research communications
Two new Rb–Ga arsenates: RbGa(HAsO4)2 and RbGa2As(HAsO4)6
aInstitute for Chemical Technology and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, 1060 Vienna, Austria, and bNaturhistorisches Museum Wien, Burgring 7, 1010 Wien, and Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, 1090 Wien, Austria
*Correspondence e-mail: karolina.schwendtner@tuwien.ac.at
The crystal structures of hydrothermally synthesized (T = 493 K, 7–9 d) rubidium gallium bis[hydrogenarsenate(V)], RbGa(HAsO4)2, and rubidium digallium arsenic(V) hexa[hydrogenarsenate(V)], RbGa2As(HAsO4)6, were solved by single-crystal X-ray diffraction. Both compounds have tetrahedral–octahedral framework topologies. The M+ cations are located in channels of the respective framework. RbGa(HAsO4)2 crystallizes in the RbFe(HPO4)2 structure type (Rc), while RbGa2As(HAsO4)6 adopts the structure type of RbAl2As(HAsO4)6 (Rc), which represents a modification of the RbFe(HPO4)2 structure type. In this modification, one third of the M3+O6 octahedra are replaced by AsO6 octahedra, and two thirds of the voids in the structure, which are usually filled by M+ cations, remain empty to achieve charge balance.
Keywords: RbGa(HAsO4)2; RbGa2As(HAsO4)6; AsO6; arsenate; hydrogenarsenate; AsO6 octahedra; crystal structure.
1. Chemical context
Compounds with mixed tetrahedral–octahedral (T–O) framework structures feature a broad range of different atomic arrangements, resulting in topologies with various interesting properties, such as ion exchange (Masquelier et al., 1996) and ion conductivity (Chouchene et al., 2017), as well as unusual piezoelectric (Ren et al., 2015), magnetic (Ouerfelli et al., 2007) or nonlinear optical features (frequency doubling) (Sun et al., 2017). In order to further increase the insufficient knowledge about the crystal chemistry and structure types of arsenates, a comprehensive study of the system M+–M3+–O–(H)–As5+ (M+ = Li, Na, K, Rb, Cs, Ag, Tl, NH4; M3+ = Al, Ga, In, Sc, Fe, Cr, Tl) was undertaken, which led to a large number of new compounds, most of which have been published (Schwendtner & Kolitsch, 2007, 2017, 2018a,b, and references therein).
Among the many different structure types found during our study, one atomic arrangement, i.e. the RbFe(HPO4)2 type (Lii & Wu, 1994; rhombohedral, Rc), was found to show a large crystal–chemical flexibility which allows the incorporation of a wide variety of cations. A total of nine representatives of this structure type are presently known among M+M3+(HTO4)2 (T = P, As) compounds containing Rb or Cs as the M+ cation and Al, Ga, Fe or In as the M3+ cation (Lesage et al., 2007; Lii & Wu, 1994; Schwendtner & Kolitsch, 2017, 2018a,b), including RbGa(HPO4)2 (Lesage et al., 2007). One of the title compounds, RbGa(HAsO4)2, is another new representative of the RbFe(HPO4)2 structure type. The second title compound, RbGa2As(HAsO4)6, is the third representative of a recently described variation of the RbFe(HPO4)2 type, the RbAl2As(HAsO4)6 type. It also crystallizes in Rc and up to now members with RbAl and CsFe as M+M3+ cation combinations are known (Schwendtner & Kolitsch, 2018b). Interestingly, all presently known M+M3+ combinations adopting this new structure type also have representatives adopting the RbFe(HPO4)2 type. It thus seems likely that more of the known RbFe(HPO4)2-type arsenates would also adopt the new RbAl2As(HAsO4)6-type atomic arrangement under formally `dry' synthesis conditions (see §3). RbGa2As(HAsO4)6 is a rare example of a compound containing AsO6 octahedra. Out of all reported arsenates(V), only about 3% contain AsO6 polyhedra, according to our earlier review paper (Schwendtner & Kolitsch, 2007), which provides an overview of all known compounds containing AsO6 groups and their bond-length statistics. At present, 37 compounds containing As in an octahedral coordination are known (Schwendtner & Kolitsch, 2018b); RbGa2As(HAsO4)6 represents the 38th member of this class of compounds. While 12 Rb- and Ga-containing phosphates are contained in the ICSD (FIZ, 2018), only one Rb–Ga arsenate, i.e. RbGaF3(H2AsO4) (Marshall et al., 2015), is known so far. Since submitting this paper, another paper dealing with isotypic M+M3+2As(HAsO4)6 compounds (M+M3+ = TlGa, CsGa, CsAl) has been published (Schwendtner & Kolitsch, 2018c).
2. Structural commentary
The two title compounds are very closely related to each other and are modifications of a basic tetrahedral–octahedral framework structure featuring interpenetrating channels, which host the M+ cations (Fig. 1). The two structure types, first reported for RbFe(HPO4)2 (Rc; Lii & Wu, 1994) and RbAl2As(HAsO4)6 (Rc; Schwendtner & Kolitsch, 2018b), are also related to the triclinic (NH4)Fe(HPO4)2 type (P; Yakubovich, 1993) and the RbAl(HAsO4)2 type (R32; Schwendtner & Kolitsch, 2018b). The fundamental building unit in all these structure types contains M3+O6 octahedra which are connected via their six corners to six protonated AsO4 tetrahedra, thereby forming an M3+As6O24 unit. These units are in turn connected via three corners to other M3+O6 octahedra. The free protonated corner of each AsO4 tetrahedron forms a hydrogen bond to the neighbouring M3+As6O24 group (Fig. 2). The M3+As6O24 units are arranged in layers perpendicular to the chex axis (Fig. 1). The units within these layers are held together by medium–strong hydrogen bonds (Tables 1 and 2). Both title compounds invariably show a very similar strongly pseudohexagonal to pseudo-octahedral (cf. Fig. 3).
The new compound RbGa2As(HAsO4)6 could only be grown by `dry' hydrothermal techniques (without the addition of water). The extreme abundance of As during the synthesis and the formation of a melt of arsenic acid promotes the formation of this novel structure type and endorses the octahedral coordination of As. The substitution of one third of all Ga3+ cations by As5+ requires that two thirds of all Rb+ cations are omitted to achieve charge balance (compare Figs. 1a, 1b, 2a and 2b). This substitution also has an effect on the unit-cell parameters (Table 3) and the pore diameter. Since GaO6 is only replaced by AsO6 in every second layer (perpendicular to the c axis), the a axis must remain long enough to still be able to house the GaO6 in the layers between. The effect of the smaller AsO6 octahedra is therefore mainly reflected by a strong compression of about 5% along the c axis, while the a axis becomes even slightly longer compared to RbGa(HAsO4)2. Due to the comparatively smaller AsO6 octahedra, the (Ga/As)As6O24 units are further apart in RbGa2As(HAsO4)6 and the encased void is compressed along c, making it too small to house Rb+ cations (Figs. 1 and 2). This effect is also reflected by the considerably elongated hydrogen bond in RbGa2As(HAsO4)6. While these bonds, which connect neighbouring (Ga/As)As6O24 groups, are very strong in RbGa(HAsO4)2 [D—H⋯A = 2.598 (2) Å], they are much longer in RbGa2As(HAsO4)6 [2.7314 (17) Å; compare Tables 1 and 2]. The second layer, in contrast, remains practically identical in both compounds and contains Rb atoms with a slight positional disorder (Fig. 4). In both compounds, the Rb atoms are 12-coordinated (Figs. 2 and 3), and the average Rb—O bond lengths in RbGa2As(HAsO4)6 (3.433 Å) are longer than the longest average bond length in RbO12 polyhedra of 3.410 Å reported so far (Gagné & Hawthorne, 2016), thus leading to rather low bond-valence sums (BVSs; Gagné & Hawthorne, 2015) of only 0.59 valence units (v.u.), whereas the corresponding BVSs are 0.82 and 0.84 v.u. for RbGa(HAsO4)2. These loose bondings lead to considerable positional disorder of the Rb+ cations in these voids, which were modelled with two Rb positions, between 0.41 (2) and 0.42 (4) Å apart. While position Rb1A in the centre of the large framework void in RbGa2As(HAsO4)6 has only 77% occupancy compared to the off-centre position Rb1B (with occupancy 23%), in RbGa(HAsO4)2, the central position Rb1A has 91% occupancy. Similar behaviour was observed for the isotypic CsFe and RbAl compounds (Schwendtner & Kolitsch, 2018b), as well as isotypic phosphates (Lesage et al., 2007).
A further indirect effect of the substituting AsO6 octahedra is a distinct change in the As—O distances of the AsO4 tetrahedra. The average As—O distance in the protonated AsO4 tetrahedra, with values between 1.688 and 1.689 Å, is in both compounds very close to the statistical average of 1.686 (10) Å (Schwendtner, 2008). Also the BVSs (Gagné & Hawthorne, 2015) are close to ideal values (4.98–5.00 v.u.). In RbGa(HAsO4)2, the HAsO4 tetrahedra show a typical distortion, with three short As—O distances to attached GaO6 octahedra and one elongated As—O bond length for the protonated O atom involved in the O—H bond. That bond length (Table 4) in RbGa(HAsO4)2 is slightly longer [1.7417 (17) Å] than the average distance of As—O⋯H bonds in HAsO4 groups [1.72 (3) Å; Schwendtner, 2008]. In contrast, RbGa2As(HAsO4)6 has two short [4]As—O bond lengths to neighbouring GaO6 octahedra, but the [4]As—O bond length of the O atom shared with the AsO6 octahedra is also elongated [1.7100 (11) Å] due to [4]As—O—[6]As repulsion. The [4]As—OH bond is therefore shortened to 1.7122 (13) Å (Table 5). The average As—O distances in the AsO6 octahedra are the shortest average distances of AsO6 octahedra found so far, i.e. 1.807 Å, leading to rather high BVSs of 5.33 v.u. (after Gagné & Hawthorne, 2015). The grand mean As—O bond distance in AsO6 octahedra in inorganic compounds is 1.830 (2) Å according to Schwendtner & Kolitsch (2007a); this value was determined on 33 AsO6 octahedra of 31 compounds. Gagné & Hawthorne (2018) determined an identical, but less precise, value of 1.830 (28) Å, based on only 13 AsO6 octahedra in AsO6-containing compounds meeting all selection criteria as defined in Gagné & Hawthorne (2016). However, a larger number of compounds meeting these criteria were not used by Gagné & Hawthorne (2018) for unknown reasons. The average Ga—O bond lengths of the octahedrally coordinated Ga cations (1.962–1.964 Å) are slightly shorter than the grand mean average of 1.978 (17) Å (Gagné & Hawthorne, 2018), explaining the corresponding BVSs of 3.10 to 3.11 v.u.
|
|
3. Synthesis and crystallization
The compounds were grown by hydrothermal synthesis at 493 K (7 d, autogeneous pressure, slow furnace cooling) using Teflon-lined stainless steel autoclaves with an approximate filling volume of 2 ml. Reagent-grade Rb2CO3, Ga2O3 and H3AsO4·0.5H2O were used as starting reagents in approximate volume ratios of Rb:Ga:As of 1:1:3 for both synthesis batches. For RbGa(HAsO4)2 the vessels were filled with distilled water to about 70% of their inner volumes, which led to initial and final pH values of 1.5. The reaction product was washed thoroughly with distilled water, filtered and dried at room temperature. RbGa(HAsO4)2 formed colourless pseudohexagonal platelets (Fig. 3) and is stable in air.
For RbGa2As(HAsO4)6, which contains As in both tetrahedral and octahedral coordination, no additional water was added and arsenic acid was present in excess to promote the growth of crystals from a melt or even vapour of arsenic acid under extremely acidic conditions. RbGa2As(HAsO4)6 formed large colourless pseudo-octahedral crystals accompanied by small colourless twinned crystals of RbH3As4O12 (Schwendtner & Kolitsch, 2007). The crystals of RbGa2As(HAsO4)6 were extracted mechanically and not further washed; they are hygroscopic and decompose slowly over a period of several years to an amorphous gel and a new, strongly protonated diarsenate containing Rb and Ga (P321, publication in preparation). This slow partial alteration is illustrated in an X-ray powder diffraction pattern (Fig. 5).
