research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Two new Rb–Ga arsenates: RbGa(HAsO4)2 and RbGa2As(HAsO4)6

CROSSMARK_Color_square_no_text.svg

aInstitute for Chemical Technology and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, 1060 Vienna, Austria, and bNaturhistorisches Museum Wien, Burgring 7, 1010 Wien, and Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, 1090 Wien, Austria
*Correspondence e-mail: karolina.schwendtner@tuwien.ac.at

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 27 June 2018; accepted 6 August 2018; online 14 August 2018)

The crystal structures of hydro­thermally synthesized (T = 493 K, 7–9 d) rubidium gallium bis­[hydrogenarsenate(V)], RbGa(HAsO4)2, and rubidium digallium arsenic(V) hexa­[hydrogenarsenate(V)], RbGa2As(HAsO4)6, were solved by single-crystal X-ray diffraction. Both compounds have tetra­hedral–octa­hedral framework topologies. The M+ cations are located in channels of the respective framework. RbGa(HAsO4)2 crystallizes in the RbFe(HPO4)2 structure type (R[\overline{3}]c), while RbGa2As(HAsO4)6 adopts the structure type of RbAl2As(HAsO4)6 (R[\overline{3}]c), which represents a modification of the RbFe(HPO4)2 structure type. In this modification, one third of the M3+O6 octa­hedra are replaced by AsO6 octa­hedra, and two thirds of the voids in the structure, which are usually filled by M+ cations, remain empty to achieve charge balance.

1. Chemical context

Compounds with mixed tetra­hedral–octa­hedral (T–O) framework structures feature a broad range of different atomic arrangements, resulting in topologies with various inter­esting properties, such as ion exchange (Masquelier et al., 1996[Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. & Goodenough, J. B. (1996). Proceedings of the 37th Power Sources Conference, June 17-20, 1996, pp. 188-191. Cherry Hill, New Jersey. Fort Monmouth, NJ: US Army Research Laboratory.]) and ion conductivity (Chouchene et al., 2017[Chouchene, S., Jaouadi, K., Mhiri, T. & Zouari, N. (2017). Solid State Ionics, 301, 78-85.]), as well as unusual piezoelectric (Ren et al., 2015[Ren, J., Ma, Z., He, C., Sa, R., Li, Q. & Wu, K. (2015). Comput. Mater. Sci. 106, 1-4.]), magnetic (Ouerfelli et al., 2007[Ouerfelli, N., Guesmi, A., Molinie, P., Mazza, D., Madani, A., Zid, M. F. & Driss, A. (2007). J. Solid State Chem. 180, 2942-2949.]) or nonlinear optical features (frequency doubling) (Sun et al., 2017[Sun, Y., Yang, Z., Hou, D. & Pan, S. (2017). RSC Adv. 7, 2804-2809.]). In order to further increase the insufficient knowledge about the crystal chemistry and structure types of arsenates, a comprehensive study of the system M+M3+–O–(H)–As5+ (M+ = Li, Na, K, Rb, Cs, Ag, Tl, NH4; M3+ = Al, Ga, In, Sc, Fe, Cr, Tl) was undertaken, which led to a large number of new compounds, most of which have been published (Schwendtner & Kolitsch, 2007[Schwendtner, K. & Kolitsch, U. (2007). Acta Cryst. B63, 205-215.], 2017[Schwendtner, K. & Kolitsch, U. (2017). Acta Cryst. E73, 1580-1586.], 2018a[Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. E74, 766-771.],b[Schwendtner, K. & Kolitsch, U. (2018b). Acta Cryst. C74, 721-727.], and references therein).

Among the many different structure types found during our study, one atomic arrangement, i.e. the RbFe(HPO4)2 type (Lii & Wu, 1994[Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577-1580.]; rhombohedral, R[\overline{3}]c), was found to show a large crystal–chemical flexibility which allows the incorporation of a wide variety of cations. A total of nine representatives of this structure type are presently known among M+M3+(HTO4)2 (T = P, As) compounds containing Rb or Cs as the M+ cation and Al, Ga, Fe or In as the M3+ cation (Lesage et al., 2007[Lesage, J., Adam, L., Guesdon, A. & Raveau, B. (2007). J. Solid State Chem. 180, 1799-1808.]; Lii & Wu, 1994[Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577-1580.]; Schwendtner & Kolitsch, 2017[Schwendtner, K. & Kolitsch, U. (2017). Acta Cryst. E73, 1580-1586.], 2018a[Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. E74, 766-771.],b[Schwendtner, K. & Kolitsch, U. (2018b). Acta Cryst. C74, 721-727.]), including RbGa(HPO4)2 (Lesage et al., 2007[Lesage, J., Adam, L., Guesdon, A. & Raveau, B. (2007). J. Solid State Chem. 180, 1799-1808.]). One of the title compounds, RbGa(HAsO4)2, is another new representative of the RbFe(HPO4)2 structure type. The second title compound, RbGa2As(HAsO4)6, is the third representative of a recently described variation of the RbFe(HPO4)2 type, the RbAl2As(HAsO4)6 type. It also crystallizes in R[\overline{3}]c and up to now members with RbAl and CsFe as M+M3+ cation combinations are known (Schwendtner & Kolitsch, 2018b[Schwendtner, K. & Kolitsch, U. (2018b). Acta Cryst. C74, 721-727.]). Inter­estingly, all presently known M+M3+ combinations adopting this new structure type also have representatives adopting the RbFe(HPO4)2 type. It thus seems likely that more of the known RbFe(HPO4)2-type arsenates would also adopt the new RbAl2As(HAsO4)6-type atomic arrangement under formally `dry' synthesis conditions (see §3[link]). RbGa2As(HAsO4)6 is a rare example of a compound containing AsO6 octa­hedra. Out of all reported arsenates(V), only about 3% contain AsO6 polyhedra, according to our earlier review paper (Schwendtner & Kolitsch, 2007[Schwendtner, K. & Kolitsch, U. (2007). Acta Cryst. B63, 205-215.]), which provides an overview of all known compounds containing AsO6 groups and their bond-length statistics. At present, 37 compounds containing As in an octa­hedral coordination are known (Schwendtner & Kolitsch, 2018b[Schwendtner, K. & Kolitsch, U. (2018b). Acta Cryst. C74, 721-727.]); RbGa2As(HAsO4)6 represents the 38th member of this class of compounds. While 12 Rb- and Ga-containing phosphates are contained in the ICSD (FIZ, 2018[FIZ (2018). Inorganic Crystal Structure Database. Version build 20180504-0745, 2018.1. Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany.]), only one Rb–Ga arsenate, i.e. RbGaF3(H2AsO4) (Marshall et al., 2015[Marshall, K. L., Armstrong, J. A. & Weller, M. T. (2015). Dalton Trans. 44, 12804-12811.]), is known so far. Since submitting this paper, another paper dealing with isotypic M+M3+2As(HAsO4)6 compounds (M+M3+ = TlGa, CsGa, CsAl) has been published (Schwendtner & Kolitsch, 2018c[Schwendtner, K. & Kolitsch, U. (2018c). Acta Cryst. E74, 1163-1167.]).

2. Structural commentary

The two title compounds are very closely related to each other and are modifications of a basic tetra­hedral–octa­hedral framework structure featuring inter­penetrating channels, which host the M+ cations (Fig. 1[link]). The two structure types, first reported for RbFe(HPO4)2 (R[\overline{3}]c; Lii & Wu, 1994[Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577-1580.]) and RbAl2As(HAsO4)6 (R[\overline{3}]c; Schwendtner & Kolitsch, 2018b[Schwendtner, K. & Kolitsch, U. (2018b). Acta Cryst. C74, 721-727.]), are also related to the triclinic (NH4)Fe(HPO4)2 type (P[\overline{1}]; Yakubovich, 1993[Yakubovich, O. V. (1993). Kristallografiya, 38, 43-48.]) and the RbAl(HAsO4)2 type (R32; Schwendtner & Kolitsch, 2018b[Schwendtner, K. & Kolitsch, U. (2018b). Acta Cryst. C74, 721-727.]). The fundamental building unit in all these structure types contains M3+O6 octa­hedra which are connected via their six corners to six protonated AsO4 tetra­hedra, thereby forming an M3+As6O24 unit. These units are in turn connected via three corners to other M3+O6 octa­hedra. The free protonated corner of each AsO4 tetra­hedron forms a hydrogen bond to the neighbouring M3+As6O24 group (Fig. 2[link]). The M3+As6O24 units are arranged in layers perpendicular to the chex axis (Fig. 1[link]). The units within these layers are held together by medium–strong hydrogen bonds (Tables 1[link] and 2[link]). Both title compounds invariably show a very similar crystal habit: strongly pseudohexa­gonal to pseudo-octa­hedral (cf. Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °) for RbGa(HAsO4)2

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H⋯O4xxi 0.85 (3) 1.76 (3) 2.598 (2) 168 (4)
Symmetry code: (xxi) [y, x-1, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for RbGa2As(HAsO4)6

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H⋯O4xiv 0.80 (3) 1.98 (3) 2.7314 (17) 158 (3)
Symmetry code: (xiv) [y, x-1, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
Crystal structure drawings of (a) RbGa2As(HAsO4)6 and (b) RbGa(HAsO4)2 in views along the b axis. A part of the GaO6 octa­hedra is replaced by AsO6 octa­hedra in RbGa2As(HAsO4)6; the corresponding layers (see Figs. 2[link] and 3[link]) are compressed along c and the corresponding void remains vacant of Rb atoms.
[Figure 2]
Figure 2
Crystal structure drawings of (a) RbGa(HAsO4)2 and (b) RbGa2As(HAsO4)6 inequal layers, viewed along the c axis. In this layer, the GaO6 octa­hedra are replaced by AsO6 octa­hedra in RbGa2As(HAsO4)6 (b). Since the unit-cell dimensions in directions a and b are slightly longer in RbGa2As(HAsO4)6 and the AsO6 octa­hedra are smaller than the corresponding GaO6 octa­hedra, the (Ga/As)As6O24 units within this layer move further apart – leading to longer D—H⋯A distances and a compressed (along c) void that is too small for Rb atoms (compare Fig. 1[link]).
[Figure 3]
Figure 3
SEM micrograph of the pseudohexa­gonal tabular crystals of RbGa(HAsO4)2.

The new compound RbGa2As(HAsO4)6 could only be grown by `dry' hydro­thermal techniques (without the addition of water). The extreme abundance of As during the synthesis and the formation of a melt of arsenic acid promotes the formation of this novel structure type and endorses the octa­hedral coordination of As. The substitution of one third of all Ga3+ cations by As5+ requires that two thirds of all Rb+ cations are omitted to achieve charge balance (compare Figs. 1[link]a, 1b, 2[link]a and 2b). This substitution also has an effect on the unit-cell parameters (Table 3[link]) and the pore diameter. Since GaO6 is only replaced by AsO6 in every second layer (perpendicular to the c axis), the a axis must remain long enough to still be able to house the GaO6 in the layers between. The effect of the smaller AsO6 octa­hedra is therefore mainly reflected by a strong compression of about 5% along the c axis, while the a axis becomes even slightly longer compared to RbGa(HAsO4)2. Due to the comparatively smaller AsO6 octa­hedra, the (Ga/As)As6O24 units are further apart in RbGa2As(HAsO4)6 and the encased void is compressed along c, making it too small to house Rb+ cations (Figs. 1[link] and 2[link]). This effect is also reflected by the considerably elongated hydrogen bond in RbGa2As(HAsO4)6. While these bonds, which connect neighbouring (Ga/As)As6O24 groups, are very strong in RbGa(HAsO4)2 [D—H⋯A = 2.598 (2) Å], they are much longer in RbGa2As(HAsO4)6 [2.7314 (17) Å; compare Tables 1[link] and 2[link]]. The second layer, in contrast, remains practically identical in both compounds and contains Rb atoms with a slight positional disorder (Fig. 4[link]). In both compounds, the Rb atoms are 12-coordinated (Figs. 2[link] and 3[link]), and the average Rb—O bond lengths in RbGa2As(HAsO4)6 (3.433 Å) are longer than the longest average bond length in RbO12 polyhedra of 3.410 Å reported so far (Gagné & Hawthorne, 2016[Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602-625.]), thus leading to rather low bond-valence sums (BVSs; Gagné & Hawthorne, 2015[Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.]) of only 0.59 valence units (v.u.), whereas the corresponding BVSs are 0.82 and 0.84 v.u. for RbGa(HAsO4)2. These loose bondings lead to considerable positional disorder of the Rb+ cations in these voids, which were modelled with two Rb positions, between 0.41 (2) and 0.42 (4) Å apart. While position Rb1A in the centre of the large framework void in RbGa2As(HAsO4)6 has only 77% occupancy compared to the off-centre position Rb1B (with occupancy 23%), in RbGa(HAsO4)2, the central position Rb1A has 91% occupancy. Similar behaviour was observed for the isotypic CsFe and RbAl compounds (Schwendtner & Kolitsch, 2018b[Schwendtner, K. & Kolitsch, U. (2018b). Acta Cryst. C74, 721-727.]), as well as isotypic phosphates (Lesage et al., 2007[Lesage, J., Adam, L., Guesdon, A. & Raveau, B. (2007). J. Solid State Chem. 180, 1799-1808.]).

