | |
H1 | 0.4829 | 1.2263 | 0.7924 | 0.065* | |
C2 | 0.4835 (3) | 1.3108 (3) | 0.90171 (19) | 0.0600 (7) | |
H2 | 0.4227 | 1.3922 | 0.8838 | 0.072* | |
C3 | 0.5365 (3) | 1.2882 (3) | 0.98057 (19) | 0.0601 (7) | |
H3 | 0.5100 | 1.3523 | 1.0176 | 0.072* | |
C4 | 0.6324 (3) | 1.1667 (3) | 1.00645 (15) | 0.0488 (6) | |
C5 | 0.6988 (3) | 1.1334 (3) | 1.08805 (16) | 0.0568 (6) | |
H5 | 0.6749 | 1.1919 | 1.1282 | 0.068* | |
C6 | 0.7949 (3) | 1.0191 (3) | 1.10763 (16) | 0.0553 (6) | |
H6 | 0.8361 | 1.0000 | 1.1613 | 0.066* | |
C7 | 0.8364 (3) | 0.9249 (3) | 1.04801 (15) | 0.0466 (5) | |
C8 | 0.9424 (3) | 0.8080 (3) | 1.06332 (15) | 0.0537 (6) | |
H8 | 0.9924 | 0.7863 | 1.1156 | 0.064* | |
C9 | 0.9722 (3) | 0.7263 (3) | 1.00167 (17) | 0.0564 (6) | |
H9 | 1.0438 | 0.6499 | 1.0116 | 0.068* | |
C10 | 0.8953 (3) | 0.7578 (3) | 0.92411 (16) | 0.0522 (6) | |
H10 | 0.9146 | 0.7004 | 0.8825 | 0.063* | |
C11 | 0.7670 (3) | 0.9514 (3) | 0.96834 (14) | 0.0420 (5) | |
C12 | 0.6658 (3) | 1.0727 (2) | 0.94761 (15) | 0.0428 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.0374 (2) | 0.0301 (2) | 0.02529 (19) | 0.00252 (12) | 0.00320 (13) | 0.00100 (11) |
O1 | 0.0628 (10) | 0.0482 (10) | 0.0459 (9) | −0.0052 (8) | 0.0131 (8) | −0.0007 (7) |
O2 | 0.0537 (10) | 0.0658 (13) | 0.0514 (10) | −0.0071 (9) | −0.0008 (8) | 0.0128 (9) |
O3 | 0.0735 (14) | 0.130 (2) | 0.0678 (14) | −0.0247 (14) | 0.0136 (12) | 0.0269 (15) |
O4 | 0.0677 (12) | 0.0828 (14) | 0.0691 (14) | −0.0060 (11) | −0.0129 (11) | 0.0214 (12) |
O5 | 0.0581 (10) | 0.0475 (11) | 0.0722 (12) | −0.0049 (8) | 0.0134 (9) | −0.0144 (9) |
O6 | 0.0910 (15) | 0.0644 (13) | 0.0845 (15) | −0.0048 (11) | 0.0492 (13) | −0.0075 (11) |
N1 | 0.0483 (11) | 0.0441 (11) | 0.0460 (11) | 0.0003 (9) | 0.0084 (9) | 0.0041 (9) |
N2 | 0.0508 (11) | 0.0414 (10) | 0.0424 (10) | 0.0015 (9) | 0.0074 (8) | −0.0026 (8) |
N3 | 0.0473 (10) | 0.0451 (11) | 0.0493 (11) | 0.0015 (9) | 0.0116 (9) | −0.0043 (9) |
N4 | 0.0535 (12) | 0.0524 (12) | 0.0466 (11) | −0.0017 (10) | 0.0053 (10) | 0.0018 (10) |
C1 | 0.0558 (14) | 0.0469 (14) | 0.0563 (14) | 0.0055 (12) | 0.0066 (12) | 0.0070 (12) |
C2 | 0.0587 (15) | 0.0467 (14) | 0.0740 (18) | 0.0118 (12) | 0.0123 (13) | 0.0039 (13) |
C3 | 0.0628 (16) | 0.0506 (15) | 0.0707 (17) | 0.0072 (12) | 0.0227 (14) | −0.0085 (13) |
C4 | 0.0494 (13) | 0.0478 (13) | 0.0526 (13) | −0.0020 (11) | 0.0185 (11) | −0.0032 (11) |
C5 | 0.0626 (15) | 0.0618 (16) | 0.0490 (14) | −0.0020 (13) | 0.0187 (12) | −0.0102 (12) |
C6 | 0.0608 (15) | 0.0638 (16) | 0.0419 (13) | 0.0004 (13) | 0.0121 (11) | −0.0010 (12) |
C7 | 0.0505 (13) | 0.0471 (13) | 0.0419 (12) | −0.0048 (10) | 0.0087 (10) | 0.0029 (10) |
C8 | 0.0596 (14) | 0.0527 (14) | 0.0449 (13) | −0.0003 (12) | 0.0025 (11) | 0.0060 (11) |
C9 | 0.0594 (15) | 0.0464 (14) | 0.0592 (15) | 0.0089 (12) | 0.0026 (12) | 0.0028 (12) |
C10 | 0.0589 (14) | 0.0439 (13) | 0.0519 (14) | 0.0078 (11) | 0.0072 (12) | −0.0025 (11) |
C11 | 0.0445 (12) | 0.0393 (11) | 0.0431 (12) | −0.0042 (9) | 0.0114 (10) | −0.0007 (9) |