A measured X-ray powder diffraction diagram of RbGa(HAsO4)2 was deposited at the International Centre for Diffraction Data under PDF number 00-057-0239 (Wohlschlaeger et al., 2006).
4. Experimental and refinement
Crystal data, data collection and structure . For the of RbGa(HAsO4)2, the coordinates of RbFe(HPO4)2 (Lii & Wu, 1994) were used for the final steps. H atoms were then located from difference Fourier maps and added to the model. For the of RbGa2As(HAsO4)6, the model for RbAl2As(HAsO4)6 (Schwendtner & Kolitsch, 2018b) was used as a starting point. In both compounds, O—H bonds were restrained to 0.9±0.04 Å. During the last steps, residual electron-density peaks of up to 3.83 and 1.16 e Å−3 were located 0.63 and 0.68 Å from the Rb sites in RbGa2As(HAsO4)6 and RbGa(HAsO4)2, respectively, suggesting irregular displacement parameters and split positions, similar to what was found for RbFe(HPO4)2-type RbAl(HPO4)2 (Lesage et al., 2007). Therefore, a further position, Rb1B, was included in both refinements, which refined to low occupancies and led to considerable decreases in the R factors and weight parameters for both compounds. The bulk occupancies of Rb1A + Rb1B were constrained to give a total occupancy of 1.00. The final residual electron densities in both compounds are < 1 e Å−3.
are given in Table 3Supporting information
https://doi.org/10.1107/S2056989018011180/ff2155sup1.cif
contains datablocks RbGa2AsHAsO46, RbGaHAsO42, global. DOI:Structure factors: contains datablock RbGa2AsHAsO46. DOI: https://doi.org/10.1107/S2056989018011180/ff2155RbGa2AsHAsO46sup2.hkl
Structure factors: contains datablock RbGaHAsO42. DOI: https://doi.org/10.1107/S2056989018011180/ff2155RbGaHAsO42sup3.hkl
For both structures, data collection: COLLECT (Nonius, 2003); cell
SCALEPACK (Otwinowski et al., 2003); data reduction: DENZO and SCALEPACK (Otwinowski et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2005). Software used to prepare material for publication: publCIF (Westrip, 2010) for RbGa2AsHAsO46.RbGa2As(HAsO4)6 | Dx = 3.586 Mg m−3 |
Mr = 1139.40 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3c:H | Cell parameters from 2570 reflections |
a = 8.491 (1) Å | θ = 2.0–32.6° |
c = 50.697 (11) Å | µ = 15.85 mm−1 |
V = 3165.4 (10) Å3 | T = 293 K |
Z = 6 | Large pseudo-octahedra, colourless |
F(000) = 3168 | 0.13 × 0.12 × 0.12 mm |
Nonius KappaCCD single-crystal four-circle diffractometer | 1196 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.016 |
φ and ω scans | θmax = 32.5°, θmin = 2.4° |
Absorption correction: multi-scan (SCALEPACK; Otwinowski et al., 2003) | h = −12→12 |
Tmin = 0.232, Tmax = 0.252 | k = −10→10 |
4684 measured reflections | l = −75→76 |
1287 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.014 | All H-atom parameters refined |
wR(F2) = 0.034 | w = 1/[σ2(Fo2) + (0.0136P)2 + 10.4877P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max = 0.008 |
1287 reflections | Δρmax = 0.75 e Å−3 |
65 parameters | Δρmin = −0.83 e Å−3 |
2 restraints | Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.000271 (17) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Rb1A | 0.000000 | 0.000000 | 0.750000 | 0.055 (3) | 0.669 (3) |
Rb1B | 0.000000 | −0.048 (2) | 0.750000 | 0.0359 (11) | 0.1103 (9) |
Ga1 | 0.333333 | 0.666667 | 0.75604 (2) | 0.00736 (6) | |
As1 | 0.333333 | 0.666667 | 0.666667 | 0.00627 (7) | |
As2 | −0.44400 (2) | −0.40772 (2) | 0.71144 (2) | 0.00735 (5) | |
O1 | 0.40249 (16) | −0.46597 (15) | 0.68629 (2) | 0.01016 (19) | |
O2 | −0.45254 (15) | −0.27043 (15) | 0.73416 (2) | 0.01025 (19) | |
O3 | −0.22887 (17) | −0.28592 (18) | 0.69874 (3) | 0.0194 (3) | |
O4 | 0.48817 (15) | −0.12495 (15) | 0.77869 (2) | 0.0108 (2) | |
H | −0.176 (4) | −0.337 (4) | 0.7027 (6) | 0.046 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Rb1A | 0.050 (4) | 0.050 (4) | 0.066 (2) | 0.0251 (18) | 0.000 | 0.000 |
Rb1B | 0.024 (4) | 0.034 (4) | 0.046 (4) | 0.012 (2) | 0.0044 (14) | 0.0022 (7) |
Ga1 | 0.00807 (8) | 0.00807 (8) | 0.00596 (12) | 0.00403 (4) | 0.000 | 0.000 |
As1 | 0.00747 (10) | 0.00747 (10) | 0.00389 (14) | 0.00373 (5) | 0.000 | 0.000 |
As2 | 0.00844 (7) | 0.00803 (7) | 0.00670 (7) | 0.00495 (5) | 0.00010 (5) | 0.00053 (5) |
O1 | 0.0138 (5) | 0.0110 (5) | 0.0078 (4) | 0.0077 (4) | −0.0031 (4) | 0.0000 (4) |
O2 | 0.0109 (5) | 0.0099 (5) | 0.0098 (5) | 0.0051 (4) | 0.0005 (4) | −0.0022 (4) |
O3 | 0.0121 (5) | 0.0203 (6) | 0.0264 (7) | 0.0084 (5) | 0.0076 (5) | 0.0075 (5) |
O4 | 0.0124 (5) | 0.0095 (5) | 0.0125 (5) | 0.0070 (4) | −0.0030 (4) | −0.0042 (4) |
Rb1A—Rb1Bi | 0.41 (2) | Rb1B—O2 | 3.4234 (12) |
Rb1A—Rb1Bii | 0.41 (2) | Rb1B—O2iv | 3.4234 (12) |
Rb1A—O3iii | 3.4212 (16) | Rb1B—O3iii | 3.694 (14) |
Rb1A—O3iv | 3.4212 (16) | Rb1B—O3ii | 3.694 (14) |
Rb1A—O3ii | 3.4212 (15) | Rb1B—O2ii | 3.810 (18) |
Rb1A—O3v | 3.4212 (16) | Rb1B—O2iii | 3.810 (18) |
Rb1A—O3i | 3.4212 (15) | Rb1B—O4vi | 3.819 (18) |
Rb1A—O3 | 3.4213 (16) | Rb1B—O4vii | 3.819 (18) |
Rb1A—O2iv | 3.4438 (12) | Rb1B—As2v | 3.934 (8) |
Rb1A—O2ii | 3.4438 (12) | Rb1B—As2i | 3.934 (8) |
Rb1A—O2 | 3.4438 (12) | Ga1—O4viii | 1.9623 (12) |
Rb1A—O2v | 3.4438 (12) | Ga1—O4i | 1.9623 (11) |
Rb1A—O2iii | 3.4438 (12) | Ga1—O4ix | 1.9623 (11) |
Rb1A—O2i | 3.4438 (12) | Ga1—O2x | 1.9625 (11) |
Rb1A—As2iv | 4.1192 (5) | Ga1—O2ii | 1.9625 (11) |
Rb1A—As2iii | 4.1192 (5) | Ga1—O2xi | 1.9625 (11) |
Rb1A—As2v | 4.1192 (5) | As1—O1xii | 1.8067 (11) |
Rb1A—As2ii | 4.1192 (4) | As1—O1xiii | 1.8068 (11) |
Rb1B—Rb1Bi | 0.70 (3) | As1—O1xiv | 1.8068 (11) |
Rb1B—Rb1Bii | 0.70 (3) | As1—O1i | 1.8068 (11) |
Rb1B—O2v | 3.136 (14) | As1—O1ix | 1.8068 (11) |
Rb1B—O2i | 3.136 (14) | As1—O1viii | 1.8068 (11) |
Rb1B—O3iv | 3.269 (6) | As2—O2 | 1.6658 (11) |
Rb1B—O3 | 3.269 (6) | As2—O4iv | 1.6670 (11) |
Rb1B—O3v | 3.358 (2) | As2—O1xv | 1.7100 (11) |
Rb1B—O3i | 3.358 (2) | As2—O3 | 1.7122 (13) |
Rb1Bi—Rb1A—Rb1Bii | 120.00 (7) | Rb1Bii—Rb1B—O4vii | 153.31 (7) |
Rb1Bi—Rb1A—O3iii | 64.81 (2) | O2v—Rb1B—O4vii | 53.4 (3) |
Rb1Bii—Rb1A—O3iii | 77.69 (5) | O2i—Rb1B—O4vii | 45.1 (2) |
Rb1Bi—Rb1A—O3iv | 77.69 (2) | O3iv—Rb1B—O4vii | 44.49 (19) |
Rb1Bii—Rb1A—O3iv | 129.70 (3) | O3—Rb1B—O4vii | 98.0 (5) |
O3iii—Rb1A—O3iv | 68.57 (4) | O3v—Rb1B—O4vii | 76.7 (3) |
Rb1Bi—Rb1A—O3ii | 77.69 (2) | O3i—Rb1B—O4vii | 93.3 (3) |
Rb1Bii—Rb1A—O3ii | 64.81 (5) | O2—Rb1B—O4vii | 109.4 (4) |
O3iii—Rb1A—O3ii | 100.59 (5) | O2iv—Rb1B—O4vii | 71.6 (2) |