Table 3
Experimental details

  RbGa(HAsO4)2 RbGa2As(HAsO4)6
Crystal data
Chemical formula RbGa(HAsO4)2 RbGa2As(HAsO4)6
Mr 435.05 1139.40
Crystal system, space group Trigonal, R[\overline{3}]c:H Trigonal, R[\overline{3}]c:H
Temperature (K) 293 293
a, c (Å) 8.385 (1), 53.880 (11) 8.491 (1), 50.697 (11)
V3) 3280.7 (10) 3165.4 (10)
Z 18 6
Radiation type Mo Kα Mo Kα
μ (mm−1) 19.42 15.85
Crystal size (mm) 0.07 × 0.07 × 0.02 0.13 × 0.12 × 0.12
 
Data collection
Diffractometer Nonius KappaCCD single-crystal four-circle Nonius KappaCCD single-crystal four-circle
Absorption correction Multi-scan (SCALEPACK; Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]) Multi-scan (SCALEPACK; Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.])
Tmin, Tmax 0.343, 0.697 0.232, 0.252
No. of measured, independent and observed [I > 2σ(I)] reflections 3896, 1079, 1027 4684, 1287, 1196
Rint 0.016 0.016
(sin θ/λ)max−1) 0.704 0.757
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.040, 1.11 0.014, 0.034, 1.13
No. of reflections 1079 1287
No. of parameters 68 65
No. of restraints 2 2
H-atom treatment All H-atom parameters refined All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.79, −0.53 0.75, −0.84
Computer programs: COLLECT (Nonius, 2003[Nonius (2003). COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO and SCALEPACK (Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 4]
Figure 4
Crystal structure drawing of (a) RbGa(HAsO4)2 and (b) RbGa2As(HAsO4)6 equal layers, viewed along the a axis. In these topologically equivalent layers, there are no visible differences between the two structure types apart from very minor changes in the hydrogen-bond geometries. The Rb atoms in both compounds show a slight positional disorder and are 12-coordinated.

A further indirect effect of the substituting AsO6 octa­hedra is a distinct change in the As—O distances of the AsO4 tetra­hedra. The average As—O distance in the protonated AsO4 tetra­hedra, with values between 1.688 and 1.689 Å, is in both compounds very close to the statistical average of 1.686 (10) Å (Schwendtner, 2008[Schwendtner, K. (2008). PhD thesis, Universität Wien, Austria.]). Also the BVSs (Gagné & Hawthorne, 2015[Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.]) are close to ideal values (4.98–5.00 v.u.). In RbGa(HAsO4)2, the HAsO4 tetra­hedra show a typical distortion, with three short As—O distances to attached GaO6 octa­hedra and one elongated As—O bond length for the protonated O atom involved in the O—H bond. That bond length (Table 4[link]) in RbGa(HAsO4)2 is slightly longer [1.7417 (17) Å] than the average distance of As—O⋯H bonds in HAsO4 groups [1.72 (3) Å; Schwendtner, 2008[Schwendtner, K. (2008). PhD thesis, Universität Wien, Austria.]]. In contrast, RbGa2As(HAsO4)6 has two short [4]As—O bond lengths to neighbouring GaO6 octa­hedra, but the [4]As—O bond length of the O atom shared with the AsO6 octa­hedra is also elongated [1.7100 (11) Å] due to [4]As—O—[6]As repulsion. The [4]As—OH bond is therefore shortened to 1.7122 (13) Å (Table 5[link]). The average As—O distances in the AsO6 octa­hedra are the shortest average distances of AsO6 octa­hedra found so far, i.e. 1.807 Å, leading to rather high BVSs of 5.33 v.u. (after Gagné & Hawthorne, 2015[Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.]). The grand mean As—O bond distance in AsO6 octa­hedra in inorganic compounds is 1.830 (2) Å according to Schwendtner & Kolitsch (2007[Schwendtner, K. & Kolitsch, U. (2007). Acta Cryst. B63, 205-215.]a); this value was determined on 33 AsO6 octa­hedra of 31 compounds. Gagné & Hawthorne (2018[Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63-78.]) determined an identical, but less precise, value of 1.830 (28) Å, based on only 13 AsO6 octa­hedra in AsO6-containing compounds meeting all selection criteria as defined in Gagné & Hawthorne (2016[Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602-625.]). However, a larger number of compounds meeting these criteria were not used by Gagné & Hawthorne (2018[Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63-78.]) for unknown reasons. The average Ga—O bond lengths of the octa­hedrally coordinated Ga cations (1.962–1.964 Å) are slightly shorter than the grand mean average of 1.978 (17) Å (Gagné & Hawthorne, 2018[Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63-78.]), explaining the corresponding BVSs of 3.10 to 3.11 v.u.

Table 4
Selected bond lengths (Å) for RbGa(HAsO4)2

Rb1A—O3i 3.197 (2) Rb2—O4xi 3.4960 (16)
Rb1A—O3ii 3.197 (2) Rb2—O3xii 3.5327 (19)
Rb1A—O3iii 3.197 (2) Rb2—O3xiii 3.533 (2)
Rb1A—O3iv 3.197 (2) Rb2—O3xiv 3.5328 (19)
Rb1A—O3v 3.197 (2) Ga1—O2xv 1.9596 (14)
Rb1A—O3 3.197 (2) Ga1—O2iii 1.9597 (15)
Rb1A—O2ii 3.3698 (16) Ga1—O2xvi 1.9597 (15)
Rb1A—O2iii 3.3698 (16) Ga1—O4xvii 1.9690 (15)
Rb1A—O2v 3.3699 (16) Ga1—O4iv 1.9690 (15)
Rb1A—O2 3.3699 (16) Ga1—O4xviii 1.9690 (15)
Rb1A—O2i 3.3699 (15) Ga2—O1viii 1.9625 (15)
Rb1A—O2iv 3.3699 (15) Ga2—O1xiv 1.9625 (16)
Rb2—O3 2.9346 (17) Ga2—O1xix 1.9625 (15)
Rb2—O3iv 2.9347 (17) Ga2—O1iv 1.9626 (15)
Rb2—O3iii 2.9347 (17) Ga2—O1xviii 1.9626 (16)
Rb2—O1vi 3.3714 (16) Ga2—O1xvii 1.9626 (15)
Rb2—O1vii 3.3715 (16) As—O1xx 1.6576 (15)
Rb2—O1viii 3.3715 (17) As—O2 1.6724 (15)
Rb2—O4ix 3.4960 (16) As—O4ii 1.6805 (15)
Rb2—O4x 3.4960 (17) As—O3 1.7417 (17)
Symmetry codes: (i) [x-y, -y, -z+{\script{3\over 2}}]; (ii) [-x, -x+y, -z+{\script{3\over 2}}]; (iii) -x+y, -x, z; (iv) -y, x-y, z; (v) [y, x, -z+{\script{3\over 2}}]; (vi) [-x+{\script{2\over 3}}, -y-{\script{2\over 3}}, -z+{\script{4\over 3}}]; (vii) [x-y-{\script{4\over 3}}, x-{\script{2\over 3}}, -z+{\script{4\over 3}}]; (viii) [y+{\script{2\over 3}}, -x+y+{\script{4\over 3}}, -z+{\script{4\over 3}}]; (ix) [x-{\script{1\over 3}}, x-y-{\script{2\over 3}}, z-{\script{1\over 6}}]; (x) [-y-{\script{1\over 3}}, -x+{\script{1\over 3}}, z-{\script{1\over 6}}]; (xi) [-x+y+{\script{2\over 3}}, y+{\script{1\over 3}}, z-{\script{1\over 6}}]; (xii) [-x-{\script{1\over 3}}, -y-{\script{2\over 3}}, -z+{\script{4\over 3}}]; (xiii) [y+{\script{2\over 3}}, -x+y+{\script{1\over 3}}, -z+{\script{4\over 3}}]; (xiv) [x-y-{\script{1\over 3}}, x+{\script{1\over 3}}, -z+{\script{4\over 3}}]; (xv) -y, x-y+1, z; (xvi) x+1, y+1, z; (xvii) x, y+1, z; (xviii) -x+y+1, -x+1, z; (xix) [-x+{\script{2\over 3}}, -y+{\script{1\over 3}}, -z+{\script{4\over 3}}]; (xx) x-1, y, z.

Table 5
Selected bond lengths (Å) for RbGa2As(HAsO4)6

Rb1A—O3i 3.4212 (16) Ga1—O4vii 1.9623 (11)
Rb1A—O3ii 3.4212 (16) Ga1—O2viii 1.9625 (11)
Rb1A—O3iii 3.4212 (15) Ga1—O2iii 1.9625 (11)
Rb1A—O3iv 3.4212 (16) Ga1—O2ix 1.9625 (11)
Rb1A—O3v 3.4212 (15) As1—O1x 1.8067 (11)
Rb1A—O3 3.4213 (16) As1—O1xi 1.8068 (11)
Rb1A—O2ii 3.4438 (12) As1—O1xii 1.8068 (11)
Rb1A—O2iii 3.4438 (12) As1—O1v 1.8068 (11)
Rb1A—O2 3.4438 (12) As1—O1vii 1.8068 (11)
Rb1A—O2iv 3.4438 (12) As1—O1vi 1.8068 (11)
Rb1A—O2i 3.4438 (12) As2—O2 1.6658 (11)
Rb1A—O2v 3.4438 (12) As2—O4ii 1.6670 (11)
Ga1—O4vi 1.9623 (12) As2—O1xiii 1.7100 (11)
Ga1—O4v 1.9623 (11) As2—O3 1.7122 (13)
Symmetry codes: (i) [x-y, -y, -z+{\script{3\over 2}}]; (ii) [-x, -x+y, -z+{\script{3\over 2}}]; (iii) -x+y, -x, z; (iv) [y, x, -z+{\script{3\over 2}}]; (v) -y, x-y, z; (vi) x, y+1, z; (vii) -x+y+1, -x+1, z; (viii) -y, x-y+1, z; (ix) x+1, y+1, z; (x) [x-y-{\script{1\over 3}}, x+{\script{1\over 3}}, -z+{\script{4\over 3}}]; (xi) [y+{\script{2\over 3}}, -x+y+{\script{4\over 3}}, -z+{\script{4\over 3}}]; (xii) [-x+{\script{2\over 3}}, -y+{\script{1\over 3}}, -z+{\script{4\over 3}}]; (xiii) x-1, y, z.

3. Synthesis and crystallization

The compounds were grown by hydro­thermal synthesis at 493 K (7 d, autogeneous pressure, slow furnace cooling) using Teflon-lined stainless steel autoclaves with an approximate filling volume of 2 ml. Reagent-grade Rb2CO3, Ga2O3 and H3AsO4·0.5H2O were used as starting reagents in approximate volume ratios of Rb:Ga:As of 1:1:3 for both synthesis batches. For RbGa(HAsO4)2 the vessels were filled with distilled water to about 70% of their inner volumes, which led to initial and final pH values of 1.5. The reaction product was washed thoroughly with distilled water, filtered and dried at room temperature. RbGa(HAsO4)2 formed colourless pseudohexa­gonal platelets (Fig. 3[link]) and is stable in air.

For RbGa2As(HAsO4)6, which contains As in both tetra­hedral and octa­hedral coordination, no additional water was added and arsenic acid was present in excess to promote the growth of crystals from a melt or even vapour of arsenic acid under extremely acidic conditions. RbGa2As(HAsO4)6 formed large colourless pseudo-octa­hedral crystals accompanied by small colourless twinned crystals of RbH3As4O12 (Schwendtner & Kolitsch, 2007[Schwendtner, K. & Kolitsch, U. (2007). Acta Cryst. B63, 205-215.]). The crystals of RbGa2As(HAsO4)6 were extracted mechanically and not further washed; they are hygroscopic and decompose slowly over a period of several years to an amorphous gel and a new, strongly protonated diarsenate containing Rb and Ga (P321, publication in preparation). This slow partial alteration is illustrated in an X-ray powder diffraction pattern (Fig. 5[link]).

