metal-organic compounds
Diaquabis(5-bromo-2-hydroxybenzoato)bis(N-methylnicotinamide)zinc(II)
aDepartment of Inorganic Chemistry, Institute of Chemistry, P. J. Šafárik University, Moyzesova 11, 041 54 Košice, Slovakia
*Correspondence e-mail: zuzana.bujdosova@upjs.sk
The title mononuclear complex molecule, [Zn(C7H4BrO3)2(C7H8N2O)2(H2O)2], has a crystallographically imposed centre of symmetry. The zinc(II) atom is coordinated by two N atoms from two N-methylnicotinamide ligands, two O atoms from two 5-bromosalicylate anions and two aqua O atoms in a slightly distorted octahedral geometry. Intramolecular O—H⋯O hydrogen-bonding interactions are present. In the molecules are linked by intermolecular O—H⋯O and N—H⋯O hydrogen bonds, forming a two-dimensional network perpendicular to [100].
Related literature
For general background to the properties of carboxylic acid–metal complexes, see: Nagar (1990); Cavagiolio et al. (2000). For the synthesis and properties of zinc(II) carboxylates reported by our group, see: Györyová et al. (2005, 2006); Bujdošová et al. (2009); Gebicki et al. (2003). For related structures, see: Necefoglu et al. (2001a,b); Hökelek et al. (2007, 2009a,b); Öztürk et al. (2008); Sarı et al. (2007); Liu et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2007); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536810008834/rz2423sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810008834/rz2423Isup2.hkl
Analytical reagent grade chemicals were used for the preparation of the title compound. The synthesis was carried out by reaction of aqueous solutions (20 ml) of ZnCl2 (0.14 g, 1 mmol) and NaHCO3 (0.17 g, 2 mmol). After complete removal of chloride anions, an acetone solution (10 ml) of 5-bromosalicylic acid (0.44 g, 2 mmol) was added. The resulting solution of (5-BrC6H3-2-(OH)COO)2Zn (0.50 g, 1 mmol) was mixed with an aqueous solution (10 ml) of N-methylnicotinamide (0.27 g, 2 mmol). The reaction mixture was stirred for 2 h and left aside for crystallization at room temperature. After two days, a small amount of colourless bright crystals appeared. The resulting crystals were isolated by filtration.
The hydrogen atoms of the water molecule were located in difference Fourier map and refined with the O—H distances constrained to 0.82 Å and with Uiso(H) = 1.5Ueq(O). The H atom bound to N2 was located in a difference Fourier map and refined Uiso(H) = 1.2Ueq(N). All other H atoms were positioned geometrically and constrained to ride on their parent atoms, with O—H = 0.82 Å, C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C, O) for methyl and hydroxyl H atoms.
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Zn(C7H4BrO3)2(C7H8N2O)2(H2O)2] | Z = 1 |
Mr = 805.73 | F(000) = 404 |
