research communications
H-benzo[d]imidazol-2-yl)phenoxy]phthalonitrile dimethyl sulfoxide monosolvate
and Hirshfeld surface analysis of 4-[4-(1aGaziantep University, Technical Sciences, 27310, Gaziantep, Turkey, bCentre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown, South Africa, cOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139 Samsun, Turkey, dSakarya University, Faculty of Arts and Sciences, Department of Chemistry, 54187, Sakarya, Turkey, eDepartment of Mathematics and Science Education, Faculty of Education, Ondokuz Mayıs University, Samsun, Turkey, and fTaras Shevchenko National University of Kyiv, Department of Chemistry, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: sibeld@gantep.edu.tr, necmid@omu.edu.tr, igolenya@ua.fm
This work presents the synthesis and structural characterization of [4-(1H-benzo[d]imidazol-2-yl)phenoxy]phthalonitrile, a phthalonitrile derivative carrying a benzimidazole moiety. The compound crystallizes as its dimethyl sulfoxide monosolvate, C21H12N4O·(CH3)2SO. The dihedral angle between the two fused rings in the heterocyclic ring system is 2.11 (1)°, while the phenyl ring attached to the imidazole moiety is inclined by 20.7 (1)° to the latter. In the adjacent molecules are connected by pairs of weak intermolecular C—H⋯N hydrogen bonds into inversion dimers. N—H⋯O and C—H⋯O hydrogen bonds with R21(7) graph-set motifs are also formed between the organic molecule and the disordered dimethyl sulfoxide solvent [occupancy ratio of 0.623 (5):0.377 (5) for the two sites of the sulfur atom]. Hirshfeld surface analysis and fingerprint plots were used to investigate the intermolecular interactions in the crystalline state.
Keywords: crystal structure; phthalonitrile; imidazole; Hirshfeld analysis; hydrogen bonds.
CCDC reference: 1846754
1. Chemical context
Benzimidazole and its derivatives are some of the oldest and chemically most-studied nitrogen-containing aromatic et al., 2014). They have a wide range of applications in medicinal chemistry and in biological processes including as anticancer, antiulcer, antifungal and anti-inflammatory agents, and exhibit antimycobacterial and antioxidant activities (El Rashedy & Aboul-Enein, 2013; Gaba et al., 2014; Kathiravan et al., 2012). They are also used as ligands with fluorescent properties. The fluorescent characteristic of these compounds can be changed by substitution or derivatization of different groups at the NH position of the benzimidazole skeleton.
(SresthaPhthalonitrile derivatives are some of the most widely used precursors for the preparation of phthalocyanines (Pc). The preparation of phthalocyanines is frequently carried out by a cyclotetramerization reaction of phthalonitriles. The synthesis of the latter compound family, carrying different functional groups, leads to functionalized phthalocyanines that are of great importance with respect to new molecular materials and targeted applications such as catalysis, liquid crystals, photosensitizers for photodynamic therapy (PDT), non-linear optics, nanotechnology or dye-sensitized solar cells (Torre et al., 2004; Martínez-Díaz et al., 2011). In this context, we have recently described a model study, i.e. the synthesis, characterization and Hirshfeld surface analysis of zinc phthalocyanines carrying benzimidazole groups through oxygen bridges to a Zn–Pc core (Sen et al., 2018b). Here we report the synthesis, structural characterization and Hirshfeld surface analysis of a related ligand that crystallizes as its dimethylsulfoxide monosolvate, C21H12N4O·(CH3)2SO.
2. Structural commentary
The molecular components of the title compound are shown in Fig. 1. The molecular structure of the phthalonitrile derivative is constructed from three ring systems, viz. a central phenoxy ring, a terminal phthalonitrile system and a terminal benzimidazole ring. The bond lengths of the cyano groups, 1.132 (6) and 1.137 (6) Å, for C21≡N4 and C20≡N3, respectively, conform well with literature values (Saraçoğlu et al., 2011). The corresponding C—C≡N angles [179.4 (6) and 177.9 (7)°] are almost linear and are also in good agreement with literature values (Saraçoğlu et al., 2011; Sen et al., 2018a). The C—C bond lengths of the phenyl rings are in the normal range of 1.356 (5)–1.395 (6) Å, i.e. characteristic of a delocalized system. The dihedral angle of 2.11 (1)° between the fused C1–C6 and C5/N2/C7/N1/C6 rings in the heterocycle indicate a minute deviation from planarity, whereas the attached C8–C13 ring is inclined by 20.7 (1)° to the C5/N2/C7/N1/C6 ring plane.