[Figure 5]
Figure 5
Graph of the Rietveld refinement (TOPAS; Bruker, 2009[Bruker (2009). TOPAS. Bruker AXS, Karlsruhe, Germany.]) of RbGa2As(HAsO4)6, showing the partial alteration of the pseudo-octa­hedral crystals after an 11-year storage in air. The crystals were hygroscopic and had partly transformed to an amorphous mass. The presence of the relics of the unaltered primary crystals are still visible (pink curve), but a newly crystallized overgrowth of extremely fine fibrous crystals could be attributed to a new strongly protonated Rb–Ga diarsenate with space group P321 (dark-red curve), which will be the subject of a future publication.

A measured X-ray powder diffraction diagram of RbGa(HAsO4)2 was deposited at the Inter­national Centre for Diffraction Data under PDF number 00-057-0239 (Wohl­schlaeger et al., 2006[Wohlschlaeger, A., Lengauer, C. & Tillmanns, E. (2006). ICDD Grant-in-Aid. University of Vienna, Austria.]).

4. Experimental and refinement

Crystal data, data collection and structure refinement are given in Table 3[link]. For the refinement of RbGa(HAsO4)2, the coordinates of RbFe(HPO4)2 (Lii & Wu, 1994[Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577-1580.]) were used for the final refinement steps. H atoms were then located from difference Fourier maps and added to the model. For the refinement of RbGa2As(HAsO4)6, the model for RbAl2As(HAsO4)6 (Schwendtner & Kolitsch, 2018b[Schwendtner, K. & Kolitsch, U. (2018b). Acta Cryst. C74, 721-727.]) was used as a starting point. In both compounds, O—H bonds were restrained to 0.9±0.04 Å. During the last refinement steps, residual electron-density peaks of up to 3.83 and 1.16 e Å−3 were located 0.63 and 0.68 Å from the Rb sites in RbGa2As(HAsO4)6 and RbGa(HAsO4)2, respectively, suggesting irregular displacement parameters and split positions, similar to what was found for RbFe(HPO4)2-type RbAl(HPO4)2 (Lesage et al., 2007[Lesage, J., Adam, L., Guesdon, A. & Raveau, B. (2007). J. Solid State Chem. 180, 1799-1808.]). Therefore, a further position, Rb1B, was included in both refinements, which refined to low occupancies and led to considerable decreases in the R factors and weight parameters for both compounds. The bulk occupancies of Rb1A + Rb1B were constrained to give a total occupancy of 1.00. The final residual electron densities in both compounds are < 1 e Å−3.

Supporting information


Computing details top

For both structures, data collection: COLLECT (Nonius, 2003); cell refinement: SCALEPACK (Otwinowski et al., 2003); data reduction: DENZO and SCALEPACK (Otwinowski et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2005). Software used to prepare material for publication: publCIF (Westrip, 2010) for RbGa2AsHAsO46.