Triclinic, P1 | Dx = 1.760 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.1600 (2) Å | Cell parameters from 19248 reflections |
b = 10.1122 (3) Å | θ = 3.0–29.6° |
c = 10.4291 (3) Å | µ = 3.50 mm−1 |
α = 66.800 (3)° | T = 290 K |
β = 74.334 (2)° | Prism, colourless |
γ = 80.743 (2)° | 0.57 × 0.30 × 0.26 mm |
V = 760.15 (4) Å3 |
Oxford Diffraction Xcalibur Sapphire2 diffractometer | 3153 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2686 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
Detector resolution: 8.3438 pixels mm-1 | θmax = 26.5°, θmin = 3.0° |
ω scans | h = −10→10 |
Absorption correction: numerical [Clark & Reid (1995) in CrysAlis PRO (Oxford Diffraction, 2009)] | k = −12→12 |
Tmin = 0.289, Tmax = 0.484 | l = −13→13 |
32240 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.064 | H-atom parameters constrained |
S = 1.15 | w = 1/[σ2(Fo2) + (0.0404P)2] where P = (Fo2 + 2Fc2)/3 |
3153 reflections | (Δ/σ)max < 0.001 |
195 parameters | Δρmax = 0.50 e Å−3 |
0 restraints | Δρmin = −0.49 e Å−3 |
[Zn(C7H4BrO3)2(C7H8N2O)2(H2O)2] | γ = 80.743 (2)° |
Mr = 805.73 | V = 760.15 (4) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.1600 (2) Å | Mo Kα radiation |
b = 10.1122 (3) Å | µ = 3.50 mm−1 |
c = 10.4291 (3) Å | T = 290 K |
α = 66.800 (3)° | 0.57 × 0.30 × 0.26 mm |
β = 74.334 (2)° |
Oxford Diffraction Xcalibur Sapphire2 diffractometer | 3153 independent reflections |
Absorption correction: numerical [Clark & Reid (1995) in CrysAlis PRO (Oxford Diffraction, 2009)] | 2686 reflections with I > 2σ(I) |
Tmin = 0.289, Tmax = 0.484 | Rint = 0.024 |
32240 measured reflections |
R[F2 > 2σ(F2)] = 0.022 | 0 restraints |
wR(F2) = 0.064 | H-atom parameters constrained |
S = 1.15 | Δρmax = 0.50 e Å−3 |
3153 reflections | Δρmin = −0.49 e Å−3 |
195 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.5000 | 0.0000 | 0.0000 | 0.02312 (9) | |
O1 | 0.67676 (14) | −0.02707 (13) | −0.17587 (12) | 0.0305 (3) | |
O2 | 0.5864 (2) | 0.14251 (15) | −0.36177 (15) | 0.0493 (4) | |
O3 | 0.6562 (2) | 0.11216 (16) | −0.60156 (15) | 0.0550 (4) | |
H1O3 | 0.6075 | 0.1466 | −0.5409 | 0.083* | |
C1 | 0.6699 (2) | 0.02704 (19) | −0.30545 (19) | 0.0299 (4) | |
C2 | 0.7659 (2) | −0.05359 (18) | −0.40050 (18) | 0.0270 (4) | |
C3 | 0.7497 (2) | −0.00760 (19) | −0.54230 (19) | 0.0348 (4) | |
C4 | 0.8343 (3) | −0.0873 (2) | −0.6265 (2) | 0.0425 (5) | |
H4 | 0.8233 | −0.0574 | −0.7204 | 0.051* | |
C5 | 0.9340 (3) | −0.2099 (2) | −0.5713 (2) | 0.0403 (5) | |
H5 | 0.9899 | −0.2629 | −0.6276 | 0.048* | |
C6 | 0.9505 (2) | −0.25379 (19) | −0.43114 (19) | 0.0319 (4) | |
C7 | 0.8667 (2) | −0.17721 (18) | −0.34631 (18) | 0.0295 (4) | |
H7 | 0.8777 | −0.2085 | −0.2522 | 0.035* | |
Br1 | 1.08861 (3) | −0.42202 (2) | −0.35493 (2) | 0.05222 (9) | |