3. Supramolecular features
In the R21(7) graph-set motif are present, whereby the O2 atom acts as an acceptor in both cases (Fig. 1). There are also weak intermolecular N2—H2⋯S1A interactions between the the N—H group of the imidazole ring and the disordered dimethyl sulfate solvent, and a C23—H23D⋯N4 interaction between one of the methyl groups of the dimethyl sulfoxide solvent and one of the nitrile N atoms (Table 1, Fig. 2). These interactions lead to the formation of a three-dimensional supramolecular network.
N2—H2⋯O2 and C9—H9⋯O2 intermolecular hydrogen bonding interactions with an4. Database survey
A search of the Cambridge Structural database (CSD, version 5.40, update November 2018; Groom et al., 2016) for the 4-[4-(1H-benzo[d]imidazole-2yl)phenoxy]phthalonitrile moiety revealed two hits. Distinctive bond lengths (N4≡C21, N3≡C20, C7—N2, C5—N2) in the title structure are the same within standard uncertainties as the corresponding bond lengths in the structures of 4-[4-(1H-benzimidazol-2-yl)phenoxy]benzene-1,2-dicarbonitrile monohydrate (HIDHEK; Sen et al., 2018b) or 4-{4-[1-(prop-2-en-1-yl)-1H-benzimidazol-2-yl]phenoxy}benzene-1,2-dicarbonitrile (RELBUI; Sen et al., 2018a). In these structures, the C—O bond lengths vary from 1.363–1.407 Å. In the title molecule, the corresponding bond lengths are 1.367 (5) and 1.406 (4) Å, respectively. In all these structures, the molecules are linked into chains by C—H⋯N hydrogen bonds.
5. Hirshfeld surface analysis
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017). The Hirshfeld surfaces were generated using a standard (high) surface resolution with the three-dimensional surfaces mapped over dnorm (Fig. 3). For the title molecule, the H⋯H interactions appear in the middle of the scattered points in the fingerprint plots with a contribution to the overall Hirshfeld surface of 36.1% (Fig. 4). The contribution from the N⋯H/H⋯N contacts, corresponding to the C—H⋯N interactions, is represented by a pair of sharp spikes characteristic of a rather strong hydrogen-bonding interaction (23.6%). The whole fingerprint region and all other interactions are displayed in Fig. 4. In particular, the O⋯H/H⋯O contacts indicate the presence of intermolecular C—H⋯O and N—H⋯O interactions.
A view of the molecular electrostatic potential for the title compound, using the STO-3G basis set at the Hartree–Fock level of theory, is shown in Fig. 5. The N—H⋯N and C—H⋯N hydrogen-bond donor and acceptor groups are shown as blue and red areas around the atoms related with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively.
6. Synthesis and crystallization
2-(4-Hydroxy-phenyl)-benzimidazole (1.2 g, 5.71 mmol), which was synthesized by the reaction of o-phenylenediamine and 4-hydroxybenzaldehyde, and 4-nitrophthalonitrile (0.989 g, 5.71 mmol) were dissolved in DMF (15 ml) and degassed by argon in a dual-bank vacuum-gas manifold system. After stirring for 15 min, finely ground anhydrous K2CO3 (0.790 g, 5.71 mmol) was added portion-wise over 2 h under stirring. The suspension solution was maintained at 333 K for 24 h. After completion of the reaction, the crude product was precipitated by pouring into ice–water. The precipitate was collected by filtration, washed with hot water, ethanol, diethyl ether and was finally dried in vacuo. The desired compound was obtained in sufficient purity. The obtained spectroscopic data are accordance with the literature (Khan et al., 2009). Single crystals for structure analysis were obtained from slow evaporation of a DMSO solution.
7. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å for aromatic groups, with N—H = 0.86 Å for the imidazole moiety and with 0.96 Å for methyl groups. Uiso(H) values were constrained to 1.2–1.5 Ueq of their carrier atoms. The sulfur atom of the dimethylsulfate solvent is disordered over two sites (S1A and S1B), with an occupancy ratio of 0.623 (5):0.377 (5).
details are summarized in Table 2Supporting information
CCDC reference: 1846754
https://doi.org/10.1107/S2056989019006510/wm5496sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019006510/wm5496Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019006510/wm5496Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).C21H12N4O·C2H6OS | Dx = 1.296 Mg m−3 |
Mr = 414.47 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pna21 | Cell parameters from 9474 reflections |
a = 20.9154 (11) Å | θ = 1.8–27.0° |
b = 11.4208 (6) Å | µ = 0.18 mm−1 |
c = 8.8938 (6) Å | T = 296 K |
V = 2124.5 (2) Å3 | Prism, yellow |
Z = 4 | 0.65 × 0.56 × 0.47 mm |
F(000) = 864 |
Stoe IPDS 2 diffractometer | 4660 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 2281 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.058 |
Detector resolution: 6.67 pixels mm-1 | θmax = 27.1°, θmin = 2.0° |
rotation method scans | h = −26→22 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −14→14 |
Tmin = 0.966, Tmax = 0.977 | l = −11→11 |
15225 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.042 | w = 1/[σ2(Fo2) + (0.0409P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.098 | (Δ/σ)max < 0.001 |
S = 0.83 | Δρmax = 0.20 e Å−3 |
4660 reflections | Δρmin = −0.12 e Å−3 |
281 parameters | Absolute structure: Flack x determined using 771 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: −0.02 (8) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1A | 0.55296 (11) | 0.14556 (16) | 0.7814 (2) | 0.0869 (9) | 0.623 (5) |
S1B | 0.4957 (2) | 0.1452 (4) | 0.7420 (4) | 0.114 (2) | 0.377 (5) |
O1 | 0.39958 (15) | 0.4586 (3) | 0.0943 (3) | 0.0925 (8) | |
O2 | 0.53727 (19) | 0.1838 (3) | 0.6323 (4) | 0.1425 (15) | |
N1 | 0.69349 (16) | 0.3756 (2) | 0.2997 (4) | 0.0751 (8) | |
N2 | 0.64212 (17) | 0.2699 (2) | 0.4721 (3) | 0.0720 (8) | |
H2 | 0.611036 | 0.236598 | 0.518771 | 0.086* | |
N3 | 0.1249 (2) | 0.4056 (4) | 0.1258 (7) | 0.1429 (19) | |
N4 | 0.1428 (2) | 0.5716 (5) | 0.5187 (7) | 0.156 (2) | |