C12 | 0.0428 (11) | 0.0400 (12) | 0.0468 (12) | −0.0047 (9) | 0.0119 (10) | 0.0017 (9) |
Mn1—O1 | 2.0145 (18) | C2—C3 | 1.348 (4) |
Mn1—O2 | 1.9470 (17) | C2—H2 | 0.9300 |
Mn1—O5i | 2.3361 (19) | C3—C4 | 1.408 (4) |
Mn1—N1 | 2.018 (2) | C3—H3 | 0.9300 |
Mn1—N2 | 1.988 (2) | C4—C12 | 1.403 (3) |
O1—N3 | 1.291 (3) | C4—C5 | 1.428 (4) |
O2—N4 | 1.269 (3) | C5—C6 | 1.341 (4) |
O3—N4 | 1.221 (3) | C5—H5 | 0.9300 |
O4—N4 | 1.216 (3) | C6—C7 | 1.441 (4) |
O5—N3 | 1.246 (3) | C6—H6 | 0.9300 |
O5—Mn1ii | 2.3362 (19) | C7—C11 | 1.392 (4) |
O6—N3 | 1.212 (3) | C7—C8 | 1.404 (4) |
N1—C1 | 1.316 (3) | C8—C9 | 1.364 (4) |
N1—C12 | 1.351 (3) | C8—H8 | 0.9300 |
N2—C10 | 1.319 (3) | C9—C10 | 1.386 (4) |
N2—C11 | 1.358 (3) | C9—H9 | 0.9300 |
C1—C2 | 1.407 (4) | C10—H10 | 0.9300 |
C1—H1 | 0.9300 | C11—C12 | 1.419 (3) |
O1—Mn1—O5i | 86.83 (7) | C2—C3—C4 | 119.5 (3) |
O2—Mn1—O5i | 82.09 (7) | C2—C3—H3 | 120.2 |
O1—Mn1—N1 | 165.99 (8) | C4—C3—H3 | 120.2 |
O1—Mn1—N2 | 93.16 (8) | C12—C4—C3 | 117.4 (2) |
O2—Mn1—N1 | 94.35 (9) | C12—C4—C5 | 117.9 (2) |
O2—Mn1—N2 | 174.52 (8) | C3—C4—C5 | 124.7 (2) |
O5—Mn1—N1i | 138.26 (3) | C6—C5—C4 | 121.0 (2) |
O5—Mn1—N2i | 125.23 (4) | C6—C5—H5 | 119.5 |
N1—Mn1—N2 | 82.65 (8) | C4—C5—H5 | 119.5 |
N3—O1—Mn1 | 114.06 (14) | C5—C6—C7 | 122.0 (2) |
N4—O2—Mn1 | 116.78 (15) | C5—C6—H6 | 119.0 |
N3—O5—Mn1ii | 122.25 (15) | C7—C6—H6 | 119.0 |
C1—N1—C12 | 118.4 (2) | C11—C7—C8 | 116.7 (2) |
C1—N1—Mn1 | 130.26 (19) | C11—C7—C6 | 117.8 (2) |
C12—N1—Mn1 | 111.27 (16) | C8—C7—C6 | 125.4 (2) |
C10—N2—C11 | 119.4 (2) | C9—C8—C7 | 120.1 (2) |
C10—N2—Mn1 | 129.13 (17) | C9—C8—H8 | 120.0 |
C11—N2—Mn1 | 111.47 (16) | C7—C8—H8 | 120.0 |
O6—N3—O5 | 122.5 (2) | C8—C9—C10 | 119.6 (2) |
O6—N3—O1 | 119.4 (2) | C8—C9—H9 | 120.2 |
O5—N3—O1 | 118.0 (2) | C10—C9—H9 | 120.2 |
O4—N4—O3 | 124.7 (2) | N2—C10—C9 | 121.7 (2) |
O4—N4—O2 | 116.9 (2) | N2—C10—H10 | 119.1 |
O3—N4—O2 | 118.4 (2) | C9—C10—H10 | 119.1 |
N1—C1—C2 | 122.7 (3) | N2—C11—C7 | 122.5 (2) |
N1—C1—H1 | 118.7 | N2—C11—C12 | 117.4 (2) |
C2—C1—H1 | 118.7 | C7—C11—C12 | 120.1 (2) |
C3—C2—C1 | 119.4 (3) | N1—C12—C4 | 122.5 (2) |
C3—C2—H2 | 120.3 | N1—C12—C11 | 116.4 (2) |
C1—C2—H2 | 120.3 | C4—C12—C11 | 121.0 (2) |
Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) −x+3/2, y−1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O4iii | 0.93 | 2.51 | 3.331 (4) | 148 |
C10—H10···O2ii | 0.93 | 2.37 | 3.276 (3) | 165 |
Symmetry codes: (ii) −x+3/2, y−1/2, −z+3/2; (iii) −x+1/2, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [Mn(NO3)2(C12H8N2)] |
Mr | 359.16 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 273 |
a, b, c (Å) | 8.7116 (13), 9.1824 (11), 17.1183 (17) |
β (°) | 102.159 (4) |
V (Å3) | 1338.6 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.03 |
Crystal size (mm) | 0.42 × 0.23 × 0.20 |
Data collection | |
Diffractometer | Bruker APEXII area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.672, 0.819 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8124, 2545, 2194 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.618 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.093, 1.01 |