Rubidium digallium arsenic(V) hexakis[hydrogen arsenate(V)] (RbGa2AsHAsO46) top
Crystal data top
RbGa2As(HAsO4)6Dx = 3.586 Mg m3
Mr = 1139.40Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3c:HCell parameters from 2570 reflections
a = 8.491 (1) Åθ = 2.0–32.6°
c = 50.697 (11) ŵ = 15.85 mm1
V = 3165.4 (10) Å3T = 293 K
Z = 6Large pseudo-octahedra, colourless
F(000) = 31680.13 × 0.12 × 0.12 mm
Data collection top
Nonius KappaCCD single-crystal four-circle
diffractometer
1196 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
φ and ω scansθmax = 32.5°, θmin = 2.4°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski et al., 2003)
h = 1212
Tmin = 0.232, Tmax = 0.252k = 1010
4684 measured reflectionsl = 7576
1287 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.014All H-atom parameters refined
wR(F2) = 0.034 w = 1/[σ2(Fo2) + (0.0136P)2 + 10.4877P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.008
1287 reflectionsΔρmax = 0.75 e Å3
65 parametersΔρmin = 0.83 e Å3
2 restraintsExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.000271 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rb1A0.0000000.0000000.7500000.055 (3)0.669 (3)
Rb1B0.0000000.048 (2)0.7500000.0359 (11)0.1103 (9)
Ga10.3333330.6666670.75604 (2)0.00736 (6)
As10.3333330.6666670.6666670.00627 (7)
As20.44400 (2)0.40772 (2)0.71144 (2)0.00735 (5)
O10.40249 (16)0.46597 (15)0.68629 (2)0.01016 (19)
O20.45254 (15)0.27043 (15)0.73416 (2)0.01025 (19)
O30.22887 (17)0.28592 (18)0.69874 (3)0.0194 (3)
O40.48817 (15)0.12495 (15)0.77869 (2)0.0108 (2)
H0.176 (4)0.337 (4)0.7027 (6)0.046 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb1A0.050 (4)0.050 (4)0.066 (2)0.0251 (18)0.0000.000
Rb1B0.024 (4)0.034 (4)0.046 (4)0.012 (2)0.0044 (14)0.0022 (7)
Ga10.00807 (8)0.00807 (8)0.00596 (12)0.00403 (4)0.0000.000
As10.00747 (10)0.00747 (10)0.00389 (14)0.00373 (5)0.0000.000
As20.00844 (7)0.00803 (7)0.00670 (7)0.00495 (5)0.00010 (5)0.00053 (5)
O10.0138 (5)0.0110 (5)0.0078 (4)0.0077 (4)0.0031 (4)0.0000 (4)
O20.0109 (5)0.0099 (5)0.0098 (5)0.0051 (4)0.0005 (4)0.0022 (4)
O30.0121 (5)0.0203 (6)0.0264 (7)0.0084 (5)0.0076 (5)0.0075 (5)
O40.0124 (5)0.0095 (5)0.0125 (5)0.0070 (4)0.0030 (4)0.0042 (4)
Geometric parameters (Å, º) top
Rb1A—Rb1Bi0.41 (2)Rb1B—O23.4234 (12)
Rb1A—Rb1Bii0.41 (2)Rb1B—O2iv3.4234 (12)
Rb1A—O3iii3.4212 (16)Rb1B—O3iii3.694 (14)
Rb1A—O3iv3.4212 (16)Rb1B—O3ii3.694 (14)
Rb1A—O3ii3.4212 (15)Rb1B—O2ii3.810 (18)
Rb1A—O3v3.4212 (16)Rb1B—O2iii3.810 (18)
Rb1A—O3i3.4212 (15)Rb1B—O4vi3.819 (18)
Rb1A—O33.4213 (16)Rb1B—O4vii3.819 (18)
Rb1A—O2iv3.4438 (12)Rb1B—As2v3.934 (8)
Rb1A—O2ii3.4438 (12)Rb1B—As2i3.934 (8)
Rb1A—O23.4438 (12)Ga1—O4viii1.9623 (12)
Rb1A—O2v3.4438 (12)Ga1—O4i1.9623 (11)
Rb1A—O2iii3.4438 (12)Ga1—O4ix1.9623 (11)
Rb1A—O2i3.4438 (12)Ga1—O2x1.9625 (11)
Rb1A—As2iv4.1192 (5)Ga1—O2ii1.9625 (11)
Rb1A—As2iii4.1192 (5)Ga1—O2xi1.9625 (11)
Rb1A—As2v4.1192 (5)As1—O1xii1.8067 (11)
Rb1A—As2ii4.1192 (4)As1—O1xiii1.8068 (11)
Rb1B—Rb1Bi0.70 (3)As1—O1xiv1.8068 (11)
Rb1B—Rb1Bii0.70 (3)As1—O1i1.8068 (11)
Rb1B—O2v3.136 (14)As1—O1ix1.8068 (11)
Rb1B—O2i3.136 (14)As1—O1viii1.8068 (11)
Rb1B—O3iv3.269 (6)As2—O21.6658 (11)
Rb1B—O33.269 (6)As2—O4iv1.6670 (11)
Rb1B—O3v3.358 (2)As2—O1xv1.7100 (11)
Rb1B—O3i3.358 (2)As2—O31.7122 (13)
Rb1Bi—Rb1A—Rb1Bii120.00 (7)Rb1Bii—Rb1B—O4vii153.31 (7)
Rb1Bi—Rb1A—O3iii64.81 (2)O2v—Rb1B—O4vii53.4 (3)
Rb1Bii—Rb1A—O3iii77.69 (5)O2i—Rb1B—O4vii45.1 (2)
Rb1Bi—Rb1A—O3iv77.69 (2)O3iv—Rb1B—O4vii44.49 (19)
Rb1Bii—Rb1A—O3iv129.70 (3)O3—Rb1B—O4vii98.0 (5)
O3iii—Rb1A—O3iv68.57 (4)O3v—Rb1B—O4vii76.7 (3)
Rb1Bi—Rb1A—O3ii77.69 (2)O3i—Rb1B—O4vii93.3 (3)
Rb1Bii—Rb1A—O3ii64.81 (5)O2—Rb1B—O4vii109.4 (4)
O3iii—Rb1A—O3ii100.59 (5)O2iv—Rb1B—O4vii71.6 (2)
O3iv—Rb1A—O3ii155.38 (5)O3iii—Rb1B—O4vii109.34 (9)
Rb1Bi—Rb1A—O3v129.70 (2)O3ii—Rb1B—O4vii157.2 (3)
Rb1Bii—Rb1A—O3v64.81 (5)O2ii—Rb1B—O4vii144.11 (3)
O3iii—Rb1A—O3v68.57 (4)O2iii—Rb1B—O4vii144.95 (3)
O3iv—Rb1A—O3v68.57 (4)O4vi—Rb1B—O4vii53.5 (3)
O3ii—Rb1A—O3v129.62 (5)Rb1Bi—Rb1B—As2v137.8 (2)
Rb1Bi—Rb1A—O3i64.81 (2)Rb1Bii—Rb1B—As2v88.8 (3)
Rb1Bii—Rb1A—O3i129.70 (3)O2v—Rb1B—As2v24.03 (3)
O3iii—Rb1A—O3i129.62 (5)O2i—Rb1B—As2v107.9 (5)
O3iv—Rb1A—O3i100.59 (5)O3iv—Rb1B—As2v82.2 (2)
O3ii—Rb1A—O3i68.57 (4)O3—Rb1B—As2v82.5 (2)
O3v—Rb1A—O3i155.38 (4)O3v—Rb1B—As2v25.63 (7)
Rb1Bi—Rb1A—O3129.70 (2)O3i—Rb1B—As2v145.3 (5)
Rb1Bii—Rb1A—O377.69 (5)O2—Rb1B—As2v51.65 (8)
O3iii—Rb1A—O3155.38 (4)O2iv—Rb1B—As2v128.9 (3)
O3iv—Rb1A—O3129.62 (5)O3iii—Rb1B—As2v91.62 (8)
O3ii—Rb1A—O368.57 (4)O3ii—Rb1B—As2v123.66 (15)
O3v—Rb1A—O3100.59 (5)O2ii—Rb1B—As2v138.7 (4)
O3i—Rb1A—O368.57 (4)O2iii—Rb1B—As2v90.34 (14)
Rb1Bi—Rb1A—O2iv38.519 (18)O4vi—Rb1B—As2v68.6 (3)
Rb1Bii—Rb1A—O2iv153.03 (7)O4vii—Rb1B—As2v67.9 (3)
O3iii—Rb1A—O2iv76.93 (3)Rb1Bi—Rb1B—As2i88.8 (2)
O3iv—Rb1A—O2iv45.66 (3)Rb1Bii—Rb1B—As2i137.8 (2)
O3ii—Rb1A—O2iv111.42 (3)O2v—Rb1B—As2i107.9 (5)
O3v—Rb1A—O2iv113.17 (3)O2i—Rb1B—As2i24.03 (3)
O3i—Rb1A—O2iv63.90 (3)O3iv—Rb1B—As2i82.5 (2)
O3—Rb1A—O2iv127.31 (3)O3—Rb1B—As2i82.2 (2)
Rb1Bi—Rb1A—O2ii38.519 (18)O3v—Rb1B—As2i145.3 (5)
Rb1Bii—Rb1A—O2ii83.75 (7)O3i—Rb1B—As2i25.63 (7)
O3iii—Rb1A—O2ii63.90 (3)O2—Rb1B—As2i128.9 (3)
O3iv—Rb1A—O2ii111.42 (3)O2iv—Rb1B—As2i51.65 (8)
O3ii—Rb1A—O2ii45.66 (3)O3iii—Rb1B—As2i123.66 (15)
O3v—Rb1A—O2ii127.31 (3)O3ii—Rb1B—As2i91.62 (8)
O3i—Rb1A—O2ii76.93 (3)O2ii—Rb1B—As2i90.34 (14)
O3—Rb1A—O2ii113.17 (3)O2iii—Rb1B—As2i138.7 (4)
O2iv—Rb1A—O2ii77.04 (4)O4vi—Rb1B—As2i67.9 (3)
Rb1Bi—Rb1A—O2153.035 (19)O4vii—Rb1B—As2i68.6 (3)
Rb1Bii—Rb1A—O238.52 (7)As2v—Rb1B—As2i131.0 (5)
O3iii—Rb1A—O2111.42 (3)O4viii—Ga1—O4i89.24 (5)
O3iv—Rb1A—O2127.31 (3)O4viii—Ga1—O4ix89.24 (5)
O3ii—Rb1A—O276.93 (3)O4i—Ga1—O4ix89.24 (5)
O3v—Rb1A—O263.90 (3)O4viii—Ga1—O2x91.13 (5)
O3i—Rb1A—O2113.17 (3)O4i—Ga1—O2x88.49 (5)
O3—Rb1A—O245.67 (3)O4ix—Ga1—O2x177.69 (5)
O2iv—Rb1A—O2167.50 (4)O4viii—Ga1—O2ii177.69 (5)
O2ii—Rb1A—O2114.733 (13)O4i—Ga1—O2ii91.13 (5)
Rb1Bi—Rb1A—O2v153.03 (2)O4ix—Ga1—O2ii88.48 (5)
Rb1Bii—Rb1A—O2v83.75 (8)O2x—Ga1—O2ii91.17 (5)
O3iii—Rb1A—O2v113.17 (3)O4viii—Ga1—O2xi88.48 (5)
O3iv—Rb1A—O2v76.93 (3)O4i—Ga1—O2xi177.69 (5)
O3ii—Rb1A—O2v127.31 (3)O4ix—Ga1—O2xi91.12 (5)
O3v—Rb1A—O2v45.66 (3)O2x—Ga1—O2xi91.16 (5)
O3i—Rb1A—O2v111.42 (3)O2ii—Ga1—O2xi91.16 (5)
O3—Rb1A—O2v63.91 (3)O4viii—Ga1—Rb1Bviii82.77 (12)
O2iv—Rb1A—O2v114.733 (13)O4i—Ga1—Rb1Bviii55.65 (8)
O2ii—Rb1A—O2v167.50 (4)O4ix—Ga1—Rb1Bviii143.89 (7)
O2—Rb1A—O2v53.93 (4)O2x—Ga1—Rb1Bviii33.99 (5)
Rb1Bi—Rb1A—O2iii83.749 (19)O2ii—Ga1—Rb1Bviii99.31 (13)
Rb1Bii—Rb1A—O2iii38.52 (7)O2xi—Ga1—Rb1Bviii123.61 (10)
O3iii—Rb1A—O2iii45.66 (3)O4viii—Ga1—Rb1Bi143.89 (6)
O3iv—Rb1A—O2iii113.17 (3)O4i—Ga1—Rb1Bi82.77 (12)
O3ii—Rb1A—O2iii63.90 (3)O4ix—Ga1—Rb1Bi55.65 (8)
O3v—Rb1A—O2iii76.93 (3)O2x—Ga1—Rb1Bi123.61 (9)
O3i—Rb1A—O2iii127.31 (3)O2ii—Ga1—Rb1Bi33.99 (5)
O3—Rb1A—O2iii111.42 (3)O2xi—Ga1—Rb1Bi99.31 (12)
O2iv—Rb1A—O2iii114.732 (14)Rb1Bviii—Ga1—Rb1Bi119.554 (12)
O2ii—Rb1A—O2iii53.93 (4)O4viii—Ga1—Rb1Bix55.65 (10)
O2—Rb1A—O2iii77.04 (4)O4i—Ga1—Rb1Bix143.89 (7)
O2v—Rb1A—O2iii114.731 (14)O4ix—Ga1—Rb1Bix82.77 (13)
Rb1Bi—Rb1A—O2i83.749 (19)O2x—Ga1—Rb1Bix99.31 (14)
Rb1Bii—Rb1A—O2i153.03 (7)O2ii—Ga1—Rb1Bix123.61 (9)
O3iii—Rb1A—O2i127.31 (3)O2xi—Ga1—Rb1Bix33.99 (6)
O3iv—Rb1A—O2i63.90 (3)Rb1Bviii—Ga1—Rb1Bix119.554 (7)
O3ii—Rb1A—O2i113.17 (3)Rb1Bi—Ga1—Rb1Bix119.554 (2)
O3v—Rb1A—O2i111.42 (3)O4viii—Ga1—Rb1Aviii80.57 (3)
O3i—Rb1A—O2i45.66 (3)O4i—Ga1—Rb1Aviii57.14 (3)
O3—Rb1A—O2i76.93 (3)O4ix—Ga1—Rb1Aviii144.67 (3)
O2iv—Rb1A—O2i53.93 (4)O2x—Ga1—Rb1Aviii33.28 (3)
O2ii—Rb1A—O2i114.732 (13)O2ii—Ga1—Rb1Aviii101.54 (3)
O2—Rb1A—O2i114.732 (13)O2xi—Ga1—Rb1Aviii122.02 (3)
O2v—Rb1A—O2i77.04 (4)Rb1Bviii—Ga1—Rb1Aviii2.56 (14)
O2iii—Rb1A—O2i167.50 (4)Rb1Bi—Ga1—Rb1Aviii122.12 (13)
Rb1Bi—Rb1A—As2iv60.329 (4)Rb1Bix—Ga1—Rb1Aviii117.05 (14)
Rb1Bii—Rb1A—As2iv151.382 (12)O4viii—Ga1—Rb1A144.67 (3)
O3iii—Rb1A—As2iv77.70 (2)O4i—Ga1—Rb1A80.57 (3)
O3iv—Rb1A—As2iv24.04 (2)O4ix—Ga1—Rb1A57.14 (3)
O3ii—Rb1A—As2iv134.60 (2)O2x—Ga1—Rb1A122.02 (3)
O3v—Rb1A—As2iv92.58 (3)O2ii—Ga1—Rb1A33.28 (3)
O3i—Rb1A—As2iv77.98 (3)O2xi—Ga1—Rb1A101.53 (3)
O3—Rb1A—As2iv125.97 (2)Rb1Bviii—Ga1—Rb1A117.05 (14)
O2iv—Rb1A—As2iv23.324 (18)Rb1Bi—Ga1—Rb1A2.56 (13)
O2ii—Rb1A—As2iv98.261 (18)Rb1Bix—Ga1—Rb1A122.12 (13)
O2—Rb1A—As2iv146.607 (19)Rb1Aviii—Ga1—Rb1A119.614 (1)
