metal-organic compounds
Poly[ethylenediaminium [di-μ-aqua-(μ6-benzene-1,2,4,5-tetracarboxylato-κ10O1,O1′:O2,O2′:O2′:O4,O4′:O5:O5,O5′)dithallium(I)]]
aFaculty of Chemistry, Tarbiat Moallem University, Tehran, Iran
*Correspondence e-mail: m_rafizadeh6@yahoo.com
The title compound, {(C2H10N2)[Tl2(C10H2O8)(H2O)2)]}n, was prepared using (enH2)2(btc)·2H2O and thallium(I) nitrate (en = ethylenediamine and btcH4 = benzene-1,2,4,5-tetracarboxylic acid). The enH2 cation and btc ligand are each located on an inversion centre. The TlI atom is seven-coordinated by three btc ligands and two water molecules in an irregular geometry due to the stereochemically active lone pair on the Tl centre. The water molecule and btc ligand are bonded to the Tl atoms in μ- and μ6-forms, respectively, leading to a three-dimensional structure. The involves O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, and also a Tl⋯π interaction of 3.537 (1) Å.
Related literature
For general background, see: Akhbari & Morsali (2008); Day & Luehrs (1988); Fabelo et al. (2005); Murugavel et al. (2000); Shimoni-Livny et al. (1998). For related structures, see: Li et al. (2008); Rafizadeh et al. (2005, 2007a,b). For the ligand synthesis, see: Rafizadeh et al. (2006).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808040282/hy2169sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808040282/hy2169Isup2.hkl
An aqueous solution of (enH2)2(btc).2H2O (0.34 g, 0.82 mmol), synthesized according to the literature (Rafizadeh et al., 2006), was added dropwise to a solution of TlNO3 (0.061 g, 0.23 mmol) in water. The mixture was slightly heated and stirred for 5 h. The obtained clear solution with a volume of 40 ml was left at room temperature for 40 d. Then the lustrous pale yellow crystals were obtained (decomposing temperature > 673 K).
H atoms bound to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 (CH) and 0.99 (CH2) Å and N—H = 0.91 Å and with Uiso(H) = 1.2Ueq(C,N). H atoms of water molecule were located on a difference Fourier map and fixed in the refinements, with Uiso(H) = 1.5Ueq(O). The highest residual electron density was found 0.88 Å from atom Tl1 and the deepest hole 1.36 Å from atom Tl1.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Coordination environment around the Tl atom in the title compound, showing an empty space on one side of the atom Tl1. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1/2-x, -1/2+y, 3/2-z; (ii) -1+x, y, z; (iii) -x, -y, 1-z.] | |
Fig. 2. Tl···π interactions with a Tl–centroid distance of 3.537 (1) Å. [Symmetry codes: (i) 1/2-x, -1/2+y, 3/2-z; (viii) 1/2+x, 1/2-y, 1/2+z.] |
(C2H10N2)[Tl2(C10H2O8)(H2O)2)] | F(000) = 688 |
Mr = 757.01 | Dx = 3.197 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1231 reflections |
a = 9.925 (5) Å | θ = 3.4–32.7° |
b = 7.073 (4) Å | µ = 20.53 mm−1 |
c = 11.325 (6) Å | T = 100 K |
β = 98.397 (10)° | Prism, colourless |
V = 786.5 (7) Å3 | 0.16 × 0.12 × 0.08 mm |
Z = 2 |
Bruker APEXII CCD area-detector diffractometer | 1787 independent reflections |
Radiation source: fine-focus sealed tube | 1487 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.061 |
ϕ and ω scans | θmax = 27.5°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −11→12 |