N1 | 0.66055 (11) | 0.14385 (9) | 0.01039 (9) | 0.0245 (3) | |
N2 | 0.48397 (11) | 0.41145 (9) | 0.24800 (9) | 0.0384 (4) | |
H1N2 | 0.4560 | 0.3237 | 0.2876 | 0.046* | |
C8 | 0.82847 (11) | 0.13682 (9) | −0.04349 (9) | 0.0302 (4) | |
H8 | 0.8741 | 0.0682 | −0.0843 | 0.036* | |
C9 | 0.9368 (2) | 0.2262 (2) | −0.0414 (2) | 0.0373 (4) | |
H9 | 1.0533 | 0.2178 | −0.0794 | 0.045* | |
C10 | 0.8694 (2) | 0.32926 (19) | 0.0186 (2) | 0.0352 (4) | |
H10 | 0.9399 | 0.3919 | 0.0205 | 0.042* | |
C11 | 0.6960 (2) | 0.33753 (16) | 0.07550 (17) | 0.0250 (3) | |
C12 | 0.5966 (2) | 0.24263 (16) | 0.06900 (17) | 0.0241 (3) | |
H12 | 0.4799 | 0.2479 | 0.1072 | 0.029* | |
C13 | 0.6211 (2) | 0.44766 (17) | 0.14122 (19) | 0.0282 (4) | |
C14 | 0.39754 (10) | 0.50534 (8) | 0.32554 (9) | 0.0531 (6) | |
H14C | 0.2890 | 0.4692 | 0.3828 | 0.080* | |
H14A | 0.3809 | 0.6011 | 0.2583 | 0.080* | |
H14B | 0.4660 | 0.5074 | 0.3864 | 0.080* | |
O4 | 0.68500 (13) | 0.56491 (9) | 0.09551 (11) | 0.0373 (3) | |
O5 | 0.63493 (12) | −0.17592 (8) | 0.13428 (10) | 0.0300 (3) | |
H2O5 | 0.5760 | −0.1834 | 0.2138 | 0.045* | |
H1O5 | 0.6509 | −0.2531 | 0.1229 | 0.045* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.02369 (15) | 0.02253 (14) | 0.02842 (16) | −0.00151 (10) | −0.00284 (11) | −0.01690 (11) |
O1 | 0.0301 (6) | 0.0377 (7) | 0.0285 (7) | −0.0004 (5) | −0.0009 (5) | −0.0214 (6) |
O2 | 0.0659 (10) | 0.0349 (7) | 0.0386 (8) | 0.0174 (7) | −0.0051 (7) | −0.0168 (6) |
O3 | 0.0737 (11) | 0.0479 (9) | 0.0376 (9) | 0.0209 (8) | −0.0187 (8) | −0.0152 (7) |
C1 | 0.0294 (9) | 0.0296 (9) | 0.0322 (10) | −0.0047 (7) | 0.0013 (7) | −0.0175 (8) |
C2 | 0.0290 (9) | 0.0285 (9) | 0.0242 (9) | −0.0033 (7) | 0.0008 (7) | −0.0143 (7) |
C3 | 0.0416 (11) | 0.0330 (10) | 0.0272 (9) | −0.0004 (8) | −0.0060 (8) | −0.0102 (8) |
C4 | 0.0580 (13) | 0.0465 (12) | 0.0239 (10) | 0.0003 (10) | −0.0069 (9) | −0.0170 (9) |
C5 | 0.0489 (12) | 0.0433 (11) | 0.0322 (10) | −0.0008 (9) | 0.0002 (9) | −0.0246 (9) |
C6 | 0.0315 (10) | 0.0310 (9) | 0.0344 (10) | 0.0009 (7) | −0.0031 (8) | −0.0172 (8) |
C7 | 0.0321 (9) | 0.0342 (9) | 0.0247 (9) | −0.0028 (7) | −0.0033 (7) | −0.0152 (7) |
Br1 | 0.05614 (16) | 0.04580 (14) | 0.05557 (16) | 0.01938 (10) | −0.01506 (11) | −0.02663 (11) |
N1 | 0.0260 (7) | 0.0214 (7) | 0.0303 (8) | −0.0008 (5) | −0.0066 (6) | −0.0140 (6) |
N2 | 0.0486 (10) | 0.0283 (8) | 0.0416 (10) | −0.0049 (7) | −0.0014 (8) | −0.0213 (7) |
C8 | 0.0287 (9) | 0.0277 (9) | 0.0376 (10) | 0.0011 (7) | −0.0036 (7) | −0.0192 (8) |
C9 | 0.0248 (9) | 0.0371 (10) | 0.0539 (12) | −0.0040 (8) | −0.0013 (8) | −0.0249 (9) |
C10 | 0.0346 (10) | 0.0300 (9) | 0.0462 (11) | −0.0087 (7) | −0.0085 (8) | −0.0173 (8) |
C11 | 0.0327 (9) | 0.0181 (8) | 0.0272 (9) | −0.0012 (6) | −0.0100 (7) | −0.0097 (7) |