O3iv—Rb1A—O3ii | 155.38 (5) | O3iii—Rb1B—O4vii | 109.34 (9) |
Rb1Bi—Rb1A—O3v | 129.70 (2) | O3ii—Rb1B—O4vii | 157.2 (3) |
Rb1Bii—Rb1A—O3v | 64.81 (5) | O2ii—Rb1B—O4vii | 144.11 (3) |
O3iii—Rb1A—O3v | 68.57 (4) | O2iii—Rb1B—O4vii | 144.95 (3) |
O3iv—Rb1A—O3v | 68.57 (4) | O4vi—Rb1B—O4vii | 53.5 (3) |
O3ii—Rb1A—O3v | 129.62 (5) | Rb1Bi—Rb1B—As2v | 137.8 (2) |
Rb1Bi—Rb1A—O3i | 64.81 (2) | Rb1Bii—Rb1B—As2v | 88.8 (3) |
Rb1Bii—Rb1A—O3i | 129.70 (3) | O2v—Rb1B—As2v | 24.03 (3) |
O3iii—Rb1A—O3i | 129.62 (5) | O2i—Rb1B—As2v | 107.9 (5) |
O3iv—Rb1A—O3i | 100.59 (5) | O3iv—Rb1B—As2v | 82.2 (2) |
O3ii—Rb1A—O3i | 68.57 (4) | O3—Rb1B—As2v | 82.5 (2) |
O3v—Rb1A—O3i | 155.38 (4) | O3v—Rb1B—As2v | 25.63 (7) |
Rb1Bi—Rb1A—O3 | 129.70 (2) | O3i—Rb1B—As2v | 145.3 (5) |
Rb1Bii—Rb1A—O3 | 77.69 (5) | O2—Rb1B—As2v | 51.65 (8) |
O3iii—Rb1A—O3 | 155.38 (4) | O2iv—Rb1B—As2v | 128.9 (3) |
O3iv—Rb1A—O3 | 129.62 (5) | O3iii—Rb1B—As2v | 91.62 (8) |
O3ii—Rb1A—O3 | 68.57 (4) | O3ii—Rb1B—As2v | 123.66 (15) |
O3v—Rb1A—O3 | 100.59 (5) | O2ii—Rb1B—As2v | 138.7 (4) |
O3i—Rb1A—O3 | 68.57 (4) | O2iii—Rb1B—As2v | 90.34 (14) |
Rb1Bi—Rb1A—O2iv | 38.519 (18) | O4vi—Rb1B—As2v | 68.6 (3) |
Rb1Bii—Rb1A—O2iv | 153.03 (7) | O4vii—Rb1B—As2v | 67.9 (3) |
O3iii—Rb1A—O2iv | 76.93 (3) | Rb1Bi—Rb1B—As2i | 88.8 (2) |
O3iv—Rb1A—O2iv | 45.66 (3) | Rb1Bii—Rb1B—As2i | 137.8 (2) |
O3ii—Rb1A—O2iv | 111.42 (3) | O2v—Rb1B—As2i | 107.9 (5) |
O3v—Rb1A—O2iv | 113.17 (3) | O2i—Rb1B—As2i | 24.03 (3) |
O3i—Rb1A—O2iv | 63.90 (3) | O3iv—Rb1B—As2i | 82.5 (2) |
O3—Rb1A—O2iv | 127.31 (3) | O3—Rb1B—As2i | 82.2 (2) |
Rb1Bi—Rb1A—O2ii | 38.519 (18) | O3v—Rb1B—As2i | 145.3 (5) |
Rb1Bii—Rb1A—O2ii | 83.75 (7) | O3i—Rb1B—As2i | 25.63 (7) |
O3iii—Rb1A—O2ii | 63.90 (3) | O2—Rb1B—As2i | 128.9 (3) |
O3iv—Rb1A—O2ii | 111.42 (3) | O2iv—Rb1B—As2i | 51.65 (8) |
O3ii—Rb1A—O2ii | 45.66 (3) | O3iii—Rb1B—As2i | 123.66 (15) |
O3v—Rb1A—O2ii | 127.31 (3) | O3ii—Rb1B—As2i | 91.62 (8) |
O3i—Rb1A—O2ii | 76.93 (3) | O2ii—Rb1B—As2i | 90.34 (14) |
O3—Rb1A—O2ii | 113.17 (3) | O2iii—Rb1B—As2i | 138.7 (4) |
O2iv—Rb1A—O2ii | 77.04 (4) | O4vi—Rb1B—As2i | 67.9 (3) |
Rb1Bi—Rb1A—O2 | 153.035 (19) | O4vii—Rb1B—As2i | 68.6 (3) |
Rb1Bii—Rb1A—O2 | 38.52 (7) | As2v—Rb1B—As2i | 131.0 (5) |
O3iii—Rb1A—O2 | 111.42 (3) | O4viii—Ga1—O4i | 89.24 (5) |
O3iv—Rb1A—O2 | 127.31 (3) | O4viii—Ga1—O4ix | 89.24 (5) |
O3ii—Rb1A—O2 | 76.93 (3) | O4i—Ga1—O4ix | 89.24 (5) |
O3v—Rb1A—O2 | 63.90 (3) | O4viii—Ga1—O2x | 91.13 (5) |
O3i—Rb1A—O2 | 113.17 (3) | O4i—Ga1—O2x | 88.49 (5) |
O3—Rb1A—O2 | 45.67 (3) | O4ix—Ga1—O2x | 177.69 (5) |
O2iv—Rb1A—O2 | 167.50 (4) | O4viii—Ga1—O2ii | 177.69 (5) |
O2ii—Rb1A—O2 | 114.733 (13) | O4i—Ga1—O2ii | 91.13 (5) |
Rb1Bi—Rb1A—O2v | 153.03 (2) | O4ix—Ga1—O2ii | 88.48 (5) |
Rb1Bii—Rb1A—O2v | 83.75 (8) | O2x—Ga1—O2ii | 91.17 (5) |
O3iii—Rb1A—O2v | 113.17 (3) | O4viii—Ga1—O2xi | 88.48 (5) |
O3iv—Rb1A—O2v | 76.93 (3) | O4i—Ga1—O2xi | 177.69 (5) |
O3ii—Rb1A—O2v | 127.31 (3) | O4ix—Ga1—O2xi | 91.12 (5) |
O3v—Rb1A—O2v | 45.66 (3) | O2x—Ga1—O2xi | 91.16 (5) |
O3i—Rb1A—O2v | 111.42 (3) | O2ii—Ga1—O2xi | 91.16 (5) |
O3—Rb1A—O2v | 63.91 (3) | O4viii—Ga1—Rb1Bviii | 82.77 (12) |
O2iv—Rb1A—O2v | 114.733 (13) | O4i—Ga1—Rb1Bviii | 55.65 (8) |
O2ii—Rb1A—O2v | 167.50 (4) | O4ix—Ga1—Rb1Bviii | 143.89 (7) |
O2—Rb1A—O2v | 53.93 (4) | O2x—Ga1—Rb1Bviii | 33.99 (5) |
Rb1Bi—Rb1A—O2iii | 83.749 (19) | O2ii—Ga1—Rb1Bviii | 99.31 (13) |
Rb1Bii—Rb1A—O2iii | 38.52 (7) | O2xi—Ga1—Rb1Bviii | 123.61 (10) |
O3iii—Rb1A—O2iii | 45.66 (3) | O4viii—Ga1—Rb1Bi | 143.89 (6) |
O3iv—Rb1A—O2iii | 113.17 (3) | O4i—Ga1—Rb1Bi | 82.77 (12) |
O3ii—Rb1A—O2iii | 63.90 (3) | O4ix—Ga1—Rb1Bi | 55.65 (8) |
O3v—Rb1A—O2iii | 76.93 (3) | O2x—Ga1—Rb1Bi | 123.61 (9) |
O3i—Rb1A—O2iii | 127.31 (3) | O2ii—Ga1—Rb1Bi | 33.99 (5) |
O3—Rb1A—O2iii | 111.42 (3) | O2xi—Ga1—Rb1Bi | 99.31 (12) |
O2iv—Rb1A—O2iii | 114.732 (14) | Rb1Bviii—Ga1—Rb1Bi | 119.554 (12) |
O2ii—Rb1A—O2iii | 53.93 (4) | O4viii—Ga1—Rb1Bix | 55.65 (10) |
O2—Rb1A—O2iii | 77.04 (4) | O4i—Ga1—Rb1Bix | 143.89 (7) |
O2v—Rb1A—O2iii | 114.731 (14) | O4ix—Ga1—Rb1Bix | 82.77 (13) |
Rb1Bi—Rb1A—O2i | 83.749 (19) | O2x—Ga1—Rb1Bix | 99.31 (14) |
Rb1Bii—Rb1A—O2i | 153.03 (7) | O2ii—Ga1—Rb1Bix | 123.61 (9) |
O3iii—Rb1A—O2i | 127.31 (3) | O2xi—Ga1—Rb1Bix | 33.99 (6) |
O3iv—Rb1A—O2i | 63.90 (3) | Rb1Bviii—Ga1—Rb1Bix | 119.554 (7) |
O3ii—Rb1A—O2i | 113.17 (3) | Rb1Bi—Ga1—Rb1Bix | 119.554 (2) |
O3v—Rb1A—O2i | 111.42 (3) | O4viii—Ga1—Rb1Aviii | 80.57 (3) |
O3i—Rb1A—O2i | 45.66 (3) | O4i—Ga1—Rb1Aviii | 57.14 (3) |
O3—Rb1A—O2i | 76.93 (3) | O4ix—Ga1—Rb1Aviii | 144.67 (3) |
O2iv—Rb1A—O2i | 53.93 (4) | O2x—Ga1—Rb1Aviii | 33.28 (3) |
O2ii—Rb1A—O2i | 114.732 (13) | O2ii—Ga1—Rb1Aviii | 101.54 (3) |
O2—Rb1A—O2i | 114.732 (13) | O2xi—Ga1—Rb1Aviii | 122.02 (3) |
O2v—Rb1A—O2i | 77.04 (4) | Rb1Bviii—Ga1—Rb1Aviii | 2.56 (14) |
O2iii—Rb1A—O2i | 167.50 (4) | Rb1Bi—Ga1—Rb1Aviii | 122.12 (13) |
Rb1Bi—Rb1A—As2iv | 60.329 (4) | Rb1Bix—Ga1—Rb1Aviii | 117.05 (14) |
Rb1Bii—Rb1A—As2iv | 151.382 (12) | O4viii—Ga1—Rb1A | 144.67 (3) |
O3iii—Rb1A—As2iv | 77.70 (2) | O4i—Ga1—Rb1A | 80.57 (3) |
O3iv—Rb1A—As2iv | 24.04 (2) | O4ix—Ga1—Rb1A | 57.14 (3) |
O3ii—Rb1A—As2iv | 134.60 (2) | O2x—Ga1—Rb1A | 122.02 (3) |
O3v—Rb1A—As2iv | 92.58 (3) | O2ii—Ga1—Rb1A | 33.28 (3) |
O3i—Rb1A—As2iv | 77.98 (3) | O2xi—Ga1—Rb1A | 101.53 (3) |
O3—Rb1A—As2iv | 125.97 (2) | Rb1Bviii—Ga1—Rb1A | 117.05 (14) |
O2iv—Rb1A—As2iv | 23.324 (18) | Rb1Bi—Ga1—Rb1A | 2.56 (13) |
O2ii—Rb1A—As2iv | 98.261 (18) | Rb1Bix—Ga1—Rb1A | 122.12 (13) |
O2—Rb1A—As2iv | 146.607 (19) | Rb1Aviii—Ga1—Rb1A | 119.614 (1) |
O2v—Rb1A—As2iv | 92.721 (19) | O4viii—Ga1—Rb1Axi | 57.14 (3) |
O2iii—Rb1A—As2iv | 122.596 (19) | O4i—Ga1—Rb1Axi | 144.67 (4) |
O2i—Rb1A—As2iv | 49.72 (2) | O4ix—Ga1—Rb1Axi | 80.57 (3) |
Rb1Bi—Rb1A—As2iii | 67.492 (4) | O2x—Ga1—Rb1Axi | 101.53 (3) |
Rb1Bii—Rb1A—As2iii | 60.33 (6) | O2ii—Ga1—Rb1Axi | 122.02 (3) |
O3iii—Rb1A—As2iii | 24.04 (2) | O2xi—Ga1—Rb1Axi | 33.28 (3) |
O3iv—Rb1A—As2iii | 92.58 (3) | Rb1Bviii—Ga1—Rb1Axi | 122.12 (14) |
O3ii—Rb1A—As2iii | 77.98 (3) | Rb1Bi—Ga1—Rb1Axi | 117.05 (13) |
O3v—Rb1A—As2iii | 77.70 (2) | Rb1Bix—Ga1—Rb1Axi | 2.56 (14) |
O3i—Rb1A—As2iii | 125.97 (2) | Rb1Aviii—Ga1—Rb1Axi | 119.614 (1) |
O3—Rb1A—As2iii | 134.60 (2) | Rb1A—Ga1—Rb1Axi | 119.614 (1) |
O2iv—Rb1A—As2iii | 92.720 (19) | O1xii—As1—O1xiii | 92.59 (5) |
O2ii—Rb1A—As2iii | 49.72 (2) | O1xii—As1—O1xiv | 92.59 (5) |