C1 | 0.8034 (2) | 0.3391 (4) | 0.4030 (6) | 0.0968 (13) | |
H1 | 0.824993 | 0.380986 | 0.329242 | 0.116* | |
C2 | 0.8361 (3) | 0.2860 (5) | 0.5198 (7) | 0.1100 (17) | |
H2A | 0.880352 | 0.293117 | 0.526112 | 0.132* | |
C3 | 0.8032 (3) | 0.2223 (5) | 0.6272 (7) | 0.1098 (16) | |
H3 | 0.826349 | 0.187242 | 0.704234 | 0.132* | |
C4 | 0.7380 (3) | 0.2085 (4) | 0.6256 (6) | 0.0957 (13) | |
H4 | 0.716824 | 0.165147 | 0.698781 | 0.115* | |
C5 | 0.7054 (2) | 0.2630 (3) | 0.5081 (4) | 0.0724 (10) | |
C6 | 0.7375 (2) | 0.3280 (3) | 0.3992 (5) | 0.0748 (10) | |
C7 | 0.6375 (2) | 0.3395 (3) | 0.3484 (4) | 0.0652 (10) | |
C8 | 0.57530 (16) | 0.3683 (3) | 0.2821 (4) | 0.0605 (8) | |
C9 | 0.52110 (19) | 0.3027 (3) | 0.3118 (4) | 0.0679 (10) | |
H9 | 0.523936 | 0.237162 | 0.373482 | 0.081* | |
C10 | 0.46302 (19) | 0.3338 (3) | 0.2509 (4) | 0.0785 (11) | |
H10 | 0.427035 | 0.288323 | 0.270114 | 0.094* | |
C11 | 0.45811 (19) | 0.4303 (4) | 0.1630 (4) | 0.0716 (10) | |
C12 | 0.5104 (2) | 0.4970 (4) | 0.1317 (5) | 0.0783 (11) | |
H12 | 0.506725 | 0.562819 | 0.070782 | 0.094* | |
C13 | 0.5690 (2) | 0.4659 (3) | 0.1912 (4) | 0.0752 (11) | |
H13 | 0.604801 | 0.511332 | 0.169824 | 0.090* | |
C14 | 0.3486 (2) | 0.4793 (3) | 0.1868 (5) | 0.0734 (11) | |
C15 | 0.2890 (2) | 0.4466 (3) | 0.1358 (5) | 0.0804 (11) | |
H15 | 0.284932 | 0.408992 | 0.043566 | 0.096* | |
C16 | 0.2358 (2) | 0.4694 (4) | 0.2210 (6) | 0.0827 (12) | |
C17 | 0.2414 (2) | 0.5253 (4) | 0.3584 (5) | 0.0845 (12) | |
C18 | 0.3018 (2) | 0.5574 (4) | 0.4094 (5) | 0.0890 (12) | |
H18 | 0.306198 | 0.594294 | 0.502000 | 0.107* | |
C19 | 0.3549 (2) | 0.5347 (4) | 0.3231 (5) | 0.0820 (11) | |
H19 | 0.395119 | 0.556988 | 0.357067 | 0.098* | |
C20 | 0.1739 (3) | 0.4332 (4) | 0.1682 (6) | 0.1069 (17) | |
C21 | 0.1857 (3) | 0.5498 (5) | 0.4466 (6) | 0.1113 (17) | |
C22 | 0.5253 (2) | 0.0068 (4) | 0.8099 (6) | 0.1185 (17) | |
H22A | 0.536012 | −0.018040 | 0.909946 | 0.178* | 0.623 (5) |
H22B | 0.479713 | 0.005567 | 0.797600 | 0.178* | 0.623 (5) |
H22C | 0.544633 | −0.045215 | 0.738362 | 0.178* | 0.623 (5) |
H22D | 0.497256 | −0.022369 | 0.886737 | 0.178* | 0.377 (5) |
H22E | 0.527035 | −0.048198 | 0.728417 | 0.178* | 0.377 (5) |
H22F | 0.567387 | 0.017228 | 0.850914 | 0.178* | 0.377 (5) |
C23 | 0.4951 (4) | 0.2180 (5) | 0.8988 (7) | 0.151 (2) | |
H23A | 0.502326 | 0.196930 | 1.001908 | 0.227* | 0.623 (5) |
H23B | 0.499347 | 0.301270 | 0.887593 | 0.227* | 0.623 (5) |