C12 | 0.0262 (8) | 0.0215 (8) | 0.0273 (9) | 0.0006 (6) | −0.0069 (7) | −0.0122 (7) |
C13 | 0.0331 (9) | 0.0229 (8) | 0.0359 (10) | 0.0034 (7) | −0.0163 (7) | −0.0151 (7) |
C14 | 0.0612 (15) | 0.0488 (13) | 0.0547 (14) | −0.0050 (11) | 0.0057 (11) | −0.0365 (11) |
O4 | 0.0450 (8) | 0.0217 (6) | 0.0504 (8) | −0.0032 (5) | −0.0097 (6) | −0.0191 (6) |
O5 | 0.0316 (7) | 0.0239 (6) | 0.0381 (7) | 0.0014 (5) | −0.0059 (5) | −0.0175 (5) |
Zn1—O1i | 2.0879 (11) | N1—C8 | 1.3352 (13) |
Zn1—O1 | 2.0879 (11) | N1—C12 | 1.3359 (17) |
Zn1—O5 | 2.1396 (9) | N2—C13 | 1.328 (2) |
Zn1—O5i | 2.1396 (9) | N2—C14 | 1.4609 (13) |
Zn1—N1i | 2.1583 (9) | N2—H1N2 | 0.8578 |
Zn1—N1 | 2.1583 (9) | C8—C9 | 1.372 (2) |
O1—C1 | 1.256 (2) | C8—H8 | 0.9300 |
O2—C1 | 1.262 (2) | C9—C10 | 1.387 (2) |
O3—C3 | 1.341 (2) | C9—H9 | 0.9300 |
O3—H1O3 | 0.8200 | C10—C11 | 1.382 (2) |
C1—C2 | 1.508 (2) | C10—H10 | 0.9300 |
C2—C7 | 1.386 (2) | C11—C12 | 1.384 (2) |
C2—C3 | 1.402 (3) | C11—C13 | 1.497 (2) |
C3—C4 | 1.396 (2) | C12—H12 | 0.9300 |
C4—C5 | 1.377 (3) | C13—O4 | 1.235 (2) |
C4—H4 | 0.9300 | C14—H14C | 0.9600 |
C5—C6 | 1.389 (3) | C14—H14A | 0.9600 |
C5—H5 | 0.9300 | C14—H14B | 0.9600 |
C6—C7 | 1.376 (2) | O5—H2O5 | 0.8196 |
C6—Br1 | 1.8968 (18) | O5—H1O5 | 0.8197 |
C7—H7 | 0.9300 | ||
O1i—Zn1—O1 | 180.00 (8) | C6—C7—H7 | 119.9 |
O1i—Zn1—O5 | 92.30 (4) | C2—C7—H7 | 119.9 |
O1—Zn1—O5 | 87.70 (4) | C8—N1—C12 | 117.96 (11) |
O1i—Zn1—O5i | 87.70 (4) | C8—N1—Zn1 | 120.28 (7) |
O1—Zn1—O5i | 92.30 (4) | C12—N1—Zn1 | 121.77 (9) |
O5—Zn1—O5i | 180.00 (10) | C13—N2—C14 | 122.98 (11) |
O1i—Zn1—N1i | 91.23 (4) | C13—N2—H1N2 | 120.1 |
O1—Zn1—N1i | 88.77 (4) | C14—N2—H1N2 | 115.5 |
O5—Zn1—N1i | 91.78 (3) | N1—C8—C9 | 122.98 (11) |
O5i—Zn1—N1i | 88.22 (3) | N1—C8—H8 | 118.5 |
O1i—Zn1—N1 | 88.77 (4) | C9—C8—H8 | 118.5 |
O1—Zn1—N1 | 91.23 (4) | C8—C9—C10 | 118.76 (15) |
O5—Zn1—N1 | 88.22 (4) | C8—C9—H9 | 120.6 |
O5i—Zn1—N1 | 91.78 (3) | C10—C9—H9 | 120.6 |
N1i—Zn1—N1 | 180.00 (4) | C11—C10—C9 | 118.99 (16) |
C1—O1—Zn1 | 128.42 (11) | C11—C10—H10 | 120.5 |
C3—O3—H1O3 | 109.5 | C9—C10—H10 | 120.5 |
O1—C1—O2 | 125.03 (16) | C10—C11—C12 | 118.22 (15) |
O1—C1—C2 | 117.54 (15) | C10—C11—C13 | 119.77 (15) |
O2—C1—C2 | 117.42 (16) | C12—C11—C13 | 122.01 (15) |
C7—C2—C3 | 119.42 (15) | N1—C12—C11 | 123.07 (14) |
C7—C2—C1 | 119.96 (15) | N1—C12—H12 | 118.5 |
C3—C2—C1 | 120.57 (16) | C11—C12—H12 | 118.5 |
O3—C3—C4 | 118.17 (17) | O4—C13—N2 | 123.41 (16) |
O3—C3—C2 | 122.26 (16) | O4—C13—C11 | 120.51 (15) |
C4—C3—C2 | 119.57 (17) | N2—C13—C11 | 116.08 (15) |
C5—C4—C3 | 120.41 (18) | N2—C14—H14C | 109.5 |
C5—C4—H4 | 119.8 | N2—C14—H14A | 109.5 |
C3—C4—H4 | 119.8 | H14C—C14—H14A | 109.5 |
C4—C5—C6 | 119.57 (17) | N2—C14—H14B | 109.5 |
C4—C5—H5 | 120.2 | H14C—C14—H14B | 109.5 |
C6—C5—H5 | 120.2 | H14A—C14—H14B | 109.5 |
C7—C6—C5 | 120.74 (17) | Zn1—O5—H2O5 | 100.9 |
C7—C6—Br1 | 119.51 (14) | Zn1—O5—H1O5 | 119.2 |
C5—C6—Br1 | 119.74 (14) | H2O5—O5—H1O5 | 111.8 |
C6—C7—C2 | 120.28 (16) | ||
O5—Zn1—O1—C1 | 167.76 (16) | O1—Zn1—N1—C8 | −24.26 (8) |
O5i—Zn1—O1—C1 | −12.24 (16) | O5—Zn1—N1—C8 | 63.39 (8) |
N1i—Zn1—O1—C1 | 75.93 (14) | O5i—Zn1—N1—C8 | −116.61 (8) |
N1—Zn1—O1—C1 | −104.07 (14) | O1i—Zn1—N1—C12 | −24.81 (11) |
Zn1—O1—C1—O2 | 24.7 (3) | O1—Zn1—N1—C12 | 155.19 (11) |
Zn1—O1—C1—C2 | −153.98 (11) | O5—Zn1—N1—C12 | −117.16 (10) |
O1—C1—C2—C7 | −4.4 (2) | O5i—Zn1—N1—C12 | 62.84 (10) |
O2—C1—C2—C7 | 176.77 (16) | C12—N1—C8—C9 | −0.15 (17) |
O1—C1—C2—C3 | 173.34 (16) | Zn1—N1—C8—C9 | 179.32 (11) |
O2—C1—C2—C3 | −5.5 (3) | N1—C8—C9—C10 | −0.4 (2) |
C7—C2—C3—O3 | −178.98 (17) | C8—C9—C10—C11 | 0.7 (3) |
C1—C2—C3—O3 | 3.3 (3) | C9—C10—C11—C12 | −0.5 (3) |
C7—C2—C3—C4 | 0.4 (3) | C9—C10—C11—C13 | 179.74 (17) |
C1—C2—C3—C4 | −177.40 (16) | C8—N1—C12—C11 | 0.3 (2) |
O3—C3—C4—C5 | 179.01 (19) | Zn1—N1—C12—C11 | −179.13 (12) |
C2—C3—C4—C5 | −0.4 (3) | C10—C11—C12—N1 | 0.0 (2) |
C3—C4—C5—C6 | −0.2 (3) | C13—C11—C12—N1 | 179.73 (14) |
C4—C5—C6—C7 | 0.8 (3) | C14—N2—C13—O4 | −2.0 (2) |
C4—C5—C6—Br1 | −179.66 (15) | C14—N2—C13—C11 | 178.73 (11) |
C5—C6—C7—C2 | −0.8 (3) | C10—C11—C13—O4 | 31.6 (2) |
Br1—C6—C7—C2 | 179.66 (13) | C12—C11—C13—O4 | −148.18 (17) |
C3—C2—C7—C6 | 0.2 (3) | C10—C11—C13—N2 | −149.10 (16) |
C1—C2—C7—C6 | 178.00 (16) | C12—C11—C13—N2 | 31.1 (2) |
O1i—Zn1—N1—C8 | 155.74 (8) |
Symmetry code: (i) −x+1, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1O3···O2 | 0.82 | 1.81 | 2.540 (2) | 147 |
N2—H1N2···O3ii | 0.86 | 2.55 | 3.1109 (19) | 123 |
O5—H2O5···O2i | 0.82 | 1.88 | 2.6694 (18) | 162 |
O5—H1O5···O4iii | 0.82 | 1.94 | 2.7568 (13) | 179 |
Symmetry codes: (i) −x+1, −y, −z; (ii) x, y, z+1; (iii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C7H4BrO3)2(C7H8N2O)2(H2O)2] |
Mr | 805.73 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 290 |
a, b, c (Å) | 8.1600 (2), 10.1122 (3), 10.4291 (3) |
α, β, γ (°) | 66.800 (3), 74.334 (2), 80.743 (2) |
V (Å3) | 760.15 (4) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 3.50 |
Crystal size (mm) | 0.57 × 0.30 × 0.26 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Sapphire2 diffractometer |
Absorption correction | Numerical [Clark & Reid (1995) in CrysAlis PRO (Oxford Diffraction, 2009)] |
Tmin, Tmax | 0.289, 0.484 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 32240, 3153, 2686 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.022, 0.064, 1.15 |
No. of reflections | 3153 |
No. of parameters | 195 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.50, −0.49 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Crystal Impact, 2007).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1O3···O2 | 0.82 | 1.81 | 2.540 (2) | 146.8 |
N2—H1N2···O3i | 0.86 | 2.55 | 3.1109 (19) | 123.4 |
O5—H2O5···O2ii | 0.82 | 1.88 | 2.6694 (18) | 161.7 |
O5—H1O5···O4iii | 0.82 | 1.94 | 2.7568 (13) | 179.1 |
Symmetry codes: (i) x, y, z+1; (ii) −x+1, −y, −z; (iii) x, y−1, z. |
Acknowledgements
Financial support by the Slovak Ministry of Education (VEGA project No. 1/0122/08) is gratefully acknowledged.
References
Bujdošová, Z., Györyová, K., Kovářová, J., Hudecová, D. & Halás, L. (2009). J. Therm. Anal. Calorim. 98, 151–159. Google Scholar
Cavagiolio, G., Benedetto, L., Boccaleri, E., Colangelo, D., Viano, I. & Osella, D. (2000). Inorg. Chim. Acta, 305, 61–68. Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Crystal Impact (2007). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Gebicki, J., Sysa-Jedrzejowska, A. & Adamus, J. (2003). Pol. J. Pharmacol. 55, 109–112. Web of Science PubMed CAS Google Scholar
Györyová, K., Chomič, J. & Kovářová, J. (2005). J. Therm. Anal. Calorim. 80, 375–380. Google Scholar
Györyová, K., Chomič, J., Szunyogová, E., Piknová, L., Zeleňák, V. & Vargová, Z. (2006). J. Therm. Anal. Calorim. 84, 727–732. Google Scholar
Hökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m2561–m2562. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m607–m608. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m481–m482. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, Z.-D., Qu, Y., Tan, M.-Y. & Zhu, H.-L. (2004). Acta Cryst. E60, o1310–o1311. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nagar, R. (1990). J. Inorg. Biochem. 40, 349–356. CrossRef CAS PubMed Web of Science Google Scholar
Necefoglu, H., Clegg, W. & Scott, A. J. (2001a). Acta Cryst. E57, m462–m464. Web of Science CSD CrossRef IUCr Journals Google Scholar
Necefoglu, H., Clegg, W. & Scott, A. J. (2001b). Acta Cryst. E57, m465–m466. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Öztürk, A., Hökelek, T., Özbek, F. E. & Necefoğlu, H. (2008). Acta Cryst. E64, m1218–m1219. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sarı, M., Gökçe, G., Gökçe, S., Şahin, E. & Necefoğlu, H. (2007). Acta Cryst. E63, m2191. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The complexes of carboxylic acids with metals, e.g. zinc, are interesting due to different coordination modes of a carboxylate group bound to a metal ion. It is well documented that heterocyclic compounds, especially N-donor ligand systems, play a significant role in many biological systems, being a component of several vitamins and drugs (Nagar, 1990; Cavagiolio et al., 2000). As a part of our ongoing studies of zinc(II) carboxylates (Györyová et al., 2005; Györyová et al., 2006; Bujdošová et al., 2009) we have been exploring the synthesis and crystal structure of zinc(II) 5-bromosalicylate containing N-methylnicotinamide, shown at in vitro study to be a potent anti-inflammatory agent (Gebicki et al., 2003).