Tmin = 0.064, Tmax = 0.201 | k = −9→9 |
5272 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: mixed |
wR(F2) = 0.070 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.031P)2] where P = (Fo2 + 2Fc2)/3 |
1787 reflections | (Δ/σ)max = 0.001 |
107 parameters | Δρmax = 2.02 e Å−3 |
0 restraints | Δρmin = −1.80 e Å−3 |
(C2H10N2)[Tl2(C10H2O8)(H2O)2)] | V = 786.5 (7) Å3 |
Mr = 757.01 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.925 (5) Å | µ = 20.53 mm−1 |
b = 7.073 (4) Å | T = 100 K |
c = 11.325 (6) Å | 0.16 × 0.12 × 0.08 mm |
β = 98.397 (10)° |
Bruker APEXII CCD area-detector diffractometer | 1787 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1487 reflections with I > 2σ(I) |
Tmin = 0.064, Tmax = 0.201 | Rint = 0.061 |
5272 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.070 | H-atom parameters constrained |
S = 1.00 | Δρmax = 2.02 e Å−3 |
1787 reflections | Δρmin = −1.80 e Å−3 |
107 parameters |
x | y | z | Uiso*/Ueq | ||
Tl1 | −0.05121 (3) | 0.10847 (4) | 0.68253 (2) | 0.01266 (11) | |
O1 | 0.1709 (5) | −0.1391 (7) | 0.8360 (4) | 0.0122 (11) | |
O2 | 0.1667 (5) | 0.1726 (8) | 0.8595 (4) | 0.0128 (10) | |
O3 | 0.6799 (5) | 0.2759 (7) | 0.7972 (4) | 0.0130 (11) | |
O4 | 0.8315 (5) | 0.0925 (8) | 0.9073 (5) | 0.0136 (11) | |
C1 | 0.2231 (7) | 0.0140 (11) | 0.8761 (6) | 0.0105 (14) | |
C2 | 0.3648 (8) | 0.0083 (10) | 0.9445 (6) | 0.0098 (14) | |
C3 | 0.4680 (7) | 0.0882 (10) | 0.8919 (6) | 0.0085 (8) | |
H1 | 0.4463 | 0.1491 | 0.8168 | 0.010* | |
C4 | 0.6041 (7) | 0.0817 (10) | 0.9465 (6) | 0.0085 (8) | |
C5 | 0.7143 (7) | 0.1550 (10) | 0.8785 (6) | 0.0085 (8) | |
C6 | 0.5359 (8) | 0.0285 (11) | 0.5608 (6) | 0.0122 (15) | |
H2 | 0.4801 | −0.0087 | 0.6226 | 0.015* | |
H3 | 0.6244 | −0.0381 | 0.5775 | 0.015* | |
N1 | 0.5585 (6) | 0.2319 (8) | 0.5655 (5) | 0.0086 (12) | |
H4 | 0.6070 | 0.2664 | 0.5067 | 0.010* | |
H5 | 0.6058 | 0.2636 | 0.6378 | 0.010* | |
H6 | 0.4768 | 0.2927 | 0.5550 | 0.010* | |
O1W | 0.1899 (5) | 0.0253 (8) | 0.5778 (5) | 0.0167 (12) | |
H7 | 0.2389 | −0.0717 | 0.5965 | 0.025* | |
H8 | 0.2341 | 0.1244 | 0.6018 | 0.025* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Tl1 | 0.01330 (15) | 0.01092 (15) | 0.01267 (14) | −0.00149 (13) | −0.00175 (9) | 0.00115 (12) |
O1 | 0.011 (2) | 0.010 (3) | 0.014 (2) | −0.001 (2) | −0.0051 (19) | −0.002 (2) |
O2 | 0.013 (3) | 0.015 (3) | 0.010 (2) | 0.004 (2) | −0.001 (2) | 0.002 (2) |
O3 | 0.014 (3) | 0.012 (3) | 0.012 (2) | −0.001 (2) | 0.000 (2) | 0.006 (2) |
O4 | 0.014 (3) | 0.013 (3) | 0.015 (2) | 0.000 (2) | 0.003 (2) | 0.003 (2) |
C1 | 0.010 (3) | 0.017 (4) | 0.005 (3) | 0.001 (3) | 0.000 (3) | 0.001 (3) |
C2 | 0.015 (4) | 0.004 (3) | 0.010 (3) | 0.003 (3) | 0.000 (3) | −0.002 (3) |
C3 | 0.011 (2) | 0.005 (2) | 0.0092 (17) | −0.0004 (15) | 0.0007 (15) | −0.0011 (15) |
C4 | 0.011 (2) | 0.005 (2) | 0.0092 (17) | −0.0004 (15) | 0.0007 (15) | −0.0011 (15) |
C5 | 0.011 (2) | 0.005 (2) | 0.0092 (17) | −0.0004 (15) | 0.0007 (15) | −0.0011 (15) |
C6 | 0.014 (4) | 0.007 (3) | 0.014 (4) | 0.001 (3) | −0.002 (3) | 0.001 (3) |
N1 | 0.008 (3) | 0.008 (3) | 0.009 (3) | 0.001 (2) | −0.002 (2) | 0.003 (2) |
O1W | 0.019 (3) | 0.013 (3) | 0.018 (3) | 0.002 (2) | −0.001 (2) | 0.001 (2) |