H23C | 0.452845 | 0.194538 | 0.869547 | 0.227* | 0.623 (5) |
H23D | 0.464660 | 0.183633 | 0.966396 | 0.227* | 0.377 (5) |
H23E | 0.536893 | 0.215626 | 0.943443 | 0.227* | 0.377 (5) |
H23F | 0.483454 | 0.297886 | 0.879270 | 0.227* | 0.377 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1A | 0.0892 (19) | 0.1040 (13) | 0.0676 (11) | −0.0240 (11) | −0.0011 (11) | 0.0104 (10) |
S1B | 0.124 (5) | 0.131 (3) | 0.087 (3) | 0.016 (3) | −0.017 (2) | 0.002 (2) |
O1 | 0.081 (2) | 0.135 (2) | 0.0614 (15) | 0.0085 (18) | 0.0017 (16) | 0.0154 (17) |
O2 | 0.159 (4) | 0.159 (3) | 0.109 (3) | 0.021 (3) | 0.056 (3) | 0.056 (2) |
N1 | 0.068 (2) | 0.0793 (19) | 0.078 (2) | −0.0039 (17) | 0.0160 (19) | −0.0036 (19) |
N2 | 0.078 (2) | 0.0676 (19) | 0.070 (2) | −0.0024 (17) | 0.0048 (19) | −0.0014 (16) |
N3 | 0.097 (3) | 0.166 (4) | 0.165 (4) | −0.038 (3) | −0.028 (3) | 0.051 (4) |
N4 | 0.102 (4) | 0.230 (6) | 0.135 (4) | 0.061 (4) | 0.025 (3) | 0.029 (4) |
C1 | 0.080 (3) | 0.110 (3) | 0.100 (3) | 0.005 (3) | 0.014 (3) | −0.028 (3) |
C2 | 0.079 (3) | 0.138 (5) | 0.113 (4) | 0.030 (3) | −0.003 (4) | −0.042 (4) |
C3 | 0.111 (5) | 0.112 (4) | 0.106 (4) | 0.052 (3) | −0.008 (4) | −0.028 (3) |
C4 | 0.103 (4) | 0.083 (3) | 0.101 (3) | 0.023 (3) | −0.001 (3) | −0.010 (3) |
C5 | 0.084 (3) | 0.062 (2) | 0.072 (3) | 0.014 (2) | 0.001 (3) | −0.011 (2) |
C6 | 0.068 (3) | 0.078 (3) | 0.078 (3) | 0.006 (2) | 0.009 (2) | −0.019 (2) |
C7 | 0.079 (3) | 0.0538 (19) | 0.063 (2) | −0.001 (2) | 0.011 (2) | −0.0006 (19) |
C8 | 0.070 (2) | 0.0558 (19) | 0.0556 (19) | −0.0026 (18) | 0.010 (2) | −0.0016 (19) |
C9 | 0.079 (3) | 0.064 (2) | 0.061 (2) | −0.009 (2) | 0.008 (2) | 0.0118 (18) |
C10 | 0.075 (3) | 0.085 (3) | 0.076 (3) | −0.013 (2) | 0.008 (2) | 0.010 (2) |
C11 | 0.071 (3) | 0.087 (3) | 0.057 (2) | 0.007 (2) | 0.006 (2) | 0.010 (2) |
C12 | 0.084 (3) | 0.076 (3) | 0.075 (3) | 0.002 (2) | 0.007 (2) | 0.020 (2) |
C13 | 0.081 (3) | 0.067 (2) | 0.077 (3) | −0.008 (2) | 0.011 (2) | 0.007 (2) |
C14 | 0.074 (3) | 0.085 (3) | 0.062 (2) | 0.003 (2) | −0.004 (2) | 0.022 (2) |
C15 | 0.084 (3) | 0.086 (3) | 0.071 (3) | −0.005 (2) | −0.013 (2) | 0.020 (2) |
C16 | 0.067 (3) | 0.087 (3) | 0.094 (3) | −0.004 (2) | −0.007 (3) | 0.037 (3) |
C17 | 0.075 (3) | 0.099 (3) | 0.079 (3) | 0.016 (2) | 0.000 (3) | 0.029 (3) |
C18 | 0.088 (4) | 0.106 (3) | 0.073 (3) | 0.021 (3) | −0.007 (3) | 0.007 (3) |
C19 | 0.073 (3) | 0.103 (3) | 0.071 (3) | 0.004 (2) | −0.009 (2) | 0.007 (2) |
C20 | 0.085 (3) | 0.117 (4) | 0.119 (4) | −0.012 (3) | −0.012 (3) | 0.050 (3) |
C21 | 0.089 (4) | 0.139 (4) | 0.106 (4) | 0.034 (3) | 0.008 (3) | 0.034 (3) |
C22 | 0.150 (5) | 0.096 (3) | 0.110 (4) | −0.009 (3) | 0.006 (3) | 0.021 (3) |
C23 | 0.231 (7) | 0.101 (4) | 0.122 (4) | 0.003 (4) | 0.046 (5) | −0.007 (4) |
S1A—O2 | 1.434 (4) | C10—C11 | 1.356 (5) |
S1A—C22 | 1.706 (5) | C10—H10 | 0.9300 |
S1A—C23 | 1.800 (6) | C11—C12 | 1.362 (5) |
S1B—O2 | 1.379 (5) | C12—C13 | 1.381 (5) |
S1B—C23 | 1.624 (7) | C12—H12 | 0.9300 |
S1B—C22 | 1.801 (6) | C13—H13 | 0.9300 |
O1—C14 | 1.367 (5) | C14—C19 | 1.374 (5) |
O1—C11 | 1.406 (4) | C14—C15 | 1.378 (5) |
N1—C7 | 1.314 (4) | C15—C16 | 1.372 (6) |
N1—C6 | 1.388 (5) | C15—H15 | 0.9300 |
N2—C7 | 1.361 (4) | C16—C17 | 1.384 (6) |
N2—C5 | 1.365 (5) | C16—C20 | 1.437 (7) |
N2—H2 | 0.8600 | C17—C18 | 1.390 (6) |
N3—C20 | 1.137 (6) | C17—C21 | 1.433 (7) |
N4—C21 | 1.132 (6) | C18—C19 | 1.375 (5) |
C1—C6 | 1.384 (6) | C18—H18 | 0.9300 |
C1—C2 | 1.384 (7) | C19—H19 | 0.9300 |
C1—H1 | 0.9300 | C22—H22A | 0.9600 |
C2—C3 | 1.384 (7) | C22—H22B | 0.9600 |
C2—H2A | 0.9300 | C22—H22C | 0.9600 |
C3—C4 | 1.372 (7) | C22—H22D | 0.9600 |
C3—H3 | 0.9300 | C22—H22E | 0.9600 |
C4—C5 | 1.395 (6) | C22—H22F | 0.9600 |
C4—H4 | 0.9300 | C23—H23A | 0.9600 |
C5—C6 | 1.392 (5) | C23—H23B | 0.9600 |
C7—C8 | 1.466 (5) | C23—H23C | 0.9600 |
C8—C9 | 1.384 (5) | C23—H23D | 0.9600 |
C8—C13 | 1.384 (5) | C23—H23E | 0.9600 |
C9—C10 | 1.376 (5) | C23—H23F | 0.9600 |
C9—H9 | 0.9300 | ||
O2—S1A—C22 | 110.0 (3) | C12—C13—C8 | 121.0 (4) |
O2—S1A—C23 | 104.1 (3) | C12—C13—H13 | 119.5 |
C22—S1A—C23 | 96.5 (3) | C8—C13—H13 | 119.5 |
O2—S1B—C23 | 116.7 (4) | O1—C14—C19 | 122.5 (4) |
O2—S1B—C22 | 107.6 (4) | O1—C14—C15 | 117.4 (4) |
C23—S1B—C22 | 99.4 (3) | C19—C14—C15 | 120.1 (4) |
C14—O1—C11 | 117.2 (3) | C16—C15—C14 | 120.1 (4) |
C7—N1—C6 | 104.9 (3) | C16—C15—H15 | 120.0 |
C7—N2—C5 | 106.9 (3) | C14—C15—H15 | 120.0 |
C7—N2—H2 | 126.5 | C15—C16—C17 | 120.3 (4) |
C5—N2—H2 | 126.5 | C15—C16—C20 | 119.8 (5) |
C6—C1—C2 | 118.1 (5) | C17—C16—C20 | 119.9 (5) |
C6—C1—H1 | 120.9 | C16—C17—C18 | 119.2 (5) |
C2—C1—H1 | 120.9 | C16—C17—C21 | 120.3 (5) |
C1—C2—C3 | 120.1 (5) | C18—C17—C21 | 120.6 (5) |
C1—C2—H2A | 120.0 | C19—C18—C17 | 120.1 (4) |
C3—C2—H2A | 120.0 | C19—C18—H18 | 119.9 |