In the title monomeric complex [Zn(C7H4BrO3)2(C7H8N2O)2(H2O)2] (Fig. 1), the zinc(II) atom, which lies on an inversion centre, exhibits a slightly distorted octahedral coordination geometry. The coordination sphere consists of three pairs of trans-arranged monodentate ligands. The two N-methylnicotinamide ligands are coordinated to the zinc atom through nitrogen atoms of the pyridine rings. The 5-bromosalicylate anion is coordinated through one oxygen atom of the carboxylate group. The similar distances O1—C1 (1.256 (2) Å) and O2—C1 (1.262 (2) Å) in the carboxylate group indicate a delocalized bonding arrangement and may be compared with the corresponding distances found in [Zn(C7H4ClO2)2(C10H14N2O)2(H2O)2] (Sarı et al., 2007). The plane of the carboxylate group is approximately coplanar with the plane of the benzene ring; the dihedral angle between these planes is 5.5 (3)°. Such behaviour is not unusual; a similar arrangement was observed in other compounds (e.g. diaquabis(N,N-diethylnicotinamide-N)bis(4-fluorobenzoato-O)zinc(II) (Hökelek et al., 2007)). All other geometric parameters of the coordinated anion are similar to that found in free 5-bromosalicylic acid (Liu et al., 2004). The distorted octahedral coordination is completed by two pyridine nitrogen atoms of two N-methylnicotinamide ligands in the axial positions. The Zn—N distance (2.1583 (9) Å) is in good agreement with the values reported for other octahedrally coordinated zinc(II) complexes [viz., Diaquabis(4-chlorobenzoato)bis(N,N-diethylnicotinamide)zinc(II), Zn—N: 2.157 (3) Å; Sarı et al., 2007]. The coordination environment of the zinc(II) atom is completed by water molecules, forming with carboxylate oxygen atoms the basal plane of the distorted octahedron. The Zn—O distance (2.1396 (8) Å) is comparable with those found in similar compounds [viz. diaquabis(2-bromobenzoato)bis(N,N-diethylnicotinamide)zinc(II), Zn—O: 2.1269 (12) Å; Hökelek et al., 2009b]. Intramolecular hydrogen bonding interactions involving the hydroxyl groups and carboxylate oxygen atoms (O3—H1O3···O2) and the equatorially coordinated water molecule and carboxylate oxygen atom (O5—H2O5···O2) stabilize the molecular structure (Fig. 2). Intramolecular hydrogen bonds also influences the orientation and delocalized character of carboxylate group. The molecules of the title compound are linked into a two-dimensional network perpendicular to [100] by intermolecular O5—H1O5···O4 and N2—H1N2···O3 hydrogen bonds (Fig. 3).