O2v—Rb1A—As2iv92.721 (19)O4viii—Ga1—Rb1Axi57.14 (3)
O2iii—Rb1A—As2iv122.596 (19)O4i—Ga1—Rb1Axi144.67 (4)
O2i—Rb1A—As2iv49.72 (2)O4ix—Ga1—Rb1Axi80.57 (3)
Rb1Bi—Rb1A—As2iii67.492 (4)O2x—Ga1—Rb1Axi101.53 (3)
Rb1Bii—Rb1A—As2iii60.33 (6)O2ii—Ga1—Rb1Axi122.02 (3)
O3iii—Rb1A—As2iii24.04 (2)O2xi—Ga1—Rb1Axi33.28 (3)
O3iv—Rb1A—As2iii92.58 (3)Rb1Bviii—Ga1—Rb1Axi122.12 (14)
O3ii—Rb1A—As2iii77.98 (3)Rb1Bi—Ga1—Rb1Axi117.05 (13)
O3v—Rb1A—As2iii77.70 (2)Rb1Bix—Ga1—Rb1Axi2.56 (14)
O3i—Rb1A—As2iii125.97 (2)Rb1Aviii—Ga1—Rb1Axi119.614 (1)
O3—Rb1A—As2iii134.60 (2)Rb1A—Ga1—Rb1Axi119.614 (1)
O2iv—Rb1A—As2iii92.720 (19)O1xii—As1—O1xiii92.59 (5)
O2ii—Rb1A—As2iii49.72 (2)O1xii—As1—O1xiv92.59 (5)
O2—Rb1A—As2iii98.261 (18)O1xiii—As1—O1xiv92.59 (5)
O2v—Rb1A—As2iii122.595 (19)O1xii—As1—O1i87.41 (5)
O2iii—Rb1A—As2iii23.323 (18)O1xiii—As1—O1i180.00 (9)
O2i—Rb1A—As2iii146.608 (19)O1xiv—As1—O1i87.41 (5)
As2iv—Rb1A—As2iii99.334 (9)O1xii—As1—O1ix180.0
Rb1Bi—Rb1A—As2v151.382 (7)O1xiii—As1—O1ix87.41 (5)
Rb1Bii—Rb1A—As2v67.49 (6)O1xiv—As1—O1ix87.41 (5)
O3iii—Rb1A—As2v92.58 (3)O1i—As1—O1ix92.58 (5)
O3iv—Rb1A—As2v77.70 (2)O1xii—As1—O1viii87.42 (5)
O3ii—Rb1A—As2v125.97 (2)O1xiii—As1—O1viii87.42 (5)
O3v—Rb1A—As2v24.04 (2)O1xiv—As1—O1viii180.00 (6)
O3i—Rb1A—As2v134.60 (2)O1i—As1—O1viii92.58 (5)
O3—Rb1A—As2v77.98 (3)O1ix—As1—O1viii92.58 (5)
O2iv—Rb1A—As2v122.596 (19)O2—As2—O4iv117.31 (6)
O2ii—Rb1A—As2v146.608 (19)O2—As2—O1xv115.10 (6)
O2—Rb1A—As2v49.72 (2)O4iv—As2—O1xv100.43 (5)
O2v—Rb1A—As2v23.323 (17)O2—As2—O3104.11 (6)
O2iii—Rb1A—As2v92.72 (2)O4iv—As2—O3111.03 (6)
O2i—Rb1A—As2v98.261 (19)O1xv—As2—O3108.86 (6)
As2iv—Rb1A—As2v99.334 (9)O2—As2—Rb1Bii50.1 (3)
As2iii—Rb1A—As2v99.334 (9)O4iv—As2—Rb1Bii114.68 (16)
Rb1Bi—Rb1A—As2ii60.329 (3)O1xv—As2—Rb1Bii144.86 (16)
Rb1Bii—Rb1A—As2ii67.49 (6)O3—As2—Rb1Bii58.0 (2)
O3iii—Rb1A—As2ii77.98 (3)O2—As2—Rb1B58.6 (2)
O3iv—Rb1A—As2ii134.60 (2)O4iv—As2—Rb1B106.7 (3)
O3ii—Rb1A—As2ii24.04 (2)O1xv—As2—Rb1B151.7 (2)
O3v—Rb1A—As2ii125.97 (2)O3—As2—Rb1B53.57 (7)
O3i—Rb1A—As2ii77.70 (2)Rb1Bii—As2—Rb1B10.2 (5)
O3—Rb1A—As2ii92.58 (2)O2—As2—Rb1A54.94 (4)
O2iv—Rb1A—As2ii98.261 (18)O4iv—As2—Rb1A111.68 (4)
O2ii—Rb1A—As2ii23.324 (18)O1xv—As2—Rb1A147.34 (4)
O2—Rb1A—As2ii92.721 (19)O3—As2—Rb1A54.48 (5)
O2v—Rb1A—As2ii146.607 (19)Rb1Bii—As2—Rb1A5.1 (3)
O2iii—Rb1A—As2ii49.72 (2)Rb1B—As2—Rb1A5.4 (3)
O2i—Rb1A—As2ii122.596 (19)O2—As2—Rb1Bi56.09 (6)
As2iv—Rb1A—As2ii120.658 (6)O4iv—As2—Rb1Bi113.41 (9)
As2iii—Rb1A—As2ii57.236 (12)O1xv—As2—Rb1Bi145.26 (10)
As2v—Rb1A—As2ii134.983 (5)O3—As2—Rb1Bi52.42 (10)
Rb1Bi—Rb1B—Rb1Bii60.00 (2)Rb1Bii—As2—Rb1Bi6.1 (3)
Rb1Bi—Rb1B—O2v161.6 (2)Rb1B—As2—Rb1Bi6.7 (3)
Rb1Bii—Rb1B—O2v108.4 (3)Rb1A—As2—Rb1Bi2.49 (11)
Rb1Bi—Rb1B—O2i108.4 (2)O2—As2—Rb1Bxvi93.36 (7)
Rb1Bii—Rb1B—O2i161.60 (17)O4iv—As2—Rb1Bxvi42.23 (4)
O2v—Rb1B—O2i86.3 (5)O1xv—As2—Rb1Bxvi80.78 (10)
Rb1Bi—Rb1B—O3iv91.2 (3)O3—As2—Rb1Bxvi153.23 (5)
Rb1Bii—Rb1B—O3iv122.4 (3)Rb1Bii—As2—Rb1Bxvi126.58 (16)
O2v—Rb1B—O3iv83.6 (3)Rb1B—As2—Rb1Bxvi125.4 (2)
O2i—Rb1B—O3iv69.1 (3)Rb1A—As2—Rb1Bxvi127.56 (9)
Rb1Bi—Rb1B—O3122.4 (3)Rb1Bi—As2—Rb1Bxvi130.05 (2)
Rb1Bii—Rb1B—O391.2 (3)O2—As2—Rb1Axvii94.58 (4)
O2v—Rb1B—O369.1 (3)O4iv—As2—Rb1Axvii42.53 (4)
O2i—Rb1B—O383.6 (3)O1xv—As2—Rb1Axvii79.08 (4)
O3iv—Rb1B—O3142.5 (7)O3—As2—Rb1Axvii153.36 (5)
Rb1Bi—Rb1B—O3v113.4 (3)Rb1Bii—As2—Rb1Axvii128.36 (6)
Rb1Bii—Rb1B—O3v76.7 (3)Rb1B—As2—Rb1Axvii127.17 (12)
O2v—Rb1B—O3v48.28 (11)Rb1A—As2—Rb1Axvii129.347 (10)
O2i—Rb1B—O3v121.7 (5)Rb1Bi—As2—Rb1Axvii131.84 (12)
O3iv—Rb1B—O3v71.12 (11)Rb1Bxvi—As2—Rb1Axvii1.79 (10)
O3—Rb1B—O3v105.18 (19)O2—As2—Rb1Bxviii92.74 (11)
Rb1Bi—Rb1B—O3i76.7 (3)O4iv—As2—Rb1Bxviii46.4 (2)
Rb1Bii—Rb1B—O3i113.4 (3)O1xv—As2—Rb1Bxviii76.75 (13)
O2v—Rb1B—O3i121.7 (5)O3—As2—Rb1Bxviii157.05 (19)
O2i—Rb1B—O3i48.28 (11)Rb1Bii—As2—Rb1Bxviii129.10 (5)
O3iv—Rb1B—O3i105.18 (19)Rb1B—As2—Rb1Bxviii128.75 (3)
O3—Rb1B—O3i71.12 (11)Rb1A—As2—Rb1Bxviii130.52 (5)
O3v—Rb1B—O3i169.0 (7)Rb1Bi—As2—Rb1Bxviii132.99 (17)
Rb1Bi—Rb1B—O2118.6 (3)Rb1Bxvi—As2—Rb1Bxviii4.8 (2)
Rb1Bii—Rb1B—O260.4 (4)Rb1Axvii—As2—Rb1Bxviii3.88 (18)
O2v—Rb1B—O256.66 (12)O2—As2—Rb1Bxvii97.48 (15)
O2i—Rb1B—O2124.3 (5)O4iv—As2—Rb1Bxvii39.02 (18)
O3iv—Rb1B—O2133.6 (2)O1xv—As2—Rb1Bxvii79.91 (7)
O3—Rb1B—O246.84 (5)O3—As2—Rb1Bxvii149.72 (18)
O3v—Rb1B—O264.78 (4)Rb1Bii—As2—Rb1Bxvii129.012 (18)
O3i—Rb1B—O2115.33 (5)Rb1B—As2—Rb1Bxvii127.02 (15)
Rb1Bi—Rb1B—O2iv60.4 (3)Rb1A—As2—Rb1Bxvii129.587 (13)
Rb1Bii—Rb1B—O2iv118.6 (3)Rb1Bi—As2—Rb1Bxvii132.07 (12)
O2v—Rb1B—O2iv124.3 (5)Rb1Bxvi—As2—Rb1Bxvii4.2 (2)
O2i—Rb1B—O2iv56.66 (12)Rb1Axvii—As2—Rb1Bxvii3.66 (17)
O3iv—Rb1B—O2iv46.84 (5)Rb1Bxviii—As2—Rb1Bxvii7.4 (3)
O3—Rb1B—O2iv133.6 (2)As2xix—O1—As1xx131.96 (6)
O3v—Rb1B—O2iv115.33 (5)As2xix—O1—Rb1Bvii79.11 (18)
O3i—Rb1B—O2iv64.78 (4)As1xx—O1—Rb1Bvii129.23 (10)
O2—Rb1B—O2iv179.0 (7)As2—O2—Ga1xvii123.99 (6)
Rb1Bi—Rb1B—O3iii48.36 (16)As2—O2—Rb1Bii105.9 (2)
Rb1Bii—Rb1B—O3iii56.58 (15)Ga1xvii—O2—Rb1Bii125.54 (18)
O2v—Rb1B—O3iii113.81 (3)As2—O2—Rb1B96.8 (3)
O2i—Rb1B—O3iii128.32 (3)Ga1xvii—O2—Rb1B130.47 (10)
O3iv—Rb1B—O3iii66.90 (12)Rb1Bii—O2—Rb1B11.2 (6)
O3—Rb1B—O3iii147.5 (4)As2—O2—Rb1A101.74 (4)
O3v—Rb1B—O3iii66.07 (15)Ga1xvii—O2—Rb1A128.51 (4)
O3i—Rb1B—O3iii122.7 (4)Rb1Bii—O2—Rb1A4.6 (2)
O2—Rb1B—O3iii105.6 (3)Rb1B—O2—Rb1A6.8 (3)
O2iv—Rb1B—O3iii73.63 (18)As2—O2—Rb1Bi102.64 (6)
Rb1Bi—Rb1B—O3ii56.58 (18)Ga1xvii—O2—Rb1Bi128.80 (4)
Rb1Bii—Rb1B—O3ii48.36 (15)Rb1Bii—O2—Rb1Bi3.34 (18)
O2v—Rb1B—O3ii128.32 (3)Rb1B—O2—Rb1Bi9.3 (4)
O2i—Rb1B—O3ii113.81 (3)Rb1A—O2—Rb1Bi2.77 (12)
O3iv—Rb1B—O3ii147.5 (4)As2—O3—Rb1B101.51 (6)
O3—Rb1B—O3ii66.90 (12)As2—O3—Rb1Bii96.3 (3)
O3v—Rb1B—O3ii122.7 (4)Rb1B—O3—Rb1Bii12.1 (6)
O3i—Rb1B—O3ii66.07 (15)As2—O3—Rb1A101.48 (6)
O2—Rb1B—O3ii73.63 (18)Rb1B—O3—Rb1A6.5 (3)
O2iv—Rb1B—O3ii105.6 (3)Rb1Bii—O3—Rb1A6.8 (3)
O3iii—Rb1B—O3ii90.9 (4)As2—O3—Rb1Bi106.0 (2)
Rb1Bi—Rb1B—O2ii15.05 (2)Rb1B—O3—Rb1Bi9.3 (5)
Rb1Bii—Rb1B—O2ii52.10 (7)Rb1Bii—O3—Rb1Bi10.1 (5)
O2v—Rb1B—O2ii160.5 (4)Rb1A—O3—Rb1Bi4.9 (2)
O2i—Rb1B—O2ii112.87 (12)As2iv—O4—Ga1xx126.28 (6)
O3iv—Rb1B—O2ii106.2 (3)As2iv—O4—Rb1Bxxi120.71 (10)
O3—Rb1B—O2ii107.8 (3)Ga1xx—O4—Rb1Bxxi99.25 (5)
O3v—Rb1B—O2ii118.1 (4)As2iv—O4—Rb1Axix121.85 (5)
O3i—Rb1B—O2ii72.8 (2)Ga1xx—O4—Rb1Axix99.67 (4)
O2—Rb1B—O2ii106.5 (4)Rb1Bxxi—O4—Rb1Axix2.51 (13)
O2iv—Rb1B—O2ii72.5 (2)As2iv—O4—Rb1Bxix126.9 (3)
O3iii—Rb1B—O2ii57.9 (3)Ga1xx—O4—Rb1Bxix96.29 (16)
O3ii—Rb1B—O2ii41.55 (19)Rb1Bxxi—O4—Rb1Bxix7.1 (3)
Rb1Bi—Rb1B—O2iii52.10 (12)Rb1Axix—O4—Rb1Bxix5.2 (2)
Rb1Bii—Rb1B—O2iii15.05 (5)As2iv—O4—Rb1Bxxii117.91 (18)
O2v—Rb1B—O2iii112.87 (12)Ga1xx—O4—Rb1Bxxii103.25 (18)
O2i—Rb1B—O2iii160.5 (4)Rb1Bxxi—O4—Rb1Bxxii4.1 (2)
O3iv—Rb1B—O2iii107.8 (3)Rb1Axix—O4—Rb1Bxxii3.99 (18)
O3—Rb1B—O2iii106.2 (3)Rb1Bxix—O4—Rb1Bxxii9.0 (4)
O3v—Rb1B—O2iii72.8 (2)As2iv—O4—Rb1B53.63 (19)
O3i—Rb1B—O2iii118.1 (4)Ga1xx—O4—Rb1B72.96 (19)
O2—Rb1B—O2iii72.5 (2)Rb1Bxxi—O4—Rb1B134.20 (8)
O2iv—Rb1B—O2iii106.5 (4)Rb1Axix—O4—Rb1B136.70 (6)
O3iii—Rb1B—O2iii41.55 (19)Rb1Bxix—O4—Rb1B139.53 (16)
O3ii—Rb1B—O2iii57.9 (3)Rb1Bxxii—O4—Rb1B135.79 (4)
O2ii—Rb1B—O2iii48.4 (2)As2iv—O4—Rb1Bi47.20 (15)
Rb1Bi—Rb1B—O4vi153.31 (5)Ga1xx—O4—Rb1Bi80.09 (19)
Rb1Bii—Rb1B—O4vi130.76 (15)Rb1Bxxi—O4—Rb1Bi130.0 (3)
O2v—Rb1B—O4vi45.1 (2)Rb1Axix—O4—Rb1Bi132.53 (17)
O2i—Rb1B—O4vi53.4 (3)Rb1Bxix—O4—Rb1Bi136.12 (3)
O3iv—Rb1B—O4vi98.0 (5)Rb1Bxxii—O4—Rb1Bi131.0 (3)
O3—Rb1B—O4vi44.50 (19)Rb1B—O4—Rb1Bi8.2 (4)
O3v—Rb1B—O4vi93.3 (3)As2iv—O4—Rb1A50.21 (3)
O3i—Rb1B—O4vi76.7 (3)Ga1xx—O4—Rb1A76.56 (3)
O2—Rb1B—O4vi71.6 (2)Rb1Bxxi—O4—Rb1A133.03 (14)
O2iv—Rb1B—O4vi109.4 (4)Rb1Axix—O4—Rb1A135.53 (3)
O3iii—Rb1B—O4vi157.2 (3)Rb1Bxix—O4—Rb1A138.77 (15)
O3ii—Rb1B—O4vi109.34 (9)Rb1Bxxii—O4—Rb1A134.28 (7)
O2ii—Rb1B—O4vi144.95 (3)Rb1B—O4—Rb1A3.8 (2)
O2iii—Rb1B—O4vi144.11 (3)Rb1Bi—O4—Rb1A4.5 (2)
Rb1Bi—Rb1B—O4vii130.76 (11)
Symmetry codes: (i) y, xy, z; (ii) x+y, x, z; (iii) xy, y, z+3/2; (iv) x, x+y, z+3/2; (v) y, x, z+3/2; (vi) y, x1, z+3/2; (vii) y, xy1, z; (viii) x, y+1, z; (ix) x+y+1, x+1, z; (x) y, xy+1, z; (xi) x+1, y+1, z; (xii) xy1/3, x+1/3, z+4/3; (xiii) y+2/3, x+y+4/3, z+4/3; (xiv) x+2/3, y+1/3, z+4/3; (xv) x1, y, z; (xvi) y1, xy1, z; (xvii) x1, y1, z; (xviii) x+y1, x1, z; (xix) x+1, y, z; (xx) x, y1, z; (xxi) x+y+1, x, z; (xxii) y+1, xy, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H···O4vi0.80 (3)1.98 (3)2.7314 (17)158 (3)