O2—Rb1A—As2iii | 98.261 (18) | O1xiii—As1—O1xiv | 92.59 (5) |
O2v—Rb1A—As2iii | 122.595 (19) | O1xii—As1—O1i | 87.41 (5) |
O2iii—Rb1A—As2iii | 23.323 (18) | O1xiii—As1—O1i | 180.00 (9) |
O2i—Rb1A—As2iii | 146.608 (19) | O1xiv—As1—O1i | 87.41 (5) |
As2iv—Rb1A—As2iii | 99.334 (9) | O1xii—As1—O1ix | 180.0 |
Rb1Bi—Rb1A—As2v | 151.382 (7) | O1xiii—As1—O1ix | 87.41 (5) |
Rb1Bii—Rb1A—As2v | 67.49 (6) | O1xiv—As1—O1ix | 87.41 (5) |
O3iii—Rb1A—As2v | 92.58 (3) | O1i—As1—O1ix | 92.58 (5) |
O3iv—Rb1A—As2v | 77.70 (2) | O1xii—As1—O1viii | 87.42 (5) |
O3ii—Rb1A—As2v | 125.97 (2) | O1xiii—As1—O1viii | 87.42 (5) |
O3v—Rb1A—As2v | 24.04 (2) | O1xiv—As1—O1viii | 180.00 (6) |
O3i—Rb1A—As2v | 134.60 (2) | O1i—As1—O1viii | 92.58 (5) |
O3—Rb1A—As2v | 77.98 (3) | O1ix—As1—O1viii | 92.58 (5) |
O2iv—Rb1A—As2v | 122.596 (19) | O2—As2—O4iv | 117.31 (6) |
O2ii—Rb1A—As2v | 146.608 (19) | O2—As2—O1xv | 115.10 (6) |
O2—Rb1A—As2v | 49.72 (2) | O4iv—As2—O1xv | 100.43 (5) |
O2v—Rb1A—As2v | 23.323 (17) | O2—As2—O3 | 104.11 (6) |
O2iii—Rb1A—As2v | 92.72 (2) | O4iv—As2—O3 | 111.03 (6) |
O2i—Rb1A—As2v | 98.261 (19) | O1xv—As2—O3 | 108.86 (6) |
As2iv—Rb1A—As2v | 99.334 (9) | O2—As2—Rb1Bii | 50.1 (3) |
As2iii—Rb1A—As2v | 99.334 (9) | O4iv—As2—Rb1Bii | 114.68 (16) |
Rb1Bi—Rb1A—As2ii | 60.329 (3) | O1xv—As2—Rb1Bii | 144.86 (16) |
Rb1Bii—Rb1A—As2ii | 67.49 (6) | O3—As2—Rb1Bii | 58.0 (2) |
O3iii—Rb1A—As2ii | 77.98 (3) | O2—As2—Rb1B | 58.6 (2) |
O3iv—Rb1A—As2ii | 134.60 (2) | O4iv—As2—Rb1B | 106.7 (3) |
O3ii—Rb1A—As2ii | 24.04 (2) | O1xv—As2—Rb1B | 151.7 (2) |
O3v—Rb1A—As2ii | 125.97 (2) | O3—As2—Rb1B | 53.57 (7) |
O3i—Rb1A—As2ii | 77.70 (2) | Rb1Bii—As2—Rb1B | 10.2 (5) |
O3—Rb1A—As2ii | 92.58 (2) | O2—As2—Rb1A | 54.94 (4) |
O2iv—Rb1A—As2ii | 98.261 (18) | O4iv—As2—Rb1A | 111.68 (4) |
O2ii—Rb1A—As2ii | 23.324 (18) | O1xv—As2—Rb1A | 147.34 (4) |
O2—Rb1A—As2ii | 92.721 (19) | O3—As2—Rb1A | 54.48 (5) |
O2v—Rb1A—As2ii | 146.607 (19) | Rb1Bii—As2—Rb1A | 5.1 (3) |
O2iii—Rb1A—As2ii | 49.72 (2) | Rb1B—As2—Rb1A | 5.4 (3) |
O2i—Rb1A—As2ii | 122.596 (19) | O2—As2—Rb1Bi | 56.09 (6) |
As2iv—Rb1A—As2ii | 120.658 (6) | O4iv—As2—Rb1Bi | 113.41 (9) |
As2iii—Rb1A—As2ii | 57.236 (12) | O1xv—As2—Rb1Bi | 145.26 (10) |
As2v—Rb1A—As2ii | 134.983 (5) | O3—As2—Rb1Bi | 52.42 (10) |
Rb1Bi—Rb1B—Rb1Bii | 60.00 (2) | Rb1Bii—As2—Rb1Bi | 6.1 (3) |
Rb1Bi—Rb1B—O2v | 161.6 (2) | Rb1B—As2—Rb1Bi | 6.7 (3) |
Rb1Bii—Rb1B—O2v | 108.4 (3) | Rb1A—As2—Rb1Bi | 2.49 (11) |
Rb1Bi—Rb1B—O2i | 108.4 (2) | O2—As2—Rb1Bxvi | 93.36 (7) |
Rb1Bii—Rb1B—O2i | 161.60 (17) | O4iv—As2—Rb1Bxvi | 42.23 (4) |
O2v—Rb1B—O2i | 86.3 (5) | O1xv—As2—Rb1Bxvi | 80.78 (10) |
Rb1Bi—Rb1B—O3iv | 91.2 (3) | O3—As2—Rb1Bxvi | 153.23 (5) |
Rb1Bii—Rb1B—O3iv | 122.4 (3) | Rb1Bii—As2—Rb1Bxvi | 126.58 (16) |
O2v—Rb1B—O3iv | 83.6 (3) | Rb1B—As2—Rb1Bxvi | 125.4 (2) |
O2i—Rb1B—O3iv | 69.1 (3) | Rb1A—As2—Rb1Bxvi | 127.56 (9) |
Rb1Bi—Rb1B—O3 | 122.4 (3) | Rb1Bi—As2—Rb1Bxvi | 130.05 (2) |
Rb1Bii—Rb1B—O3 | 91.2 (3) | O2—As2—Rb1Axvii | 94.58 (4) |
O2v—Rb1B—O3 | 69.1 (3) | O4iv—As2—Rb1Axvii | 42.53 (4) |
O2i—Rb1B—O3 | 83.6 (3) | O1xv—As2—Rb1Axvii | 79.08 (4) |
O3iv—Rb1B—O3 | 142.5 (7) | O3—As2—Rb1Axvii | 153.36 (5) |
Rb1Bi—Rb1B—O3v | 113.4 (3) | Rb1Bii—As2—Rb1Axvii | 128.36 (6) |
Rb1Bii—Rb1B—O3v | 76.7 (3) | Rb1B—As2—Rb1Axvii | 127.17 (12) |
O2v—Rb1B—O3v | 48.28 (11) | Rb1A—As2—Rb1Axvii | 129.347 (10) |
O2i—Rb1B—O3v | 121.7 (5) | Rb1Bi—As2—Rb1Axvii | 131.84 (12) |
O3iv—Rb1B—O3v | 71.12 (11) | Rb1Bxvi—As2—Rb1Axvii | 1.79 (10) |
O3—Rb1B—O3v | 105.18 (19) | O2—As2—Rb1Bxviii | 92.74 (11) |
Rb1Bi—Rb1B—O3i | 76.7 (3) | O4iv—As2—Rb1Bxviii | 46.4 (2) |
Rb1Bii—Rb1B—O3i | 113.4 (3) | O1xv—As2—Rb1Bxviii | 76.75 (13) |
O2v—Rb1B—O3i | 121.7 (5) | O3—As2—Rb1Bxviii | 157.05 (19) |
O2i—Rb1B—O3i | 48.28 (11) | Rb1Bii—As2—Rb1Bxviii | 129.10 (5) |
O3iv—Rb1B—O3i | 105.18 (19) | Rb1B—As2—Rb1Bxviii | 128.75 (3) |
O3—Rb1B—O3i | 71.12 (11) | Rb1A—As2—Rb1Bxviii | 130.52 (5) |
O3v—Rb1B—O3i | 169.0 (7) | Rb1Bi—As2—Rb1Bxviii | 132.99 (17) |
Rb1Bi—Rb1B—O2 | 118.6 (3) | Rb1Bxvi—As2—Rb1Bxviii | 4.8 (2) |
Rb1Bii—Rb1B—O2 | 60.4 (4) | Rb1Axvii—As2—Rb1Bxviii | 3.88 (18) |
O2v—Rb1B—O2 | 56.66 (12) | O2—As2—Rb1Bxvii | 97.48 (15) |
O2i—Rb1B—O2 | 124.3 (5) | O4iv—As2—Rb1Bxvii | 39.02 (18) |
O3iv—Rb1B—O2 | 133.6 (2) | O1xv—As2—Rb1Bxvii | 79.91 (7) |
O3—Rb1B—O2 | 46.84 (5) | O3—As2—Rb1Bxvii | 149.72 (18) |
O3v—Rb1B—O2 | 64.78 (4) | Rb1Bii—As2—Rb1Bxvii | 129.012 (18) |
O3i—Rb1B—O2 | 115.33 (5) | Rb1B—As2—Rb1Bxvii | 127.02 (15) |
Rb1Bi—Rb1B—O2iv | 60.4 (3) | Rb1A—As2—Rb1Bxvii | 129.587 (13) |
Rb1Bii—Rb1B—O2iv | 118.6 (3) | Rb1Bi—As2—Rb1Bxvii | 132.07 (12) |
O2v—Rb1B—O2iv | 124.3 (5) | Rb1Bxvi—As2—Rb1Bxvii | 4.2 (2) |
O2i—Rb1B—O2iv | 56.66 (12) | Rb1Axvii—As2—Rb1Bxvii | 3.66 (17) |
O3iv—Rb1B—O2iv | 46.84 (5) | Rb1Bxviii—As2—Rb1Bxvii | 7.4 (3) |
O3—Rb1B—O2iv | 133.6 (2) | As2xix—O1—As1xx | 131.96 (6) |
O3v—Rb1B—O2iv | 115.33 (5) | As2xix—O1—Rb1Bvii | 79.11 (18) |
O3i—Rb1B—O2iv | 64.78 (4) | As1xx—O1—Rb1Bvii | 129.23 (10) |
O2—Rb1B—O2iv | 179.0 (7) | As2—O2—Ga1xvii | 123.99 (6) |
Rb1Bi—Rb1B—O3iii | 48.36 (16) | As2—O2—Rb1Bii | 105.9 (2) |
Rb1Bii—Rb1B—O3iii | 56.58 (15) | Ga1xvii—O2—Rb1Bii | 125.54 (18) |
O2v—Rb1B—O3iii | 113.81 (3) | As2—O2—Rb1B | 96.8 (3) |
O2i—Rb1B—O3iii | 128.32 (3) | Ga1xvii—O2—Rb1B | 130.47 (10) |
O3iv—Rb1B—O3iii | 66.90 (12) | Rb1Bii—O2—Rb1B | 11.2 (6) |
O3—Rb1B—O3iii | 147.5 (4) | As2—O2—Rb1A | 101.74 (4) |
O3v—Rb1B—O3iii | 66.07 (15) | Ga1xvii—O2—Rb1A | 128.51 (4) |
O3i—Rb1B—O3iii | 122.7 (4) | Rb1Bii—O2—Rb1A | 4.6 (2) |
O2—Rb1B—O3iii | 105.6 (3) | Rb1B—O2—Rb1A | 6.8 (3) |
O2iv—Rb1B—O3iii | 73.63 (18) | As2—O2—Rb1Bi | 102.64 (6) |
Rb1Bi—Rb1B—O3ii | 56.58 (18) | Ga1xvii—O2—Rb1Bi | 128.80 (4) |
Rb1Bii—Rb1B—O3ii | 48.36 (15) | Rb1Bii—O2—Rb1Bi | 3.34 (18) |
O2v—Rb1B—O3ii | 128.32 (3) | Rb1B—O2—Rb1Bi | 9.3 (4) |
O2i—Rb1B—O3ii | 113.81 (3) | Rb1A—O2—Rb1Bi | 2.77 (12) |
O3iv—Rb1B—O3ii | 147.5 (4) | As2—O3—Rb1B | 101.51 (6) |
O3—Rb1B—O3ii | 66.90 (12) | As2—O3—Rb1Bii | 96.3 (3) |
O3v—Rb1B—O3ii | 122.7 (4) | Rb1B—O3—Rb1Bii | 12.1 (6) |
O3i—Rb1B—O3ii | 66.07 (15) | As2—O3—Rb1A | 101.48 (6) |
O2—Rb1B—O3ii | 73.63 (18) | Rb1B—O3—Rb1A | 6.5 (3) |
O2iv—Rb1B—O3ii | 105.6 (3) | Rb1Bii—O3—Rb1A | 6.8 (3) |
O3iii—Rb1B—O3ii | 90.9 (4) | As2—O3—Rb1Bi | 106.0 (2) |
Rb1Bi—Rb1B—O2ii | 15.05 (2) | Rb1B—O3—Rb1Bi | 9.3 (5) |
Rb1Bii—Rb1B—O2ii | 52.10 (7) | Rb1Bii—O3—Rb1Bi | 10.1 (5) |
O2v—Rb1B—O2ii | 160.5 (4) | Rb1A—O3—Rb1Bi | 4.9 (2) |
O2i—Rb1B—O2ii | 112.87 (12) | As2iv—O4—Ga1xx | 126.28 (6) |
O3iv—Rb1B—O2ii | 106.2 (3) | As2iv—O4—Rb1Bxxi | 120.71 (10) |
O3—Rb1B—O2ii | 107.8 (3) | Ga1xx—O4—Rb1Bxxi | 99.25 (5) |
O3v—Rb1B—O2ii | 118.1 (4) | As2iv—O4—Rb1Axix | 121.85 (5) |
O3i—Rb1B—O2ii | 72.8 (2) | Ga1xx—O4—Rb1Axix | 99.67 (4) |
O2—Rb1B—O2ii | 106.5 (4) | Rb1Bxxi—O4—Rb1Axix | 2.51 (13) |
O2iv—Rb1B—O2ii | 72.5 (2) | As2iv—O4—Rb1Bxix | 126.9 (3) |
O3iii—Rb1B—O2ii | 57.9 (3) | Ga1xx—O4—Rb1Bxix | 96.29 (16) |
O3ii—Rb1B—O2ii | 41.55 (19) | Rb1Bxxi—O4—Rb1Bxix | 7.1 (3) |
Rb1Bi—Rb1B—O2iii | 52.10 (12) | Rb1Axix—O4—Rb1Bxix | 5.2 (2) |
Rb1Bii—Rb1B—O2iii | 15.05 (5) | As2iv—O4—Rb1Bxxii | 117.91 (18) |
O2v—Rb1B—O2iii | 112.87 (12) | Ga1xx—O4—Rb1Bxxii | 103.25 (18) |
O2i—Rb1B—O2iii | 160.5 (4) | Rb1Bxxi—O4—Rb1Bxxii | 4.1 (2) |
O3iv—Rb1B—O2iii | 107.8 (3) | Rb1Axix—O4—Rb1Bxxii | 3.99 (18) |
O3—Rb1B—O2iii | 106.2 (3) | Rb1Bxix—O4—Rb1Bxxii | 9.0 (4) |
O3v—Rb1B—O2iii | 72.8 (2) | As2iv—O4—Rb1B | 53.63 (19) |
O3i—Rb1B—O2iii | 118.1 (4) | Ga1xx—O4—Rb1B | 72.96 (19) |
O2—Rb1B—O2iii | 72.5 (2) | Rb1Bxxi—O4—Rb1B | 134.20 (8) |
O2iv—Rb1B—O2iii | 106.5 (4) | Rb1Axix—O4—Rb1B | 136.70 (6) |
O3iii—Rb1B—O2iii | 41.55 (19) | Rb1Bxix—O4—Rb1B | 139.53 (16) |
O3ii—Rb1B—O2iii | 57.9 (3) | Rb1Bxxii—O4—Rb1B | 135.79 (4) |
O2ii—Rb1B—O2iii | 48.4 (2) | As2iv—O4—Rb1Bi | 47.20 (15) |
Rb1Bi—Rb1B—O4vi | 153.31 (5) | Ga1xx—O4—Rb1Bi | 80.09 (19) |
Rb1Bii—Rb1B—O4vi | 130.76 (15) | Rb1Bxxi—O4—Rb1Bi | 130.0 (3) |
O2v—Rb1B—O4vi | 45.1 (2) | Rb1Axix—O4—Rb1Bi | 132.53 (17) |
O2i—Rb1B—O4vi | 53.4 (3) | Rb1Bxix—O4—Rb1Bi | 136.12 (3) |
O3iv—Rb1B—O4vi | 98.0 (5) | Rb1Bxxii—O4—Rb1Bi | 131.0 (3) |
O3—Rb1B—O4vi | 44.50 (19) | Rb1B—O4—Rb1Bi | 8.2 (4) |
O3v—Rb1B—O4vi | 93.3 (3) | As2iv—O4—Rb1A | 50.21 (3) |
O3i—Rb1B—O4vi | 76.7 (3) | Ga1xx—O4—Rb1A | 76.56 (3) |
O2—Rb1B—O4vi | 71.6 (2) | Rb1Bxxi—O4—Rb1A | 133.03 (14) |
O2iv—Rb1B—O4vi | 109.4 (4) | Rb1Axix—O4—Rb1A | 135.53 (3) |
O3iii—Rb1B—O4vi | 157.2 (3) | Rb1Bxix—O4—Rb1A | 138.77 (15) |
O3ii—Rb1B—O4vi | 109.34 (9) | Rb1Bxxii—O4—Rb1A | 134.28 (7) |
O2ii—Rb1B—O4vi | 144.95 (3) | Rb1B—O4—Rb1A | 3.8 (2) |
O2iii—Rb1B—O4vi | 144.11 (3) | Rb1Bi—O4—Rb1A | 4.5 (2) |
Rb1Bi—Rb1B—O4vii | 130.76 (11) |
Symmetry codes: (i) −y, x−y, z; (ii) −x+y, −x, z; (iii) x−y, −y, −z+3/2; (iv) −x, −x+y, −z+3/2; (v) y, x, −z+3/2; (vi) y, x−1, −z+3/2; (vii) −y, x−y−1, z; (viii) x, y+1, z; (ix) −x+y+1, −x+1, z; (x) −y, x−y+1, z; (xi) x+1, y+1, z; (xii) x−y−1/3, x+1/3, −z+4/3; (xiii) y+2/3, −x+y+4/3, −z+4/3; (xiv) −x+2/3, −y+1/3, −z+4/3; (xv) x−1, y, z; (xvi) −y−1, x−y−1, z; (xvii) x−1, y−1, z; (xviii) −x+y−1, −x−1, z; (xix) x+1, y, z; (xx) x, y−1, z; (xxi) −x+y+1, −x, z; (xxii) −y+1, x−y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H···O4vi | 0.80 (3) | 1.98 (3) | 2.7314 (17) | 158 (3) |
Symmetry code: (vi) y, x−1, −z+3/2. |
RbGa(HAsO4)2 | Dx = 3.964 Mg m−3 |
Mr = 435.05 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3c:H | Cell parameters from 2663 reflections |
a = 8.385 (1) Å | θ = 2.3–30.0° |
c = 53.880 (11) Å | µ = 19.42 mm−1 |
V = 3280.7 (10) Å3 | T = 293 K |
Z = 18 | Hexagonal plate, colourless |
F(000) = 3600 | 0.07 × 0.07 × 0.02 mm |
Nonius KappaCCD single-crystal four-circle diffractometer | 1027 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.016 |
φ and ω scans | θmax = 30.0°, θmin = 2.3° |
Absorption correction: multi-scan (SCALEPACK; Otwinowski et al., 2003) | h = −11→11 |
Tmin = 0.343, Tmax = 0.697 | k = −9→9 |
3896 measured reflections | l = −75→75 |
1079 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.016 | All H-atom parameters refined |
wR(F2) = 0.040 | w = 1/[σ2(Fo2) + (0.0168P)2 + 20.8962P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max = 0.014 |
1079 reflections | Δρmax = 0.79 e Å−3 |
68 parameters | Δρmin = −0.52 e Å−3 |
2 restraints | Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.000092 (13) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Rb1A | 0.000000 | 0.000000 | 0.750000 | 0.0297 (12) | 0.909 (3) |
Rb1B | 0.000000 | −0.050 (5) | 0.750000 | 0.011 (3) | 0.0304 (9) |
Rb2 | 0.000000 | 0.000000 | 0.66714 (2) | 0.02912 (12) | |
Ga1 | 0.333333 | 0.666667 | 0.75374 (2) | 0.00733 (9) | |
Ga2 | 0.333333 | 0.666667 | 0.666667 | 0.00817 (11) | |
As | −0.43059 (3) | −0.39514 (3) | 0.71280 (2) | 0.00799 (7) | |
O1 | 0.4536 (2) | −0.4402 (2) | 0.68636 (3) | 0.0159 (3) | |
O2 | −0.4459 (2) | −0.2541 (2) | 0.73338 (3) | 0.0106 (3) | |
O3 | −0.1974 (2) | −0.2813 (2) | 0.70523 (3) | 0.0178 (3) | |
O4 | 0.4789 (2) | −0.1223 (2) | 0.77582 (3) | 0.0103 (3) | |
H | −0.161 (5) | −0.354 (5) | 0.7099 (6) | 0.035 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Rb1A | 0.0333 (16) | 0.0333 (16) | 0.0225 (9) | 0.0166 (8) | 0.000 | 0.000 |
Rb1B | 0.023 (11) | 0.012 (7) | 0.004 (7) | 0.011 (5) | −0.002 (4) | −0.001 (2) |
Rb2 | 0.03481 (17) | 0.03481 (17) | 0.0177 (2) | 0.01740 (9) | 0.000 | 0.000 |
Ga1 | 0.00785 (12) | 0.00785 (12) | 0.00629 (16) | 0.00393 (6) | 0.000 | 0.000 |
Ga2 | 0.00943 (15) | 0.00943 (15) | 0.0057 (2) | 0.00472 (8) | 0.000 | 0.000 |
As | 0.00991 (11) | 0.00839 (10) | 0.00729 (10) | 0.00580 (8) | 0.00068 (7) | 0.00083 (7) |
O1 | 0.0246 (8) | 0.0212 (8) | 0.0087 (6) | 0.0164 (7) | −0.0050 (6) | −0.0011 (6) |
O2 | 0.0105 (7) | 0.0106 (6) | 0.0104 (6) | 0.0049 (5) | 0.0026 (5) | −0.0016 (5) |
O3 | 0.0129 (7) | 0.0173 (8) | 0.0257 (9) | 0.0093 (7) | 0.0085 (6) | 0.0093 (6) |
O4 | 0.0116 (6) | 0.0092 (6) | 0.0120 (6) | 0.0066 (6) | −0.0019 (5) | −0.0038 (5) |
Rb1A—Rb1Bi | 0.42 (4) | Rb2—O3ii | 2.9347 (17) |
Rb1A—Rb1Bii | 0.42 (4) | Rb2—O1vi | 3.3714 (16) |
Rb1A—O3iii | 3.197 (2) | Rb2—O1vii | 3.3715 (16) |
Rb1A—O3iv | 3.197 (2) | Rb2—O1viii | 3.3715 (17) |
Rb1A—O3ii | 3.197 (2) | Rb2—O4ix | 3.4960 (16) |
Rb1A—O3i | 3.197 (2) | Rb2—O4x | 3.4960 (17) |
Rb1A—O3v | 3.197 (2) | Rb2—O4xi | 3.4960 (16) |
Rb1A—O3 | 3.197 (2) | Rb2—O3xii | 3.5327 (19) |
Rb1A—O2iv | 3.3698 (16) | Rb2—O3xiii | 3.533 (2) |
Rb1A—O2ii | 3.3698 (16) | Rb2—O3xiv | 3.5328 (19) |
Rb1A—O2v | 3.3699 (16) | Rb2—Asxiv | 3.7432 (5) |
Rb1A—O2 | 3.3699 (16) | Rb2—Asxii | 3.7432 (5) |
Rb1A—O2iii | 3.3699 (15) | Rb2—Asxiii | 3.7432 (5) |
Rb1A—O2i | 3.3699 (15) | Ga1—O2xv | 1.9596 (14) |
Rb1A—Asiv | 4.0083 (5) | Ga1—O2ii | 1.9597 (15) |
Rb1B—Rb1Bi | 0.72 (7) | Ga1—O2xvi | 1.9597 (15) |
Rb1B—Rb1Bii | 0.72 (7) | Ga1—O4xvii | 1.9690 (15) |
Rb1B—O3iv | 3.019 (15) | Ga1—O4i | 1.9690 (15) |
Rb1B—O3 | 3.019 (15) | Ga1—O4xviii | 1.9690 (15) |
Rb1B—O2v | 3.05 (3) | Ga2—O1viii | 1.9625 (15) |
Rb1B—O2i | 3.05 (3) | Ga2—O1xiv | 1.9625 (16) |
Rb1B—O3i | 3.161 (2) | Ga2—O1xix | 1.9625 (15) |
Rb1B—O3v | 3.161 (2) | Ga2—O1i | 1.9626 (15) |
Rb1B—O2iv | 3.363 (2) | Ga2—O1xviii | 1.9626 (16) |
Rb1B—O2 | 3.363 (2) | Ga2—O1xvii | 1.9626 (15) |
Rb1B—O3iii | 3.47 (3) | As—O1xx | 1.6576 (15) |
Rb1B—O3ii | 3.47 (3) | As—O2 | 1.6724 (15) |
Rb2—O3 | 2.9346 (17) | As—O4iv | 1.6805 (15) |
Rb2—O3i | 2.9347 (17) | As—O3 | 1.7417 (17) |
Rb1Bi—Rb1A—Rb1Bii | 120.00 (15) | O1vi—Rb2—Asxii | 26.29 (3) |
Rb1Bi—Rb1A—O3iii | 61.38 (3) | O1vii—Rb2—Asxii | 88.53 (3) |
Rb1Bii—Rb1A—O3iii | 81.43 (11) | O1viii—Rb2—Asxii | 105.88 (3) |
Rb1Bi—Rb1A—O3iv | 81.43 (3) | O4ix—Rb2—Asxii | 26.56 (2) |
Rb1Bii—Rb1A—O3iv | 128.90 (5) | O4x—Rb2—Asxii | 54.15 (3) |
O3iii—Rb1A—O3iv | 69.26 (5) | O4xi—Rb2—Asxii | 71.43 (3) |
Rb1Bi—Rb1A—O3ii | 81.43 (3) | O3xii—Rb2—Asxii | 27.50 (3) |
Rb1Bii—Rb1A—O3ii | 61.38 (9) | O3xiii—Rb2—Asxii | 63.12 (3) |
O3iii—Rb1A—O3ii | 102.21 (6) | O3xiv—Rb2—Asxii | 98.11 (3) |
O3iv—Rb1A—O3ii | 162.87 (7) | Asxiv—Rb2—Asxii | 79.914 (13) |
Rb1Bi—Rb1A—O3i | 61.38 (3) | O3—Rb2—Asxiii | 177.27 (4) |
Rb1Bii—Rb1A—O3i | 128.90 (5) | O3i—Rb2—Asxiii | 100.79 (4) |
O3iii—Rb1A—O3i | 122.76 (7) | O3ii—Rb2—Asxiii | 102.80 (4) |
O3iv—Rb1A—O3i | 102.21 (6) | O1vi—Rb2—Asxiii | 88.53 (3) |
O3ii—Rb1A—O3i | 69.26 (5) | O1vii—Rb2—Asxiii | 105.88 (3) |
Rb1Bi—Rb1A—O3v | 128.90 (3) | O1viii—Rb2—Asxiii | 26.29 (3) |
Rb1Bii—Rb1A—O3v | 61.38 (9) | O4ix—Rb2—Asxiii | 54.15 (3) |
O3iii—Rb1A—O3v | 69.26 (5) | O4x—Rb2—Asxiii | 71.43 (3) |
O3iv—Rb1A—O3v | 69.26 (5) | O4xi—Rb2—Asxiii | 26.56 (3) |
O3ii—Rb1A—O3v | 122.76 (6) | O3xii—Rb2—Asxiii | 98.11 (3) |
O3i—Rb1A—O3v | 162.87 (6) | O3xiii—Rb2—Asxiii | 27.50 (3) |
Rb1Bi—Rb1A—O3 | 128.90 (3) | O3xiv—Rb2—Asxiii | 63.12 (3) |
Rb1Bii—Rb1A—O3 | 81.43 (11) | Asxiv—Rb2—Asxiii | 79.914 (13) |
O3iii—Rb1A—O3 | 162.87 (6) | Asxii—Rb2—Asxiii | 79.914 (13) |
O3iv—Rb1A—O3 | 122.76 (6) | O2xv—Ga1—O2ii | 91.72 (6) |
O3ii—Rb1A—O3 | 69.26 (5) | O2xv—Ga1—O2xvi | 91.72 (6) |
O3i—Rb1A—O3 | 69.26 (5) | O2ii—Ga1—O2xvi | 91.72 (6) |
O3v—Rb1A—O3 | 102.21 (6) | O2xv—Ga1—O4xvii | 92.25 (6) |
Rb1Bi—Rb1A—O2iv | 37.49 (3) | O2ii—Ga1—O4xvii | 175.98 (6) |
Rb1Bii—Rb1A—O2iv | 150.57 (13) | O2xvi—Ga1—O4xvii | 88.72 (6) |
O3iii—Rb1A—O2iv | 70.43 (4) | O2xv—Ga1—O4i | 88.72 (6) |
O3iv—Rb1A—O2iv | 48.04 (4) | O2ii—Ga1—O4i | 92.25 (6) |
O3ii—Rb1A—O2iv | 115.61 (4) | O2xvi—Ga1—O4i | 175.98 (7) |
O3i—Rb1A—O2iv | 64.84 (4) | O4xvii—Ga1—O4i | 87.28 (6) |
O3v—Rb1A—O2iv | 113.71 (4) | O2xv—Ga1—O4xviii | 175.98 (6) |
O3—Rb1A—O2iv | 126.47 (4) | O2ii—Ga1—O4xviii | 88.71 (6) |
Rb1Bi—Rb1A—O2ii | 37.49 (3) | O2xvi—Ga1—O4xviii | 92.25 (6) |
Rb1Bii—Rb1A—O2ii | 85.56 (15) | O4xvii—Ga1—O4xviii | 87.28 (7) |
O3iii—Rb1A—O2ii | 64.84 (4) | O4i—Ga1—O4xviii | 87.28 (7) |
O3iv—Rb1A—O2ii | 115.61 (4) | O2xv—Ga1—Rb2xxi | 124.04 (4) |
O3ii—Rb1A—O2ii | 48.04 (4) | O2ii—Ga1—Rb2xxi | 124.04 (4) |
O3i—Rb1A—O2ii | 70.43 (4) | O2xvi—Ga1—Rb2xxi | 124.04 (4) |
O3v—Rb1A—O2ii | 126.47 (4) | O4xvii—Ga1—Rb2xxi | 52.83 (5) |
O3—Rb1A—O2ii | 113.71 (4) | O4i—Ga1—Rb2xxi | 52.83 (5) |
O2iv—Rb1A—O2ii | 74.98 (5) | O4xviii—Ga1—Rb2xxi | 52.83 (4) |
Rb1Bi—Rb1A—O2v | 150.57 (3) | O2xv—Ga1—Rb1Axvii | 32.81 (4) |
Rb1Bii—Rb1A—O2v | 85.56 (15) | O2ii—Ga1—Rb1Axvii | 105.67 (4) |
O3iii—Rb1A—O2v | 113.71 (4) | O2xvi—Ga1—Rb1Axvii | 120.04 (5) |
O3iv—Rb1A—O2v | 70.43 (4) | O4xvii—Ga1—Rb1Axvii | 77.51 (4) |
O3ii—Rb1A—O2v | 126.47 (4) | O4i—Ga1—Rb1Axvii | 59.26 (4) |
O3i—Rb1A—O2v | 115.61 (4) | O4xviii—Ga1—Rb1Axvii | 143.41 (5) |
O3v—Rb1A—O2v | 48.04 (4) | Rb2xxi—Ga1—Rb1Axvii | 92.384 (4) |
O3—Rb1A—O2v | 64.84 (4) | O2xv—Ga1—Rb1A | 120.04 (5) |
O2iv—Rb1A—O2v | 113.21 (2) | O2ii—Ga1—Rb1A | 32.81 (4) |
O2ii—Rb1A—O2v | 171.11 (5) | O2xvi—Ga1—Rb1A | 105.67 (4) |
Rb1Bi—Rb1A—O2 | 150.57 (3) | O4xvii—Ga1—Rb1A | 143.41 (5) |
Rb1Bii—Rb1A—O2 | 37.49 (14) | O4i—Ga1—Rb1A | 77.51 (4) |
O3iii—Rb1A—O2 | 115.61 (4) | O4xviii—Ga1—Rb1A | 59.26 (5) |
O3iv—Rb1A—O2 | 126.47 (4) | Rb2xxi—Ga1—Rb1A | 92.384 (4) |
O3ii—Rb1A—O2 | 70.43 (4) | Rb1Axvii—Ga1—Rb1A | 119.828 (1) |
O3i—Rb1A—O2 | 113.71 (4) | O2xv—Ga1—Rb1Axvi | 105.67 (5) |
O3v—Rb1A—O2 | 64.84 (4) | O2ii—Ga1—Rb1Axvi | 120.04 (5) |
O3—Rb1A—O2 | 48.04 (4) | O2xvi—Ga1—Rb1Axvi | 32.81 (4) |
O2iv—Rb1A—O2 | 171.11 (5) | O4xvii—Ga1—Rb1Axvi | 59.26 (4) |
O2ii—Rb1A—O2 | 113.21 (2) | O4i—Ga1—Rb1Axvi | 143.41 (5) |
O2v—Rb1A—O2 | 58.86 (5) | O4xviii—Ga1—Rb1Axvi | 77.51 (5) |
Rb1Bi—Rb1A—O2iii | 85.56 (3) | Rb2xxi—Ga1—Rb1Axvi | 92.384 (4) |
Rb1Bii—Rb1A—O2iii | 37.49 (14) | Rb1Axvii—Ga1—Rb1Axvi | 119.828 (1) |
O3iii—Rb1A—O2iii | 48.04 (4) | Rb1A—Ga1—Rb1Axvi | 119.828 (1) |
O3iv—Rb1A—O2iii | 113.71 (4) | O1viii—Ga2—O1xiv | 93.53 (6) |
O3ii—Rb1A—O2iii | 64.84 (4) | O1viii—Ga2—O1xix | 93.53 (6) |
O3i—Rb1A—O2iii | 126.47 (4) | O1xiv—Ga2—O1xix | 93.53 (6) |
O3v—Rb1A—O2iii | 70.43 (4) | O1viii—Ga2—O1i | 180.0 |
O3—Rb1A—O2iii | 115.61 (4) | O1xiv—Ga2—O1i | 86.48 (6) |
O2iv—Rb1A—O2iii | 113.21 (2) | O1xix—Ga2—O1i | 86.48 (6) |
O2ii—Rb1A—O2iii | 58.87 (5) | O1viii—Ga2—O1xviii | 86.48 (6) |
O2v—Rb1A—O2iii | 113.21 (2) | O1xiv—Ga2—O1xviii | 180.0 |
O2—Rb1A—O2iii | 74.98 (5) | O1xix—Ga2—O1xviii | 86.48 (6) |
Rb1Bi—Rb1A—O2i | 85.56 (3) | O1i—Ga2—O1xviii | 93.52 (6) |
Rb1Bii—Rb1A—O2i | 150.57 (14) | O1viii—Ga2—O1xvii | 86.48 (6) |
O3iii—Rb1A—O2i | 126.47 (4) | O1xiv—Ga2—O1xvii | 86.48 (6) |
O3iv—Rb1A—O2i | 64.84 (4) | O1xix—Ga2—O1xvii | 180.0 |
O3ii—Rb1A—O2i | 113.71 (4) | O1i—Ga2—O1xvii | 93.52 (6) |
O3i—Rb1A—O2i | 48.04 (4) | O1xviii—Ga2—O1xvii | 93.52 (6) |
O3v—Rb1A—O2i | 115.61 (4) | O1viii—Ga2—Rb2xix | 63.39 (5) |
O3—Rb1A—O2i | 70.43 (4) | O1xiv—Ga2—Rb2xix | 66.53 (5) |
O2iv—Rb1A—O2i | 58.87 (5) | O1xix—Ga2—Rb2xix | 146.92 (4) |
O2ii—Rb1A—O2i | 113.21 (2) | O1i—Ga2—Rb2xix | 116.61 (5) |
O2v—Rb1A—O2i | 74.98 (5) | O1xviii—Ga2—Rb2xix | 113.47 (5) |
O2—Rb1A—O2i | 113.21 (2) | O1xvii—Ga2—Rb2xix | 33.08 (4) |
O2iii—Rb1A—O2i | 171.11 (6) | O1viii—Ga2—Rb2xvii | 116.62 (5) |
Rb1Bi—Rb1A—Asiv | 60.827 (6) | O1xiv—Ga2—Rb2xvii | 113.48 (5) |
Rb1Bii—Rb1A—Asiv | 149.73 (2) | O1xix—Ga2—Rb2xvii | 33.08 (4) |
O3iii—Rb1A—Asiv | 73.16 (3) | O1i—Ga2—Rb2xvii | 63.38 (5) |
O3iv—Rb1A—Asiv | 24.86 (3) | O1xviii—Ga2—Rb2xvii | 66.52 (5) |
O3ii—Rb1A—Asiv | 139.65 (3) | O1xvii—Ga2—Rb2xvii | 146.92 (4) |
O3i—Rb1A—Asiv | 79.79 (3) | Rb2xix—Ga2—Rb2xvii | 180.0 |
O3v—Rb1A—Asiv | 93.74 (3) | O1viii—Ga2—Rb2xvi | 113.48 (5) |
O3—Rb1A—Asiv | 123.16 (3) | O1xiv—Ga2—Rb2xvi | 33.08 (4) |
O2iv—Rb1A—Asiv | 24.28 (2) | O1xix—Ga2—Rb2xvi | 116.62 (6) |
O2ii—Rb1A—Asiv | 97.93 (3) | O1i—Ga2—Rb2xvi | 66.52 (5) |
O2v—Rb1A—Asiv | 89.76 (3) | O1xviii—Ga2—Rb2xvi | 146.92 (4) |
O2—Rb1A—Asiv | 148.57 (3) | O1xvii—Ga2—Rb2xvi | 63.38 (6) |
O2iii—Rb1A—Asiv | 121.15 (3) | Rb2xix—Ga2—Rb2xvi | 60.0 |
O2i—Rb1A—Asiv | 53.64 (3) | Rb2xvii—Ga2—Rb2xvi | 120.0 |
Rb1Bi—Rb1B—Rb1Bii | 60.00 (4) | O1viii—Ga2—Rb2 | 33.08 (5) |
Rb1Bi—Rb1B—O3iv | 94.7 (6) | O1xiv—Ga2—Rb2 | 116.62 (5) |
Rb1Bii—Rb1B—O3iv | 123.8 (6) | O1xix—Ga2—Rb2 | 113.48 (5) |
Rb1Bi—Rb1B—O3 | 123.8 (6) | O1i—Ga2—Rb2 | 146.92 (5) |
Rb1Bii—Rb1B—O3 | 94.7 (7) | O1xviii—Ga2—Rb2 | 63.38 (5) |
O3iv—Rb1B—O3 | 136.7 (14) | O1xvii—Ga2—Rb2 | 66.52 (5) |
Rb1Bi—Rb1B—O2v | 160.6 (4) | Rb2xix—Ga2—Rb2 | 60.0 |
Rb1Bii—Rb1B—O2v | 109.8 (6) | Rb2xvii—Ga2—Rb2 | 120.0 |
O3iv—Rb1B—O2v | 77.3 (7) | Rb2xvi—Ga2—Rb2 | 120.0 |
O3—Rb1B—O2v | 71.0 (6) | O1viii—Ga2—Rb2xxii | 66.52 (5) |
Rb1Bi—Rb1B—O2i | 109.8 (5) | O1xiv—Ga2—Rb2xxii | 146.92 (4) |
Rb1Bii—Rb1B—O2i | 160.6 (3) | O1xix—Ga2—Rb2xxii | 63.38 (6) |
O3iv—Rb1B—O2i | 71.0 (6) | O1i—Ga2—Rb2xxii | 113.47 (5) |
O3—Rb1B—O2i | 77.3 (7) | O1xviii—Ga2—Rb2xxii | 33.08 (4) |
O2v—Rb1B—O2i | 84.6 (10) | O1xvii—Ga2—Rb2xxii | 116.62 (6) |
Rb1Bi—Rb1B—O3i | 72.1 (6) | Rb2xix—Ga2—Rb2xxii | 120.0 |
Rb1Bii—Rb1B—O3i | 109.8 (6) | Rb2xvii—Ga2—Rb2xxii | 60.0 |
O3iv—Rb1B—O3i | 107.2 (4) | Rb2xvi—Ga2—Rb2xxii | 180.0 |
O3—Rb1B—O3i | 72.0 (2) | Rb2—Ga2—Rb2xxii | 60.0 |
O2v—Rb1B—O3i | 127.0 (11) | O1viii—Ga2—Rb2xxiii | 146.92 (5) |
O2i—Rb1B—O3i | 51.0 (2) | O1xiv—Ga2—Rb2xxiii | 63.38 (5) |
Rb1Bi—Rb1B—O3v | 109.8 (7) | O1xix—Ga2—Rb2xxiii | 66.52 (5) |
Rb1Bii—Rb1B—O3v | 72.1 (7) | O1i—Ga2—Rb2xxiii | 33.08 (5) |
O3iv—Rb1B—O3v | 72.0 (2) | O1xviii—Ga2—Rb2xxiii | 116.61 (5) |
O3—Rb1B—O3v | 107.2 (4) | O1xvii—Ga2—Rb2xxiii | 113.47 (5) |
O2v—Rb1B—O3v | 51.0 (2) | Rb2xix—Ga2—Rb2xxiii | 120.0 |
O2i—Rb1B—O3v | 127.0 (11) | Rb2xvii—Ga2—Rb2xxiii | 60.0 |
O3i—Rb1B—O3v | 177.9 (14) | Rb2xvi—Ga2—Rb2xxiii | 60.0 |
Rb1Bi—Rb1B—O2iv | 58.5 (7) | Rb2—Ga2—Rb2xxiii | 180.0 |
Rb1Bii—Rb1B—O2iv | 116.2 (6) | Rb2xxii—Ga2—Rb2xxiii | 119.997 (1) |
O3iv—Rb1B—O2iv | 49.25 (8) | O1xx—As—O2 | 119.20 (8) |
O3—Rb1B—O2iv | 133.4 (5) | O1xx—As—O4iv | 105.45 (8) |
O2v—Rb1B—O2iv | 122.6 (9) | O2—As—O4iv | 114.88 (7) |
O2i—Rb1B—O2iv | 62.0 (3) | O1xx—As—O3 | 107.00 (9) |
O3i—Rb1B—O2iv | 65.28 (4) | O2—As—O3 | 103.30 (8) |
O3v—Rb1B—O2iv | 114.83 (5) | O4iv—As—O3 | 106.04 (8) |
Rb1Bi—Rb1B—O2 | 116.2 (7) | O1xx—As—Rb2xii | 64.25 (6) |
Rb1Bii—Rb1B—O2 | 58.5 (8) | O2—As—Rb2xii | 172.80 (5) |
O3iv—Rb1B—O2 | 133.4 (5) | O4iv—As—Rb2xii | 68.49 (5) |
O3—Rb1B—O2 | 49.25 (8) | O3—As—Rb2xii | 69.51 (6) |
O2v—Rb1B—O2 | 62.0 (3) | O1xx—As—Rb1Bii | 142.0 (2) |
O2i—Rb1B—O2 | 122.6 (9) | O2—As—Rb1Bii | 50.6 (6) |
O3i—Rb1B—O2 | 114.83 (5) | O4iv—As—Rb1Bii | 111.5 (3) |
O3v—Rb1B—O2 | 65.28 (4) | O3—As—Rb1Bii | 54.9 (5) |
O2iv—Rb1B—O2 | 174.7 (13) | Rb2xii—As—Rb1Bii | 122.5 (5) |
Rb1Bi—Rb1B—O3iii | 46.2 (3) | O1xx—As—Rb1B | 146.8 (4) |
Rb1Bii—Rb1B—O3iii | 58.9 (3) | O2—As—Rb1B | 60.0 (4) |
O3iv—Rb1B—O3iii | 67.6 (2) | O4iv—As—Rb1B | 103.6 (5) |
O3—Rb1B—O3iii | 153.6 (10) | O3—As—Rb1B | 48.68 (19) |
O2v—Rb1B—O3iii | 114.75 (4) | Rb2xii—As—Rb1B | 113.4 (4) |
O2i—Rb1B—O3iii | 127.90 (5) | Rb1Bii—As—Rb1B | 10.8 (11) |
O3i—Rb1B—O3iii | 115.4 (7) | O1xx—As—Rb1A | 143.22 (6) |
O3v—Rb1B—O3iii | 66.2 (3) | O2—As—Rb1A | 55.94 (5) |
O2iv—Rb1B—O3iii | 67.3 (3) | O4iv—As—Rb1A | 108.77 (5) |
O2—Rb1B—O3iii | 108.7 (7) | O3—As—Rb1A | 50.50 (6) |
Rb1Bi—Rb1B—O3ii | 58.9 (4) | Rb2xii—As—Rb1A | 117.262 (8) |
Rb1Bii—Rb1B—O3ii | 46.2 (3) | Rb1Bii—As—Rb1A | 5.5 (5) |
O3iv—Rb1B—O3ii | 153.6 (10) | Rb1B—As—Rb1A | 5.7 (6) |
O3—Rb1B—O3ii | 67.6 (2) | O1xx—As—Rb2 | 81.53 (7) |
O2v—Rb1B—O3ii | 127.90 (5) | O2—As—Rb2 | 99.68 (5) |
O2i—Rb1B—O3ii | 114.75 (4) | O4iv—As—Rb2 | 133.31 (5) |
O3i—Rb1B—O3ii | 66.2 (3) | O3—As—Rb2 | 32.31 (6) |
O3v—Rb1B—O3ii | 115.4 (7) | Rb2xii—As—Rb2 | 74.193 (8) |
O2iv—Rb1B—O3ii | 108.7 (7) | Rb1Bii—As—Rb2 | 67.2 (2) |
O2—Rb1B—O3ii | 67.3 (3) | Rb1B—As—Rb2 | 66.79 (16) |
O3iii—Rb1B—O3ii | 91.5 (9) | Rb1A—As—Rb2 | 65.327 (14) |
O3—Rb2—O3i | 76.48 (6) | O1xx—As—Rb1Axxiv | 87.84 (7) |
O3—Rb2—O3ii | 76.48 (6) | O2—As—Rb1Axxiv | 94.28 (5) |
O3i—Rb2—O3ii | 76.48 (6) | O4iv—As—Rb1Axxiv | 40.78 (5) |
O3—Rb2—O1vi | 91.00 (4) | O3—As—Rb1Axxiv | 146.81 (6) |
O3i—Rb2—O1vi | 76.80 (4) | Rb2xii—As—Rb1Axxiv | 92.146 (8) |
O3ii—Rb2—O1vi | 152.49 (5) | Rb1Bii—As—Rb1Axxiv | 126.24 (14) |
O3—Rb2—O1vii | 76.80 (5) | Rb1B—As—Rb1Axxiv | 125.1 (3) |
O3i—Rb2—O1vii | 152.49 (5) | Rb1A—As—Rb1Axxiv | 127.415 (12) |
O3ii—Rb2—O1vii | 91.00 (4) | Rb2—As—Rb1Axxiv | 165.357 (7) |
O1vi—Rb2—O1vii | 110.14 (3) | O1xx—As—Rb2xxiv | 42.87 (6) |
O3—Rb2—O1viii | 152.49 (5) | O2—As—Rb2xxiv | 127.54 (5) |
O3i—Rb2—O1viii | 91.00 (5) | O4iv—As—Rb2xxiv | 64.16 (5) |
O3ii—Rb2—O1viii | 76.80 (5) | O3—As—Rb2xxiv | 128.20 (6) |
O1vi—Rb2—O1viii | 110.14 (3) | Rb2xii—As—Rb2xxiv | 59.507 (5) |
O1vii—Rb2—O1viii | 110.13 (2) | Rb1Bii—As—Rb2xxiv | 174.80 (5) |
O3—Rb2—O4ix | 126.84 (4) | Rb1B—As—Rb2xxiv | 167.1 (6) |
O3i—Rb2—O4ix | 111.15 (5) | Rb1A—As—Rb2xxiv | 172.736 (5) |
O3ii—Rb2—O4ix | 156.15 (4) | Rb2—As—Rb2xxiv | 117.769 (15) |
O1vi—Rb2—O4ix | 45.47 (4) | Rb1Axxiv—As—Rb2xxiv | 48.647 (11) |
O1vii—Rb2—O4ix | 90.21 (4) | Asxxv—O1—Ga2xxvi | 137.45 (10) |
O1viii—Rb2—O4ix | 80.43 (4) | Asxxv—O1—Rb2vi | 89.47 (6) |
O3—Rb2—O4x | 111.15 (5) | Ga2xxvi—O1—Rb2vi | 128.38 (6) |
O3i—Rb2—O4x | 156.15 (4) | Asxxv—O1—Rb2xxv | 76.24 (6) |
O3ii—Rb2—O4x | 126.84 (4) | Ga2xxvi—O1—Rb2xxv | 92.73 (6) |
O1vi—Rb2—O4x | 80.43 (4) | Rb2vi—O1—Rb2xxv | 76.74 (3) |
O1vii—Rb2—O4x | 45.46 (4) | Asxxv—O1—Rb2xxvi | 122.41 (7) |
O1viii—Rb2—O4x | 90.21 (4) | Ga2xxvi—O1—Rb2xxvi | 89.56 (6) |
O4ix—Rb2—O4x | 45.74 (4) | Rb2vi—O1—Rb2xxvi | 75.20 (3) |
O3—Rb2—O4xi | 156.15 (5) | Rb2xxv—O1—Rb2xxvi | 145.76 (4) |
O3i—Rb2—O4xi | 126.84 (5) | As—O2—Ga1xxiv | 121.66 (8) |
O3ii—Rb2—O4xi | 111.15 (5) | As—O2—Rb1Bii | 104.3 (5) |
O1vi—Rb2—O4xi | 90.21 (4) | Ga1xxiv—O2—Rb1Bii | 125.9 (3) |
O1vii—Rb2—O4xi | 80.43 (4) | As—O2—Rb1B | 94.4 (5) |
O1viii—Rb2—O4xi | 45.46 (4) | Ga1xxiv—O2—Rb1B | 130.14 (12) |
O4ix—Rb2—O4xi | 45.74 (4) | Rb1Bii—O2—Rb1B | 11.7 (11) |
O4x—Rb2—O4xi | 45.74 (4) | As—O2—Rb1A | 99.78 (6) |
O3—Rb2—O3xii | 83.50 (5) | Ga1xxiv—O2—Rb1A | 128.83 (6) |
O3i—Rb2—O3xii | 119.25 (6) | Rb1Bii—O2—Rb1A | 4.8 (5) |
O3ii—Rb2—O3xii | 150.88 (6) | Rb1B—O2—Rb1A | 7.1 (7) |
O1vi—Rb2—O3xii | 46.57 (4) | As—O2—Rb2 | 60.35 (4) |
O1vii—Rb2—O3xii | 63.66 (4) | Ga1xxiv—O2—Rb2 | 162.84 (6) |
O1viii—Rb2—O3xii | 123.76 (4) | Rb1Bii—O2—Rb2 | 64.9 (2) |
O4ix—Rb2—O3xii | 45.78 (4) | Rb1B—O2—Rb2 | 63.47 (7) |
O4x—Rb2—O3xii | 43.39 (4) | Rb1A—O2—Rb2 | 63.10 (2) |
O4xi—Rb2—O3xii | 80.11 (4) | As—O3—Rb2 | 129.19 (8) |
O3—Rb2—O3xiii | 150.89 (6) | As—O3—Rb1B | 105.64 (12) |
O3i—Rb2—O3xiii | 83.50 (5) | Rb2—O3—Rb1B | 97.7 (5) |
O3ii—Rb2—O3xiii | 119.25 (6) | As—O3—Rb1Bii | 98.2 (6) |
O1vi—Rb2—O3xiii | 63.66 (4) | Rb2—O3—Rb1Bii | 94.64 (16) |
O1vii—Rb2—O3xiii | 123.75 (4) | Rb1B—O3—Rb1Bii | 13.2 (13) |
O1viii—Rb2—O3xiii | 46.57 (4) | As—O3—Rb1A | 104.65 (8) |
O4ix—Rb2—O3xiii | 43.39 (4) | Rb2—O3—Rb1A | 93.37 (5) |
O4x—Rb2—O3xiii | 80.11 (4) | Rb1B—O3—Rb1A | 7.0 (7) |
O4xi—Rb2—O3xiii | 45.78 (4) | Rb1Bii—O3—Rb1A | 7.5 (7) |
O3xii—Rb2—O3xiii | 88.19 (4) | As—O3—Rb1Bi | 109.5 (4) |
O3—Rb2—O3xiv | 119.25 (6) | Rb2—O3—Rb1Bi | 88.4 (5) |
O3i—Rb2—O3xiv | 150.88 (6) | Rb1B—O3—Rb1Bi | 10.0 (9) |
O3ii—Rb2—O3xiv | 83.50 (5) | Rb1Bii—O3—Rb1Bi | 11.3 (10) |
O1vi—Rb2—O3xiv | 123.76 (4) | Rb1A—O3—Rb1Bi | 5.4 (5) |
O1vii—Rb2—O3xiv | 46.57 (4) | As—O3—Rb2xii | 82.99 (7) |
O1viii—Rb2—O3xiv | 63.66 (4) | Rb2—O3—Rb2xii | 96.50 (5) |
O4ix—Rb2—O3xiv | 80.11 (4) | Rb1B—O3—Rb2xii | 152.4 (7) |
O4x—Rb2—O3xiv | 45.78 (4) | Rb1Bii—O3—Rb2xii | 164.5 (4) |
O4xi—Rb2—O3xiv | 43.38 (4) | Rb1A—O3—Rb2xii | 159.28 (6) |
O3xii—Rb2—O3xiv | 88.19 (4) | Rb1Bi—O3—Rb2xii | 159.23 (8) |
O3xiii—Rb2—O3xiv | 88.19 (4) | Asiv—O4—Ga1xxvi | 130.00 (8) |
O3—Rb2—Asxiv | 102.80 (4) | Asiv—O4—Rb2xxvii | 84.95 (5) |
O3i—Rb2—Asxiv | 177.27 (4) | Ga1xxvi—O4—Rb2xxvii | 100.50 (6) |
O3ii—Rb2—Asxiv | 100.79 (4) | Asiv—O4—Rb1Axxv | 124.06 (6) |
O1vi—Rb2—Asxiv | 105.88 (3) | Ga1xxvi—O4—Rb1Axxv | 96.95 (5) |
O1vii—Rb2—Asxiv | 26.29 (3) | Rb2xxvii—O4—Rb1Axxv | 118.51 (4) |
O1viii—Rb2—Asxiv | 88.53 (3) | Asiv—O4—Rb1A | 51.95 (4) |
O4ix—Rb2—Asxiv | 71.43 (3) | Ga1xxvi—O4—Rb1A | 78.99 (4) |
O4x—Rb2—Asxiv | 26.56 (2) | Rb2xxvii—O4—Rb1A | 104.39 (3) |
O4xi—Rb2—Asxiv | 54.15 (3) | Rb1Axxv—O4—Rb1A | 136.81 (4) |
O3xii—Rb2—Asxiv | 63.12 (3) | Asiv—O4—Rb2xxviii | 98.27 (5) |
O3xiii—Rb2—Asxiv | 98.10 (3) | Ga1xxvi—O4—Rb2xxviii | 129.76 (6) |
O3xiv—Rb2—Asxiv | 27.50 (3) | Rb2xxvii—O4—Rb2xxviii | 66.64 (2) |
O3—Rb2—Asxii | 100.79 (4) | Rb1Axxv—O4—Rb2xxviii | 57.20 (2) |
O3i—Rb2—Asxii | 102.80 (4) | Rb1A—O4—Rb2xxviii | 150.18 (3) |
O3ii—Rb2—Asxii | 177.27 (4) |
Symmetry codes: (i) −y, x−y, z; (ii) −x+y, −x, z; (iii) x−y, −y, −z+3/2; (iv) −x, −x+y, −z+3/2; (v) y, x, −z+3/2; (vi) −x+2/3, −y−2/3, −z+4/3; (vii) x−y−4/3, x−2/3, −z+4/3; (viii) y+2/3, −x+y+4/3, −z+4/3; (ix) x−1/3, x−y−2/3, z−1/6; (x) −y−1/3, −x+1/3, z−1/6; (xi) −x+y+2/3, y+1/3, z−1/6; (xii) −x−1/3, −y−2/3, −z+4/3; (xiii) y+2/3, −x+y+1/3, −z+4/3; (xiv) x−y−1/3, x+1/3, −z+4/3; (xv) −y, x−y+1, z; (xvi) x+1, y+1, z; (xvii) x, y+1, z; (xviii) −x+y+1, −x+1, z; (xix) −x+2/3, −y+1/3, −z+4/3; (xx) x−1, y, z; (xxi) −y+1/3, −x+2/3, z+1/6; (xxii) −x−1/3, −y+1/3, −z+4/3; (xxiii) −x+2/3, −y+4/3, −z+4/3; (xxiv) x−1, y−1, z; (xxv) x+1, y, z; (xxvi) x, y−1, z; (xxvii) −y+1/3, −x−1/3, z+1/6; (xxviii) y+1, x, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H···O4xxix | 0.85 (3) | 1.76 (3) | 2.598 (2) | 168 (4) |
Symmetry code: (xxix) y, x−1, −z+3/2. |
Acknowledgements
The authors acknowledge the TU Wien University Library for financial support through its Open Access Funding Program.
Funding information
Funding for this research was provided by: Doc fForte Fellowship of the Austrian Academy of Sciences to K. Schwendtner.
References
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2009). TOPAS. Bruker AXS, Karlsruhe, Germany. Google Scholar
Chouchene, S., Jaouadi, K., Mhiri, T. & Zouari, N. (2017). Solid State Ionics, 301, 78–85. Web of Science CrossRef CAS Google Scholar
FIZ (2018). Inorganic Database. Version build 20180504-0745, 2018.1. Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany. Google Scholar
Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578. Web of Science CrossRef IUCr Journals Google Scholar
Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602–625. Web of Science CrossRef IUCr Journals Google Scholar
Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63–78. Web of Science CrossRef IUCr Journals Google Scholar
Lesage, J., Adam, L., Guesdon, A. & Raveau, B. (2007). J. Solid State Chem. 180, 1799–1808. Web of Science CrossRef CAS Google Scholar
Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577–1580. Google Scholar
Marshall, K. L., Armstrong, J. A. & Weller, M. T. (2015). Dalton Trans. 44, 12804–12811. Web of Science CrossRef Google Scholar
Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. & Goodenough, J. B. (1996). Proceedings of the 37th Power Sources Conference, June 17–20, 1996, pp. 188–191. Cherry Hill, New Jersey. Fort Monmouth, NJ: US Army Research Laboratory. Google Scholar
Nonius (2003). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ouerfelli, N., Guesmi, A., Molinie, P., Mazza, D., Madani, A., Zid, M. F. & Driss, A. (2007). J. Solid State Chem. 180, 2942–2949. Web of Science CrossRef Google Scholar
Ren, J., Ma, Z., He, C., Sa, R., Li, Q. & Wu, K. (2015). Comput. Mater. Sci. 106, 1–4. Web of Science CrossRef CAS Google Scholar
Schwendtner, K. (2008). PhD thesis, Universität Wien, Austria. Google Scholar
Schwendtner, K. & Kolitsch, U. (2007). Acta Cryst. B63, 205–215. Web of Science CrossRef IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2017). Acta Cryst. E73, 1580–1586. Web of Science CSD CrossRef IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2018a). Acta Cryst. E74, 766–771. Web of Science CrossRef IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2018b). Acta Cryst. C74, 721–727. Web of Science CrossRef IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2018c). Acta Cryst. E74, 1163–1167. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sun, Y., Yang, Z., Hou, D. & Pan, S. (2017). RSC Adv. 7, 2804–2809. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wohlschlaeger, A., Lengauer, C. & Tillmanns, E. (2006). ICDD Grant-in-Aid. University of Vienna, Austria. Google Scholar
Yakubovich, O. V. (1993). Kristallografiya, 38, 43–48. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.