C4—C3—C2 | 123.3 (5) | C17—C18—H18 | 119.9 |
C4—C3—H3 | 118.4 | C14—C19—C18 | 120.2 (4) |
C2—C3—H3 | 118.4 | C14—C19—H19 | 119.9 |
C3—C4—C5 | 116.2 (5) | C18—C19—H19 | 119.9 |
C3—C4—H4 | 121.9 | N3—C20—C16 | 179.4 (6) |
C5—C4—H4 | 121.9 | N4—C21—C17 | 177.9 (7) |
N2—C5—C6 | 105.9 (4) | S1A—C22—H22A | 109.5 |
N2—C5—C4 | 132.5 (4) | S1A—C22—H22B | 109.5 |
C6—C5—C4 | 121.6 (5) | H22A—C22—H22B | 109.5 |
C1—C6—N1 | 129.8 (4) | S1A—C22—H22C | 109.5 |
C1—C6—C5 | 120.7 (4) | H22A—C22—H22C | 109.5 |
N1—C6—C5 | 109.4 (4) | H22B—C22—H22C | 109.5 |
N1—C7—N2 | 112.8 (4) | S1B—C22—H22D | 109.5 |
N1—C7—C8 | 126.0 (3) | S1B—C22—H22E | 109.5 |
N2—C7—C8 | 121.2 (3) | H22D—C22—H22E | 109.5 |
C9—C8—C13 | 118.0 (4) | S1B—C22—H22F | 109.5 |
C9—C8—C7 | 122.0 (3) | H22D—C22—H22F | 109.5 |
C13—C8—C7 | 120.0 (3) | H22E—C22—H22F | 109.5 |
C10—C9—C8 | 120.6 (4) | S1A—C23—H23A | 109.5 |
C10—C9—H9 | 119.7 | S1A—C23—H23B | 109.5 |
C8—C9—H9 | 119.7 | H23A—C23—H23B | 109.5 |
C11—C10—C9 | 120.2 (4) | S1A—C23—H23C | 109.5 |
C11—C10—H10 | 119.9 | H23A—C23—H23C | 109.5 |
C9—C10—H10 | 119.9 | H23B—C23—H23C | 109.5 |
C10—C11—C12 | 120.8 (4) | S1B—C23—H23D | 109.5 |
C10—C11—O1 | 120.3 (4) | S1B—C23—H23E | 109.5 |
C12—C11—O1 | 118.8 (4) | H23D—C23—H23E | 109.5 |
C11—C12—C13 | 119.4 (4) | S1B—C23—H23F | 109.5 |
C11—C12—H12 | 120.3 | H23D—C23—H23F | 109.5 |
C13—C12—H12 | 120.3 | H23E—C23—H23F | 109.5 |
C6—C1—C2—C3 | 1.1 (7) | C8—C9—C10—C11 | −1.2 (6) |
C1—C2—C3—C4 | −0.3 (7) | C9—C10—C11—C12 | 1.0 (6) |
C2—C3—C4—C5 | −0.2 (7) | C9—C10—C11—O1 | 176.6 (3) |
C7—N2—C5—C6 | −1.6 (4) | C14—O1—C11—C10 | 60.5 (5) |
C7—N2—C5—C4 | 177.2 (4) | C14—O1—C11—C12 | −123.7 (4) |
C3—C4—C5—N2 | −178.8 (4) | C10—C11—C12—C13 | −0.4 (6) |
C3—C4—C5—C6 | −0.1 (6) | O1—C11—C12—C13 | −176.1 (4) |
C2—C1—C6—N1 | 177.1 (4) | C11—C12—C13—C8 | −0.1 (6) |
C2—C1—C6—C5 | −1.4 (6) | C9—C8—C13—C12 | −0.1 (5) |
C7—N1—C6—C1 | −178.8 (4) | C7—C8—C13—C12 | −177.8 (4) |
C7—N1—C6—C5 | −0.2 (4) | C11—O1—C14—C19 | 36.2 (5) |
N2—C5—C6—C1 | 179.9 (3) | C11—O1—C14—C15 | −146.4 (3) |
C4—C5—C6—C1 | 0.9 (6) | O1—C14—C15—C16 | −177.3 (3) |
N2—C5—C6—N1 | 1.1 (4) | C19—C14—C15—C16 | 0.1 (6) |
C4—C5—C6—N1 | −177.9 (3) | C14—C15—C16—C17 | 0.0 (6) |
C6—N1—C7—N2 | −0.9 (4) | C14—C15—C16—C20 | −178.9 (4) |
C6—N1—C7—C8 | 178.9 (3) | C15—C16—C17—C18 | −0.3 (6) |
C5—N2—C7—N1 | 1.6 (4) | C20—C16—C17—C18 | 178.6 (4) |
C5—N2—C7—C8 | −178.1 (3) | C15—C16—C17—C21 | 179.5 (4) |
N1—C7—C8—C9 | 161.5 (3) | C20—C16—C17—C21 | −1.6 (6) |
N2—C7—C8—C9 | −18.8 (5) | C16—C17—C18—C19 | 0.6 (6) |
N1—C7—C8—C13 | −20.9 (5) | C21—C17—C18—C19 | −179.2 (4) |
N2—C7—C8—C13 | 158.9 (3) | O1—C14—C19—C18 | 177.5 (4) |
C13—C8—C9—C10 | 0.7 (5) | C15—C14—C19—C18 | 0.2 (5) |
C7—C8—C9—C10 | 178.3 (3) | C17—C18—C19—C14 | −0.6 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O2 | 0.86 | 1.94 | 2.794 (5) | 172 |
N2—H2···S1A | 0.86 | 2.83 | 3.614 (4) | 152 |
C9—H9···O2 | 0.93 | 2.40 | 3.175 (5) | 141 |
C23—H23D···N4i | 0.96 | 2.63 | 3.500 (9) | 151 |
Symmetry code: (i) −x+1/2, y−1/2, z+1/2. |
Acknowledgements
The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).
Funding information
This study was supported by Ondokuz Mayıs University under project No. PYOFEN.1906.19.001 (contract No. PYOFEN.1906.19.001).
References
El Rashedy, A. A. & Aboul-Enein, H. Y. (2013). Mini Rev. Med. Chem. 13, 399–407. Web of Science CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gaba, M., Singh, S. & Mohan, C. (2014). Eur. J. Med. Chem. 76, 494–505. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kathiravan, M. K., Salake, A. B., Chothe, A. S., Dudhe, P. B., Watode, R. P., Mukta, M. S. & Gadhwe, S. (2012). Bioorg. Med. Chem. 20, 5678–5698. Web of Science CrossRef CAS PubMed Google Scholar
Khan, A. T., Parvin, T. & Choudhury, L. H. (2009). Synth. Commun. 39, 2339–2346. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Martínez-Díaz, M. V., Ince, M. & Torres, T. (2011). Monatsh. Chem. 142, 699–707. Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun., pp. 3814–3816. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Saraçoğlu, H., Güntepe, F., Yüksektepe, Ç. N. & Saydam, S. (2011). Mol. Cryst. Liq. Cryst. 537, 111–127. Google Scholar
Sen, P., Atmaca, G. Y., Erdogmus, A., Kanmazalp, S. D., Dege, N. & Yildiz, S. Z. (2018b). J. Lumin. 194, 123–130. Web of Science CSD CrossRef CAS Google Scholar
Sen, P., Kansiz, S., Dege, N., Iskenderov, T. S. & Yildiz, S. Z. (2018a). Acta Cryst. E74, 994–997. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Srestha, N., Banerjee, J. & Srivastava, S. (2014). IOSR J. Pharma 4, 28–41. Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Torre, G. de la, Vázquez, P., Agulló-López, F. & Torres, T. (2004). Chem. Rev. 104, 3723–3750. Web of Science PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.