Symmetry code: (vi) y, x1, z+3/2.
Rubidium gallium bis[hydrogen arsenate(V)] (RbGaHAsO42) top
Crystal data top
RbGa(HAsO4)2Dx = 3.964 Mg m3
Mr = 435.05Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3c:HCell parameters from 2663 reflections
a = 8.385 (1) Åθ = 2.3–30.0°
c = 53.880 (11) ŵ = 19.42 mm1
V = 3280.7 (10) Å3T = 293 K
Z = 18Hexagonal plate, colourless
F(000) = 36000.07 × 0.07 × 0.02 mm
Data collection top
Nonius KappaCCD single-crystal four-circle
diffractometer
1027 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
φ and ω scansθmax = 30.0°, θmin = 2.3°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski et al., 2003)
h = 1111
Tmin = 0.343, Tmax = 0.697k = 99
3896 measured reflectionsl = 7575
1079 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016All H-atom parameters refined
wR(F2) = 0.040 w = 1/[σ2(Fo2) + (0.0168P)2 + 20.8962P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.014
1079 reflectionsΔρmax = 0.79 e Å3
68 parametersΔρmin = 0.52 e Å3
2 restraintsExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.000092 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rb1A0.0000000.0000000.7500000.0297 (12)0.909 (3)
Rb1B0.0000000.050 (5)0.7500000.011 (3)0.0304 (9)
Rb20.0000000.0000000.66714 (2)0.02912 (12)
Ga10.3333330.6666670.75374 (2)0.00733 (9)
Ga20.3333330.6666670.6666670.00817 (11)
As0.43059 (3)0.39514 (3)0.71280 (2)0.00799 (7)
O10.4536 (2)0.4402 (2)0.68636 (3)0.0159 (3)
O20.4459 (2)0.2541 (2)0.73338 (3)0.0106 (3)
O30.1974 (2)0.2813 (2)0.70523 (3)0.0178 (3)
O40.4789 (2)0.1223 (2)0.77582 (3)0.0103 (3)
H0.161 (5)0.354 (5)0.7099 (6)0.035 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb1A0.0333 (16)0.0333 (16)0.0225 (9)0.0166 (8)0.0000.000
Rb1B0.023 (11)0.012 (7)0.004 (7)0.011 (5)0.002 (4)0.001 (2)
Rb20.03481 (17)0.03481 (17)0.0177 (2)0.01740 (9)0.0000.000
Ga10.00785 (12)0.00785 (12)0.00629 (16)0.00393 (6)0.0000.000
Ga20.00943 (15)0.00943 (15)0.0057 (2)0.00472 (8)0.0000.000
As0.00991 (11)0.00839 (10)0.00729 (10)0.00580 (8)0.00068 (7)0.00083 (7)
O10.0246 (8)0.0212 (8)0.0087 (6)0.0164 (7)0.0050 (6)0.0011 (6)
O20.0105 (7)0.0106 (6)0.0104 (6)0.0049 (5)0.0026 (5)0.0016 (5)
O30.0129 (7)0.0173 (8)0.0257 (9)0.0093 (7)0.0085 (6)0.0093 (6)
O40.0116 (6)0.0092 (6)0.0120 (6)0.0066 (6)0.0019 (5)0.0038 (5)
Geometric parameters (Å, º) top
Rb1A—Rb1Bi0.42 (4)Rb2—O3ii2.9347 (17)
Rb1A—Rb1Bii0.42 (4)Rb2—O1vi3.3714 (16)
Rb1A—O3iii3.197 (2)Rb2—O1vii3.3715 (16)
Rb1A—O3iv3.197 (2)Rb2—O1viii3.3715 (17)
Rb1A—O3ii3.197 (2)Rb2—O4ix3.4960 (16)
Rb1A—O3i3.197 (2)Rb2—O4x3.4960 (17)
Rb1A—O3v3.197 (2)Rb2—O4xi3.4960 (16)
Rb1A—O33.197 (2)Rb2—O3xii3.5327 (19)
Rb1A—O2iv3.3698 (16)Rb2—O3xiii3.533 (2)
Rb1A—O2ii3.3698 (16)Rb2—O3xiv3.5328 (19)
Rb1A—O2v3.3699 (16)Rb2—Asxiv3.7432 (5)
Rb1A—O23.3699 (16)Rb2—Asxii3.7432 (5)
Rb1A—O2iii3.3699 (15)Rb2—Asxiii3.7432 (5)
Rb1A—O2i3.3699 (15)Ga1—O2xv1.9596 (14)
Rb1A—Asiv4.0083 (5)Ga1—O2ii1.9597 (15)
Rb1B—Rb1Bi0.72 (7)Ga1—O2xvi1.9597 (15)
Rb1B—Rb1Bii0.72 (7)Ga1—O4xvii1.9690 (15)
Rb1B—O3iv3.019 (15)Ga1—O4i1.9690 (15)
Rb1B—O33.019 (15)Ga1—O4xviii1.9690 (15)
Rb1B—O2v3.05 (3)Ga2—O1viii1.9625 (15)
Rb1B—O2i3.05 (3)Ga2—O1xiv1.9625 (16)
Rb1B—O3i3.161 (2)Ga2—O1xix1.9625 (15)
Rb1B—O3v3.161 (2)Ga2—O1i1.9626 (15)
Rb1B—O2iv3.363 (2)Ga2—O1xviii1.9626 (16)
Rb1B—O23.363 (2)Ga2—O1xvii1.9626 (15)
Rb1B—O3iii3.47 (3)As—O1xx1.6576 (15)
Rb1B—O3ii3.47 (3)As—O21.6724 (15)
Rb2—O32.9346 (17)As—O4iv1.6805 (15)
Rb2—O3i2.9347 (17)As—O31.7417 (17)
Rb1Bi—Rb1A—Rb1Bii120.00 (15)O1vi—Rb2—Asxii26.29 (3)
Rb1Bi—Rb1A—O3iii61.38 (3)O1vii—Rb2—Asxii88.53 (3)
Rb1Bii—Rb1A—O3iii81.43 (11)O1viii—Rb2—Asxii105.88 (3)
Rb1Bi—Rb1A—O3iv81.43 (3)O4ix—Rb2—Asxii26.56 (2)
Rb1Bii—Rb1A—O3iv128.90 (5)O4x—Rb2—Asxii54.15 (3)
O3iii—Rb1A—O3iv69.26 (5)O4xi—Rb2—Asxii71.43 (3)
Rb1Bi—Rb1A—O3ii81.43 (3)O3xii—Rb2—Asxii27.50 (3)
Rb1Bii—Rb1A—O3ii61.38 (9)O3xiii—Rb2—Asxii63.12 (3)
O3iii—Rb1A—O3ii102.21 (6)O3xiv—Rb2—Asxii98.11 (3)
O3iv—Rb1A—O3ii162.87 (7)Asxiv—Rb2—Asxii79.914 (13)
Rb1Bi—Rb1A—O3i61.38 (3)O3—Rb2—Asxiii177.27 (4)
Rb1Bii—Rb1A—O3i128.90 (5)O3i—Rb2—Asxiii100.79 (4)
O3iii—Rb1A—O3i122.76 (7)O3ii—Rb2—Asxiii102.80 (4)
O3iv—Rb1A—O3i102.21 (6)O1vi—Rb2—Asxiii88.53 (3)
O3ii—Rb1A—O3i69.26 (5)O1vii—Rb2—Asxiii105.88 (3)
Rb1Bi—Rb1A—O3v128.90 (3)O1viii—Rb2—Asxiii26.29 (3)
Rb1Bii—Rb1A—O3v61.38 (9)O4ix—Rb2—Asxiii54.15 (3)
O3iii—Rb1A—O3v69.26 (5)O4x—Rb2—Asxiii71.43 (3)
O3iv—Rb1A—O3v69.26 (5)O4xi—Rb2—Asxiii26.56 (3)
O3ii—Rb1A—O3v122.76 (6)O3xii—Rb2—Asxiii98.11 (3)
O3i—Rb1A—O3v162.87 (6)O3xiii—Rb2—Asxiii27.50 (3)
Rb1Bi—Rb1A—O3128.90 (3)O3xiv—Rb2—Asxiii63.12 (3)
Rb1Bii—Rb1A—O381.43 (11)Asxiv—Rb2—Asxiii79.914 (13)
O3iii—Rb1A—O3162.87 (6)Asxii—Rb2—Asxiii79.914 (13)
O3iv—Rb1A—O3122.76 (6)O2xv—Ga1—O2ii91.72 (6)
O3ii—Rb1A—O369.26 (5)O2xv—Ga1—O2xvi91.72 (6)
O3i—Rb1A—O369.26 (5)O2ii—Ga1—O2xvi91.72 (6)
O3v—Rb1A—O3102.21 (6)O2xv—Ga1—O4xvii92.25 (6)
Rb1Bi—Rb1A—O2iv37.49 (3)O2ii—Ga1—O4xvii175.98 (6)
Rb1Bii—Rb1A—O2iv150.57 (13)O2xvi—Ga1—O4xvii88.72 (6)
O3iii—Rb1A—O2iv70.43 (4)O2xv—Ga1—O4i88.72 (6)
O3iv—Rb1A—O2iv48.04 (4)O2ii—Ga1—O4i92.25 (6)
O3ii—Rb1A—O2iv115.61 (4)O2xvi—Ga1—O4i175.98 (7)
O3i—Rb1A—O2iv64.84 (4)O4xvii—Ga1—O4i87.28 (6)
O3v—Rb1A—O2iv113.71 (4)O2xv—Ga1—O4xviii175.98 (6)
O3—Rb1A—O2iv126.47 (4)O2ii—Ga1—O4xviii88.71 (6)
Rb1Bi—Rb1A—O2ii37.49 (3)O2xvi—Ga1—O4xviii92.25 (6)
Rb1Bii—Rb1A—O2ii85.56 (15)O4xvii—Ga1—O4xviii87.28 (7)
O3iii—Rb1A—O2ii64.84 (4)O4i—Ga1—O4xviii87.28 (7)
O3iv—Rb1A—O2ii115.61 (4)O2xv—Ga1—Rb2xxi124.04 (4)
O3ii—Rb1A—O2ii48.04 (4)O2ii—Ga1—Rb2xxi124.04 (4)
O3i—Rb1A—O2ii70.43 (4)O2xvi—Ga1—Rb2xxi124.04 (4)
O3v—Rb1A—O2ii126.47 (4)O4xvii—Ga1—Rb2xxi52.83 (5)
O3—Rb1A—O2ii113.71 (4)O4i—Ga1—Rb2xxi52.83 (5)
O2iv—Rb1A—O2ii74.98 (5)O4xviii—Ga1—Rb2xxi52.83 (4)
Rb1Bi—Rb1A—O2v150.57 (3)O2xv—Ga1—Rb1Axvii32.81 (4)
Rb1Bii—Rb1A—O2v85.56 (15)O2ii—Ga1—Rb1Axvii105.67 (4)
O3iii—Rb1A—O2v113.71 (4)O2xvi—Ga1—Rb1Axvii120.04 (5)
O3iv—Rb1A—O2v70.43 (4)O4xvii—Ga1—Rb1Axvii77.51 (4)
O3ii—Rb1A—O2v126.47 (4)O4i—Ga1—Rb1Axvii59.26 (4)
O3i—Rb1A—O2v115.61 (4)O4xviii—Ga1—Rb1Axvii143.41 (5)
O3v—Rb1A—O2v48.04 (4)Rb2xxi—Ga1—Rb1Axvii92.384 (4)
O3—Rb1A—O2v64.84 (4)O2xv—Ga1—Rb1A120.04 (5)
O2iv—Rb1A—O2v113.21 (2)O2ii—Ga1—Rb1A32.81 (4)
O2ii—Rb1A—O2v171.11 (5)O2xvi—Ga1—Rb1A105.67 (4)
Rb1Bi—Rb1A—O2150.57 (3)O4xvii—Ga1—Rb1A143.41 (5)
Rb1Bii—Rb1A—O237.49 (14)O4i—Ga1—Rb1A77.51 (4)
O3iii—Rb1A—O2115.61 (4)O4xviii—Ga1—Rb1A59.26 (5)
O3iv—Rb1A—O2126.47 (4)Rb2xxi—Ga1—Rb1A92.384 (4)
O3ii—Rb1A—O270.43 (4)Rb1Axvii—Ga1—Rb1A119.828 (1)
O3i—Rb1A—O2113.71 (4)O2xv—Ga1—Rb1Axvi105.67 (5)
O3v—Rb1A—O264.84 (4)O2ii—Ga1—Rb1Axvi120.04 (5)
O3—Rb1A—O248.04 (4)O2xvi—Ga1—Rb1Axvi32.81 (4)
O2iv—Rb1A—O2171.11 (5)O4xvii—Ga1—Rb1Axvi59.26 (4)
O2ii—Rb1A—O2113.21 (2)O4i—Ga1—Rb1Axvi143.41 (5)
O2v—Rb1A—O258.86 (5)O4xviii—Ga1—Rb1Axvi77.51 (5)
Rb1Bi—Rb1A—O2iii85.56 (3)Rb2xxi—Ga1—Rb1Axvi92.384 (4)
Rb1Bii—Rb1A—O2iii37.49 (14)Rb1Axvii—Ga1—Rb1Axvi119.828 (1)
O3iii—Rb1A—O2iii48.04 (4)Rb1A—Ga1—Rb1Axvi119.828 (1)
O3iv—Rb1A—O2iii113.71 (4)O1viii—Ga2—O1xiv93.53 (6)
O3ii—Rb1A—O2iii64.84 (4)O1viii—Ga2—O1xix93.53 (6)
O3i—Rb1A—O2iii126.47 (4)O1xiv—Ga2—O1xix93.53 (6)
O3v—Rb1A—O2iii70.43 (4)O1viii—Ga2—O1i180.0
O3—Rb1A—O2iii115.61 (4)O1xiv—Ga2—O1i86.48 (6)
O2iv—Rb1A—O2iii113.21 (2)O1xix—Ga2—O1i86.48 (6)
O2ii—Rb1A—O2iii58.87 (5)O1viii—Ga2—O1xviii86.48 (6)
O2v—Rb1A—O2iii113.21 (2)O1xiv—Ga2—O1xviii180.0
O2—Rb1A—O2iii74.98 (5)O1xix—Ga2—O1xviii86.48 (6)
Rb1Bi—Rb1A—O2i85.56 (3)O1i—Ga2—O1xviii93.52 (6)
Rb1Bii—Rb1A—O2i150.57 (14)O1viii—Ga2—O1xvii86.48 (6)
O3iii—Rb1A—O2i126.47 (4)O1xiv—Ga2—O1xvii86.48 (6)
O3iv—Rb1A—O2i64.84 (4)O1xix—Ga2—O1xvii180.0
O3ii—Rb1A—O2i113.71 (4)O1i—Ga2—O1xvii93.52 (6)
O3i—Rb1A—O2i48.04 (4)O1xviii—Ga2—O1xvii93.52 (6)
O3v—Rb1A—O2i115.61 (4)O1viii—Ga2—Rb2xix63.39 (5)
O3—Rb1A—O2i70.43 (4)O1xiv—Ga2—Rb2xix66.53 (5)
O2iv—Rb1A—O2i58.87 (5)O1xix—Ga2—Rb2xix146.92 (4)
O2ii—Rb1A—O2i113.21 (2)O1i—Ga2—Rb2xix116.61 (5)
O2v—Rb1A—O2i74.98 (5)O1xviii—Ga2—Rb2xix113.47 (5)
O2—Rb1A—O2i113.21 (2)O1xvii—Ga2—Rb2xix33.08 (4)
O2iii—Rb1A—O2i171.11 (6)O1viii—Ga2—Rb2xvii116.62 (5)
Rb1Bi—Rb1A—Asiv60.827 (6)O1xiv—Ga2—Rb2xvii113.48 (5)
Rb1Bii—Rb1A—Asiv149.73 (2)O1xix—Ga2—Rb2xvii33.08 (4)
O3iii—Rb1A—Asiv73.16 (3)O1i—Ga2—Rb2xvii63.38 (5)
O3iv—Rb1A—Asiv24.86 (3)O1xviii—Ga2—Rb2xvii66.52 (5)