Tl1—O3i | 2.702 (5) | C3—C4 | 1.402 (10) |
Tl1—O2 | 2.763 (5) | C3—H1 | 0.9500 |
Tl1—O1W | 2.882 (5) | C4—C2iv | 1.384 (10) |
Tl1—O4ii | 2.952 (5) | C4—C5 | 1.518 (10) |
Tl1—O1 | 3.135 (5) | C6—N1 | 1.456 (10) |
Tl1—O1Wiii | 3.209 (5) | C6—C6v | 1.510 (14) |
Tl1—O3ii | 3.350 (5) | C6—H2 | 0.9900 |
O1—C1 | 1.257 (9) | C6—H3 | 0.9900 |
O2—C1 | 1.256 (9) | N1—H4 | 0.9100 |
O3—C5 | 1.266 (8) | N1—H5 | 0.9100 |
O4—C5 | 1.242 (9) | N1—H6 | 0.9100 |
C1—C2 | 1.503 (10) | O1W—H7 | 0.8500 |
C2—C3 | 1.378 (10) | O1W—H8 | 0.8500 |
C2—C4iv | 1.384 (10) | ||
O3i—Tl1—O2 | 114.26 (16) | C4—C3—H1 | 119.2 |
O3i—Tl1—O1W | 106.77 (16) | C2iv—C4—C3 | 118.9 (6) |
O2—Tl1—O1W | 73.92 (15) | C2iv—C4—C5 | 121.8 (6) |
O3i—Tl1—O4ii | 69.06 (15) | C3—C4—C5 | 119.0 (6) |
O2—Tl1—O4ii | 75.31 (15) | O4—C5—O3 | 125.0 (6) |
O1W—Tl1—O4ii | 143.40 (15) | O4—C5—C4 | 117.5 (6) |
O3i—Tl1—O1 | 76.67 (15) | O3—C5—C4 | 117.5 (6) |
O2—Tl1—O1 | 43.70 (14) | N1—C6—C6v | 110.3 (8) |
O1W—Tl1—O1 | 63.61 (15) | N1—C6—H2 | 109.6 |
O4ii—Tl1—O1 | 80.47 (14) | C6v—C6—H2 | 109.6 |
C1—O1—Tl1 | 86.5 (4) | N1—C6—H3 | 109.6 |
C1—O2—Tl1 | 104.3 (4) | C6v—C6—H3 | 109.6 |
C5—O3—Tl1vi | 127.4 (4) | H2—C6—H3 | 108.1 |
C5—O4—Tl1vii | 103.4 (4) | C6—N1—H4 | 109.5 |
O2—C1—O1 | 124.3 (6) | C6—N1—H5 | 109.5 |
O2—C1—C2 | 117.7 (7) | H4—N1—H5 | 109.5 |
O1—C1—C2 | 118.0 (7) | C6—N1—H6 | 109.5 |
C3—C2—C4iv | 119.4 (7) | H4—N1—H6 | 109.5 |
C3—C2—C1 | 117.7 (6) | H5—N1—H6 | 109.5 |
C4iv—C2—C1 | 122.8 (6) | Tl1—O1W—H7 | 122.8 |
C2—C3—C4 | 121.6 (7) | Tl1—O1W—H8 | 96.9 |
C2—C3—H1 | 119.2 | H7—O1W—H8 | 109.6 |
O3i—Tl1—O1—C1 | −155.0 (4) | O2—C1—C2—C4iv | 116.3 (8) |
O2—Tl1—O1—C1 | −5.8 (4) | O1—C1—C2—C4iv | −66.1 (9) |
O1W—Tl1—O1—C1 | 88.3 (4) | C4iv—C2—C3—C4 | −0.4 (11) |
O4ii—Tl1—O1—C1 | −84.5 (4) | C1—C2—C3—C4 | −177.0 (6) |
O3i—Tl1—O2—C1 | 39.1 (4) | C2—C3—C4—C2iv | 0.4 (11) |
O1W—Tl1—O2—C1 | −62.4 (4) | C2—C3—C4—C5 | 174.0 (6) |
O4ii—Tl1—O2—C1 | 97.5 (4) | Tl1vii—O4—C5—O3 | −30.4 (8) |
O1—Tl1—O2—C1 | 6.0 (4) | Tl1vii—O4—C5—C4 | 150.1 (5) |
Tl1—O2—C1—O1 | −12.6 (8) | Tl1vi—O3—C5—O4 | −125.2 (6) |
Tl1—O2—C1—C2 | 164.9 (5) | Tl1vi—O3—C5—C4 | 54.4 (8) |
Tl1—O1—C1—O2 | 10.7 (6) | C2iv—C4—C5—O4 | 17.5 (10) |
Tl1—O1—C1—C2 | −166.7 (6) | C3—C4—C5—O4 | −156.0 (6) |
O2—C1—C2—C3 | −67.2 (8) | C2iv—C4—C5—O3 | −162.1 (7) |
O1—C1—C2—C3 | 110.4 (8) | C3—C4—C5—O3 | 24.5 (10) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) x−1, y, z; (iii) −x, −y, −z+1; (iv) −x+1, −y, −z+2; (v) −x+1, −y, −z+1; (vi) −x+1/2, y+1/2, −z+3/2; (vii) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H4···O2viii | 0.91 | 1.90 | 2.791 (8) | 166 |
N1—H5···O3 | 0.91 | 1.85 | 2.741 (8) | 166 |
N1—H6···O1vi | 0.91 | 2.11 | 2.828 (8) | 136 |
N1—H6···O4ix | 0.91 | 2.20 | 2.942 (8) | 138 |
O1W—H7···O2i | 0.85 | 2.06 | 2.909 (8) | 172 |
O1W—H8···O1vi | 0.85 | 2.00 | 2.846 (8) | 177 |
C3—H1···O1vi | 0.95 | 2.45 | 3.353 (9) | 159 |
C6—H3···O3x | 0.99 | 2.59 | 3.523 (9) | 157 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (vi) −x+1/2, y+1/2, −z+3/2; (viii) x+1/2, −y+1/2, z−1/2; (ix) x−1/2, −y+1/2, z−1/2; (x) −x+3/2, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | (C2H10N2)[Tl2(C10H2O8)(H2O)2)] |
Mr | 757.01 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 9.925 (5), 7.073 (4), 11.325 (6) |