No. of reflections | 2545 |
No. of parameters | 209 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.36, −0.29 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996), SHELXTL.
Mn1—O1 | 2.0145 (18) | Mn1—N1 | 2.018 (2) |
Mn1—O2 | 1.9470 (17) | Mn1—N2 | 1.988 (2) |
Mn1—O5i | 2.3361 (19) | ||
O1—Mn1—O5i | 86.83 (7) | O2—Mn1—N2 | 174.52 (8) |
O2—Mn1—O5i | 82.09 (7) | O5—Mn1—N1i | 138.26 (3) |
O1—Mn1—N1 | 165.99 (8) | O5—Mn1—N2i | 125.23 (4) |
O1—Mn1—N2 | 93.16 (8) | N1—Mn1—N2 | 82.65 (8) |
O2—Mn1—N1 | 94.35 (9) |
Symmetry code: (i) −x+3/2, y+1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O4ii | 0.93 | 2.51 | 3.331 (4) | 148 |
C10—H10···O2iii | 0.93 | 2.37 | 3.276 (3) | 165 |
Symmetry codes: (ii) −x+1/2, y+1/2, −z+3/2; (iii) −x+3/2, y−1/2, −z+3/2. |
Acknowledgements
The authors thank the Youth Programme of Jinggangshan University for financial support of this work.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Braga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev. 98, 1375–1386. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2315. CrossRef CAS Web of Science Google Scholar
Desiraju, G. R. (1997). J. Chem. Soc. Chem. Commun. pp. 1475–1476. CrossRef Google Scholar
Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19–m21. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Liu, B.-X., Su, J.-R. & Xu, D.-J. (2004). Acta Cryst. C60, m183–m185. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56–m58. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Siemens (1996). SAINT and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Wu, Z.-Y., Xue, Y.-H. & Xu, D.-J. (2003). Acta Cryst. E59, m809–m811. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the synthesis of crystal structures by design, the assembly of molecular units in predefined arrangements is a key goal (Desiraju, 1995, 1997; Braga et al., 1998). Aromatic polycyclic compounds, such as phenanthroline, quinoline and benzimidazole, are one of the most important classes of biological ligands, the coordinations of metal-aromatic polycyclic compounds are of critical importance in biological systems, organic materials and coordination chemistry (Wu et al., 2003; Pan & Xu, 2004; Liu et al., 2004; Li et al., 2005). We report herein the crystal structure of the title compound, (I).
In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). The title compound, [Mn(NO3)2(C12H8N2)]n, are linked by nitrate ligands to form a chain. Each MnII atom is five-coordinated by two N atoms of 1,10-phenanthroline (phen) ligand and three O atoms of two nitrates within a bipyramidal coordination geometry (Table 1). The Mn—O and Mn—N bond are in the range 1.9470 (17) - 2.3361 (19) Å and 1.988 (2) - 2.018 (2) Å, respectively (Table 1).
In the crystal structure, no classic C—H···O hydrogen bonds (Fig. 2 and Table 2) seem to be effective in the stabilization of the structure, resulting in the formation of a polymeric ribbon structure.