O3ii—Rb1A—Asiv139.65 (3)O1xvii—Ga2—Rb2xvii146.92 (4)
O3i—Rb1A—Asiv79.79 (3)Rb2xix—Ga2—Rb2xvii180.0
O3v—Rb1A—Asiv93.74 (3)O1viii—Ga2—Rb2xvi113.48 (5)
O3—Rb1A—Asiv123.16 (3)O1xiv—Ga2—Rb2xvi33.08 (4)
O2iv—Rb1A—Asiv24.28 (2)O1xix—Ga2—Rb2xvi116.62 (6)
O2ii—Rb1A—Asiv97.93 (3)O1i—Ga2—Rb2xvi66.52 (5)
O2v—Rb1A—Asiv89.76 (3)O1xviii—Ga2—Rb2xvi146.92 (4)
O2—Rb1A—Asiv148.57 (3)O1xvii—Ga2—Rb2xvi63.38 (6)
O2iii—Rb1A—Asiv121.15 (3)Rb2xix—Ga2—Rb2xvi60.0
O2i—Rb1A—Asiv53.64 (3)Rb2xvii—Ga2—Rb2xvi120.0
Rb1Bi—Rb1B—Rb1Bii60.00 (4)O1viii—Ga2—Rb233.08 (5)
Rb1Bi—Rb1B—O3iv94.7 (6)O1xiv—Ga2—Rb2116.62 (5)
Rb1Bii—Rb1B—O3iv123.8 (6)O1xix—Ga2—Rb2113.48 (5)
Rb1Bi—Rb1B—O3123.8 (6)O1i—Ga2—Rb2146.92 (5)
Rb1Bii—Rb1B—O394.7 (7)O1xviii—Ga2—Rb263.38 (5)
O3iv—Rb1B—O3136.7 (14)O1xvii—Ga2—Rb266.52 (5)
Rb1Bi—Rb1B—O2v160.6 (4)Rb2xix—Ga2—Rb260.0
Rb1Bii—Rb1B—O2v109.8 (6)Rb2xvii—Ga2—Rb2120.0
O3iv—Rb1B—O2v77.3 (7)Rb2xvi—Ga2—Rb2120.0
O3—Rb1B—O2v71.0 (6)O1viii—Ga2—Rb2xxii66.52 (5)
Rb1Bi—Rb1B—O2i109.8 (5)O1xiv—Ga2—Rb2xxii146.92 (4)
Rb1Bii—Rb1B—O2i160.6 (3)O1xix—Ga2—Rb2xxii63.38 (6)
O3iv—Rb1B—O2i71.0 (6)O1i—Ga2—Rb2xxii113.47 (5)
O3—Rb1B—O2i77.3 (7)O1xviii—Ga2—Rb2xxii33.08 (4)
O2v—Rb1B—O2i84.6 (10)O1xvii—Ga2—Rb2xxii116.62 (6)
Rb1Bi—Rb1B—O3i72.1 (6)Rb2xix—Ga2—Rb2xxii120.0
Rb1Bii—Rb1B—O3i109.8 (6)Rb2xvii—Ga2—Rb2xxii60.0
O3iv—Rb1B—O3i107.2 (4)Rb2xvi—Ga2—Rb2xxii180.0
O3—Rb1B—O3i72.0 (2)Rb2—Ga2—Rb2xxii60.0
O2v—Rb1B—O3i127.0 (11)O1viii—Ga2—Rb2xxiii146.92 (5)
O2i—Rb1B—O3i51.0 (2)O1xiv—Ga2—Rb2xxiii63.38 (5)
Rb1Bi—Rb1B—O3v109.8 (7)O1xix—Ga2—Rb2xxiii66.52 (5)
Rb1Bii—Rb1B—O3v72.1 (7)O1i—Ga2—Rb2xxiii33.08 (5)
O3iv—Rb1B—O3v72.0 (2)O1xviii—Ga2—Rb2xxiii116.61 (5)
O3—Rb1B—O3v107.2 (4)O1xvii—Ga2—Rb2xxiii113.47 (5)
O2v—Rb1B—O3v51.0 (2)Rb2xix—Ga2—Rb2xxiii120.0
O2i—Rb1B—O3v127.0 (11)Rb2xvii—Ga2—Rb2xxiii60.0
O3i—Rb1B—O3v177.9 (14)Rb2xvi—Ga2—Rb2xxiii60.0
Rb1Bi—Rb1B—O2iv58.5 (7)Rb2—Ga2—Rb2xxiii180.0
Rb1Bii—Rb1B—O2iv116.2 (6)Rb2xxii—Ga2—Rb2xxiii119.997 (1)
O3iv—Rb1B—O2iv49.25 (8)O1xx—As—O2119.20 (8)
O3—Rb1B—O2iv133.4 (5)O1xx—As—O4iv105.45 (8)
O2v—Rb1B—O2iv122.6 (9)O2—As—O4iv114.88 (7)
O2i—Rb1B—O2iv62.0 (3)O1xx—As—O3107.00 (9)
O3i—Rb1B—O2iv65.28 (4)O2—As—O3103.30 (8)
O3v—Rb1B—O2iv114.83 (5)O4iv—As—O3106.04 (8)
Rb1Bi—Rb1B—O2116.2 (7)O1xx—As—Rb2xii64.25 (6)
Rb1Bii—Rb1B—O258.5 (8)O2—As—Rb2xii172.80 (5)
O3iv—Rb1B—O2133.4 (5)O4iv—As—Rb2xii68.49 (5)
O3—Rb1B—O249.25 (8)O3—As—Rb2xii69.51 (6)
O2v—Rb1B—O262.0 (3)O1xx—As—Rb1Bii142.0 (2)
O2i—Rb1B—O2122.6 (9)O2—As—Rb1Bii50.6 (6)
O3i—Rb1B—O2114.83 (5)O4iv—As—Rb1Bii111.5 (3)
O3v—Rb1B—O265.28 (4)O3—As—Rb1Bii54.9 (5)
O2iv—Rb1B—O2174.7 (13)Rb2xii—As—Rb1Bii122.5 (5)
Rb1Bi—Rb1B—O3iii46.2 (3)O1xx—As—Rb1B146.8 (4)
Rb1Bii—Rb1B—O3iii58.9 (3)O2—As—Rb1B60.0 (4)
O3iv—Rb1B—O3iii67.6 (2)O4iv—As—Rb1B103.6 (5)
O3—Rb1B—O3iii153.6 (10)O3—As—Rb1B48.68 (19)
O2v—Rb1B—O3iii114.75 (4)Rb2xii—As—Rb1B113.4 (4)
O2i—Rb1B—O3iii127.90 (5)Rb1Bii—As—Rb1B10.8 (11)
O3i—Rb1B—O3iii115.4 (7)O1xx—As—Rb1A143.22 (6)
O3v—Rb1B—O3iii66.2 (3)O2—As—Rb1A55.94 (5)
O2iv—Rb1B—O3iii67.3 (3)O4iv—As—Rb1A108.77 (5)
O2—Rb1B—O3iii108.7 (7)O3—As—Rb1A50.50 (6)
Rb1Bi—Rb1B—O3ii58.9 (4)Rb2xii—As—Rb1A117.262 (8)
Rb1Bii—Rb1B—O3ii46.2 (3)Rb1Bii—As—Rb1A5.5 (5)
O3iv—Rb1B—O3ii153.6 (10)Rb1B—As—Rb1A5.7 (6)
O3—Rb1B—O3ii67.6 (2)O1xx—As—Rb281.53 (7)
O2v—Rb1B—O3ii127.90 (5)O2—As—Rb299.68 (5)
O2i—Rb1B—O3ii114.75 (4)O4iv—As—Rb2133.31 (5)
O3i—Rb1B—O3ii66.2 (3)O3—As—Rb232.31 (6)
O3v—Rb1B—O3ii115.4 (7)Rb2xii—As—Rb274.193 (8)
O2iv—Rb1B—O3ii108.7 (7)Rb1Bii—As—Rb267.2 (2)
O2—Rb1B—O3ii67.3 (3)Rb1B—As—Rb266.79 (16)
O3iii—Rb1B—O3ii91.5 (9)Rb1A—As—Rb265.327 (14)
O3—Rb2—O3i76.48 (6)O1xx—As—Rb1Axxiv87.84 (7)
O3—Rb2—O3ii76.48 (6)O2—As—Rb1Axxiv94.28 (5)
O3i—Rb2—O3ii76.48 (6)O4iv—As—Rb1Axxiv40.78 (5)
O3—Rb2—O1vi91.00 (4)O3—As—Rb1Axxiv146.81 (6)
O3i—Rb2—O1vi76.80 (4)Rb2xii—As—Rb1Axxiv92.146 (8)
O3ii—Rb2—O1vi152.49 (5)Rb1Bii—As—Rb1Axxiv126.24 (14)
O3—Rb2—O1vii76.80 (5)Rb1B—As—Rb1Axxiv125.1 (3)
O3i—Rb2—O1vii152.49 (5)Rb1A—As—Rb1Axxiv127.415 (12)
O3ii—Rb2—O1vii91.00 (4)Rb2—As—Rb1Axxiv165.357 (7)
O1vi—Rb2—O1vii110.14 (3)O1xx—As—Rb2xxiv42.87 (6)
O3—Rb2—O1viii152.49 (5)O2—As—Rb2xxiv127.54 (5)
O3i—Rb2—O1viii91.00 (5)O4iv—As—Rb2xxiv64.16 (5)
O3ii—Rb2—O1viii76.80 (5)O3—As—Rb2xxiv128.20 (6)
O1vi—Rb2—O1viii110.14 (3)Rb2xii—As—Rb2xxiv59.507 (5)
O1vii—Rb2—O1viii110.13 (2)Rb1Bii—As—Rb2xxiv174.80 (5)
O3—Rb2—O4ix126.84 (4)Rb1B—As—Rb2xxiv167.1 (6)
O3i—Rb2—O4ix111.15 (5)Rb1A—As—Rb2xxiv172.736 (5)
O3ii—Rb2—O4ix156.15 (4)Rb2—As—Rb2xxiv117.769 (15)
O1vi—Rb2—O4ix45.47 (4)Rb1Axxiv—As—Rb2xxiv48.647 (11)
O1vii—Rb2—O4ix90.21 (4)Asxxv—O1—Ga2xxvi137.45 (10)
O1viii—Rb2—O4ix80.43 (4)Asxxv—O1—Rb2vi89.47 (6)
O3—Rb2—O4x111.15 (5)Ga2xxvi—O1—Rb2vi128.38 (6)
O3i—Rb2—O4x156.15 (4)Asxxv—O1—Rb2xxv76.24 (6)
O3ii—Rb2—O4x126.84 (4)Ga2xxvi—O1—Rb2xxv92.73 (6)
O1vi—Rb2—O4x80.43 (4)Rb2vi—O1—Rb2xxv76.74 (3)
O1vii—Rb2—O4x45.46 (4)Asxxv—O1—Rb2xxvi122.41 (7)
O1viii—Rb2—O4x90.21 (4)Ga2xxvi—O1—Rb2xxvi89.56 (6)
O4ix—Rb2—O4x45.74 (4)Rb2vi—O1—Rb2xxvi75.20 (3)
O3—Rb2—O4xi156.15 (5)Rb2xxv—O1—Rb2xxvi145.76 (4)
O3i—Rb2—O4xi126.84 (5)As—O2—Ga1xxiv121.66 (8)
O3ii—Rb2—O4xi111.15 (5)As—O2—Rb1Bii104.3 (5)
O1vi—Rb2—O4xi90.21 (4)Ga1xxiv—O2—Rb1Bii125.9 (3)
O1vii—Rb2—O4xi80.43 (4)As—O2—Rb1B94.4 (5)
O1viii—Rb2—O4xi45.46 (4)Ga1xxiv—O2—Rb1B130.14 (12)
O4ix—Rb2—O4xi45.74 (4)Rb1Bii—O2—Rb1B11.7 (11)
O4x—Rb2—O4xi45.74 (4)As—O2—Rb1A99.78 (6)
O3—Rb2—O3xii83.50 (5)Ga1xxiv—O2—Rb1A128.83 (6)
O3i—Rb2—O3xii119.25 (6)Rb1Bii—O2—Rb1A4.8 (5)
O3ii—Rb2—O3xii150.88 (6)Rb1B—O2—Rb1A7.1 (7)
O1vi—Rb2—O3xii46.57 (4)As—O2—Rb260.35 (4)
O1vii—Rb2—O3xii63.66 (4)Ga1xxiv—O2—Rb2162.84 (6)
O1viii—Rb2—O3xii123.76 (4)Rb1Bii—O2—Rb264.9 (2)
O4ix—Rb2—O3xii45.78 (4)Rb1B—O2—Rb263.47 (7)
O4x—Rb2—O3xii43.39 (4)Rb1A—O2—Rb263.10 (2)
O4xi—Rb2—O3xii80.11 (4)As—O3—Rb2129.19 (8)
O3—Rb2—O3xiii150.89 (6)As—O3—Rb1B105.64 (12)
O3i—Rb2—O3xiii83.50 (5)Rb2—O3—Rb1B97.7 (5)
O3ii—Rb2—O3xiii119.25 (6)As—O3—Rb1Bii98.2 (6)
O1vi—Rb2—O3xiii63.66 (4)Rb2—O3—Rb1Bii94.64 (16)
O1vii—Rb2—O3xiii123.75 (4)Rb1B—O3—Rb1Bii13.2 (13)
O1viii—Rb2—O3xiii46.57 (4)As—O3—Rb1A104.65 (8)
O4ix—Rb2—O3xiii43.39 (4)Rb2—O3—Rb1A93.37 (5)
O4x—Rb2—O3xiii80.11 (4)Rb1B—O3—Rb1A7.0 (7)
O4xi—Rb2—O3xiii45.78 (4)Rb1Bii—O3—Rb1A7.5 (7)
O3xii—Rb2—O3xiii88.19 (4)As—O3—Rb1Bi109.5 (4)
O3—Rb2—O3xiv119.25 (6)Rb2—O3—Rb1Bi88.4 (5)
O3i—Rb2—O3xiv150.88 (6)Rb1B—O3—Rb1Bi10.0 (9)
O3ii—Rb2—O3xiv83.50 (5)Rb1Bii—O3—Rb1Bi11.3 (10)
O1vi—Rb2—O3xiv123.76 (4)Rb1A—O3—Rb1Bi5.4 (5)
O1vii—Rb2—O3xiv46.57 (4)As—O3—Rb2xii82.99 (7)
O1viii—Rb2—O3xiv63.66 (4)Rb2—O3—Rb2xii96.50 (5)
O4ix—Rb2—O3xiv80.11 (4)Rb1B—O3—Rb2xii152.4 (7)
O4x—Rb2—O3xiv45.78 (4)Rb1Bii—O3—Rb2xii164.5 (4)
O4xi—Rb2—O3xiv43.38 (4)Rb1A—O3—Rb2xii159.28 (6)
O3xii—Rb2—O3xiv88.19 (4)Rb1Bi—O3—Rb2xii159.23 (8)
O3xiii—Rb2—O3xiv88.19 (4)Asiv—O4—Ga1xxvi130.00 (8)
O3—Rb2—Asxiv102.80 (4)Asiv—O4—Rb2xxvii84.95 (5)
O3i—Rb2—Asxiv177.27 (4)Ga1xxvi—O4—Rb2xxvii100.50 (6)
O3ii—Rb2—Asxiv100.79 (4)Asiv—O4—Rb1Axxv124.06 (6)
O1vi—Rb2—Asxiv105.88 (3)Ga1xxvi—O4—Rb1Axxv96.95 (5)
O1vii—Rb2—Asxiv26.29 (3)Rb2xxvii—O4—Rb1Axxv118.51 (4)
O1viii—Rb2—Asxiv88.53 (3)Asiv—O4—Rb1A51.95 (4)
O4ix—Rb2—Asxiv71.43 (3)Ga1xxvi—O4—Rb1A78.99 (4)
O4x—Rb2—Asxiv26.56 (2)Rb2xxvii—O4—Rb1A104.39 (3)
O4xi—Rb2—Asxiv54.15 (3)Rb1Axxv—O4—Rb1A136.81 (4)
O3xii—Rb2—Asxiv63.12 (3)Asiv—O4—Rb2xxviii98.27 (5)
O3xiii—Rb2—Asxiv98.10 (3)Ga1xxvi—O4—Rb2xxviii129.76 (6)
O3xiv—Rb2—Asxiv27.50 (3)Rb2xxvii—O4—Rb2xxviii66.64 (2)
O3—Rb2—Asxii100.79 (4)Rb1Axxv—O4—Rb2xxviii57.20 (2)
O3i—Rb2—Asxii102.80 (4)Rb1A—O4—Rb2xxviii150.18 (3)
O3ii—Rb2—Asxii177.27 (4)
Symmetry codes: (i) y, xy, z; (ii) x+y, x, z; (iii) xy, y, z+3/2; (iv) x, x+y, z+3/2; (v) y, x, z+3/2; (vi) x+2/3, y2/3, z+4/3; (vii) xy4/3, x2/3, z+4/3; (viii) y+2/3, x+y+4/3, z+4/3; (ix) x1/3, xy2/3, z1/6; (x) y1/3, x+1/3, z1/6; (xi) x+y+2/3, y+1/3, z1/6; (xii) x1/3, y2/3, z+4/3; (xiii) y+2/3, x+y+1/3, z+4/3; (xiv) xy1/3, x+1/3, z+4/3; (xv) y, xy+1, z; (xvi) x+1, y+1, z; (xvii) x, y+1, z; (xviii) x+y+1, x+1, z; (xix) x+2/3, y+1/3, z+4/3; (xx) x1, y, z; (xxi) y+1/3, x+2/3, z+1/6; (xxii) x1/3, y+1/3, z+4/3; (xxiii) x+2/3, y+4/3, z+4/3; (xxiv) x1, y1, z; (xxv) x+1, y, z; (xxvi) x, y1, z; (xxvii) y+1/3, x1/3, z+1/6; (xxviii) y+1, x, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H···O4xxix0.85 (3)1.76 (3)2.598 (2)168 (4)
Symmetry code: (xxix) y, x1, z+3/2.
 