β (°) | 98.397 (10) |
V (Å3) | 786.5 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 20.53 |
Crystal size (mm) | 0.16 × 0.12 × 0.08 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.064, 0.201 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5272, 1787, 1487 |
Rint | 0.061 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.070, 1.00 |
No. of reflections | 1787 |
No. of parameters | 107 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 2.02, −1.80 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006).
Tl1—O3i | 2.702 (5) | Tl1—O1 | 3.135 (5) |
Tl1—O2 | 2.763 (5) | Tl1—O1Wiii | 3.209 (5) |
Tl1—O1W | 2.882 (5) | Tl1—O3ii | 3.350 (5) |
Tl1—O4ii | 2.952 (5) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) x−1, y, z; (iii) −x, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H4···O2iv | 0.91 | 1.900 | 2.791 (8) | 166 |
N1—H5···O3 | 0.91 | 1.850 | 2.741 (8) | 166 |
N1—H6···O1v | 0.91 | 2.105 | 2.828 (8) | 136 |
N1—H6···O4vi | 0.91 | 2.199 | 2.942 (8) | 138 |
O1W—H7···O2i | 0.85 | 2.064 | 2.909 (8) | 172 |
O1W—H8···O1v | 0.85 | 1.997 | 2.846 (8) | 177 |
C3—H1···O1v | 0.95 | 2.4500 | 3.353 (9) | 159 |
C6—H3···O3vii | 0.99 | 2.5900 | 3.523 (9) | 157 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (iv) x+1/2, −y+1/2, z−1/2; (v) −x+1/2, y+1/2, −z+3/2; (vi) x−1/2, −y+1/2, z−1/2; (vii) −x+3/2, y−1/2, −z+3/2. |
References
Akhbari, K. & Morsali, A. (2008). J. Mol. Struct. 878, 65–70. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Day, C. S. & Luehrs, D. C. (1988). Inorg. Chim. Acta, 142, 201–202. CSD CrossRef CAS Web of Science Google Scholar
Fabelo, O., Cañadillas-Delgado, L., Delgado, F. S., Lorenzo-Luis, P., Laz, M. M., Julve, M. & Ruiz-Pérez, C. (2005). Cryst. Growth Des. 5, 1163–1167. Web of Science CSD CrossRef CAS Google Scholar
Li, D.-Q., Liu, X. & Zhou, J. (2008). Inorg. Chem. Commun. 11, 367–371. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Murugavel, R., Anantharaman, G., Krishnamurthy, D., Sathiyendiran, M. & Walawalkar, M. G. (2000). J. Chem. Sci. 112, 273–290. CrossRef CAS Google Scholar
Rafizadeh, M., Aghayan, H. & Amani, V. (2006). Acta Cryst. E62, o5034–o5035. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rafizadeh, M., Amani, V., Dehghan, L., Azadbakht, F. & Sahlolbei, E. (2007a). Acta Cryst. E63, m1841–m1842. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rafizadeh, M., Amani, V. & Neumüller, B. (2005). Z. Anorg. Allg. Chem. 631, 1753–1755. Web of Science CSD CrossRef CAS Google Scholar
Rafizadeh, M., Amani, V. & Zahiri, S. (2007b). Acta Cryst. E63, m1938–m1939. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shimoni-Livny, L., Glusker, J. P. & Bock, C. W. (1998). Inorg. Chem. 37, 1853–1867. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thallium reagents, despite their inherent toxicity and cost, have played a conspicuous role in the development of modern inorganic and organometallic chemistry. Thallium(I) chemistry is very interesting due to a variety of reasons. (a) Thallium salts and complexes are often anhydrous. (b) The lone pair on thallium may or may not be stereochemically active. (c) High coordination number presents because of large size of TlI ion. (d) Thallium(I) complexes have potential ability to form metal–metal bonds and thallium(I) also forms complexes with aromatic hydrocarbons (Akhbari & Morsali, 2008).
The deprotonated forms of benzene-1,2,4,5-tetracarboxylic acid (btcH4) can act not only as hydrogen bond acceptors but also as hydrogen bond donors, depending on the deprotonated carboxylate groups, to give different supramolecular adducts (Fabelo et al., 2005). There is an instance of benzene-1,2,4,5-tetracarboxylate coordinated to thallium in a mixed ligand system (Day & Luehrs, 1988). However, there are some coordination polymers reported that contain an anionic coordination polymer together with a cationic part, such as metal–organic framework-based hydrogen-bonded porous solids, [(pipzH2)M(btc)(H2O)4.4H2O]n (M = CoII, NiII, ZnII; pipz = piperazine) (Murugavel et al., 2000). As the recent examples of this category, CuII and ZnII anionic coordination polymers with ethylenediaminium and propane-1,2-diaminium (pn) as counter ions, {(enH2)[Cu(btc)].2.5H2O}n (Rafizadeh et al., 2007a) and {(pnH2)[Zn(btc)].4H2O]}n (Rafizadeh et al., 2007b), have been synthesized.
In the title compound (Fig. 1), the coordination behavior of carboxylate groups of btc are different. Compared with another TlI complex, [Tl(pydcH)]n (pydcH2 = pyridine-2,6-dicarboxylic acid), with the bond lengths of Tl—O being 2.853 (6) and 3.019 (6) Å (Rafizadeh et al., 2005), the Tl—O bond lengths of the title compound are in a more extended range [2.702 (5) to 3.350 (5) Å] (Table 1). In the crystal structure, O—H···O, N—H···O and C—H···O hydrogen bonds are present. Moreover, an interesting Tl···π interaction is found that is classified as cation···π interaction at a Tl–centroid distance of 3.537 (1) Å, as shown in Fig. 2. These interactions make all components assemble together in a packing arrangement.
As illustrated in Fig. 1, coordination number of the TlI atom is seven, with all coordinated atoms forced into one side of TlI and other side is left empty. This can be caused by the stereochemically active lone pair on TlI center. Based on crystal data available in the Cambridge Structural Database, stereochemistry of PbII complexes has been reviewed (Shimoni-Livny et al., 1998). Evidently, in the case of PbII complexes when the lone pair appears to have no steric effects, the bonds with ligand donor atoms are arranged throughout the surface of encompassing sphere (holodirected coordination) and there are no marked differences in the Pb—L bond lengths. But the PbII complexes, in which the lone pair is stereochemically active, have hemidirected coordination and the Pb—L bonds are directed only to a part of the coordination sphere, leaving a gap in the distribution of bonds to the ligands. There are shorter Pb—L bonds away from the proposed site of the lone pair and longer Pb—L bonds adjacent to this site of the lone pair (Li et al., 2008). Here also, the TlI atom shows the same behavior. In effect, the Tl1—O3ii and Tl1—O1Wiii (symmetry codes: (ii) -1+x, y, z; (iii) -x, -y, 1-z), that are apparently longer than other bonds (see Fig. 1 and Table 1), lie on the side of the putative lone pair and the shorter bonds lie away from the site of the lone pair.