Acknowledgements

The authors acknowledge the TU Wien University Library for financial support through its Open Access Funding Program.

Funding information

Funding for this research was provided by: Doc fForte Fellowship of the Austrian Academy of Sciences to K. Schwendtner.

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). TOPAS. Bruker AXS, Karlsruhe, Germany.  Google Scholar
First citationChouchene, S., Jaouadi, K., Mhiri, T. & Zouari, N. (2017). Solid State Ionics, 301, 78–85.  Web of Science CrossRef CAS Google Scholar
First citationFIZ (2018). Inorganic Crystal Structure Database. Version build 20180504-0745, 2018.1. Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany.  Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602–625.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63–78.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLesage, J., Adam, L., Guesdon, A. & Raveau, B. (2007). J. Solid State Chem. 180, 1799–1808.  Web of Science CrossRef CAS Google Scholar
First citationLii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577–1580.  Google Scholar
First citationMarshall, K. L., Armstrong, J. A. & Weller, M. T. (2015). Dalton Trans. 44, 12804–12811.  Web of Science CrossRef Google Scholar
First citationMasquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. & Goodenough, J. B. (1996). Proceedings of the 37th Power Sources Conference, June 17–20, 1996, pp. 188–191. Cherry Hill, New Jersey. Fort Monmouth, NJ: US Army Research Laboratory.  Google Scholar
First citationNonius (2003). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOuerfelli, N., Guesmi, A., Molinie, P., Mazza, D., Madani, A., Zid, M. F. & Driss, A. (2007). J. Solid State Chem. 180, 2942–2949.  Web of Science CrossRef Google Scholar
First citationRen, J., Ma, Z., He, C., Sa, R., Li, Q. & Wu, K. (2015). Comput. Mater. Sci. 106, 1–4.  Web of Science CrossRef CAS Google Scholar
First citationSchwendtner, K. (2008). PhD thesis, Universität Wien, Austria.  Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2007). Acta Cryst. B63, 205–215.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2017). Acta Cryst. E73, 1580–1586.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. E74, 766–771.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2018b). Acta Cryst. C74, 721–727.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2018c). Acta Cryst. E74, 1163–1167.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, Y., Yang, Z., Hou, D. & Pan, S. (2017). RSC Adv. 7, 2804–2809.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWohlschlaeger, A., Lengauer, C. & Tillmanns, E. (2006). ICDD Grant-in-Aid. University of Vienna, Austria.  Google Scholar
First citationYakubovich, O. V. (1993). Kristallografiya, 38, 43–48.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds