research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 4-[4-(1H-benzo[d]imidazol-2-yl)phen­­oxy]phthalo­nitrile di­methyl sulfoxide monosolvate

CROSSMARK_Color_square_no_text.svg

aGaziantep University, Technical Sciences, 27310, Gaziantep, Turkey, bCentre for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown, South Africa, cOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139 Samsun, Turkey, dSakarya University, Faculty of Arts and Sciences, Department of Chemistry, 54187, Sakarya, Turkey, eDepartment of Mathematics and Science Education, Faculty of Education, Ondokuz Mayıs University, Samsun, Turkey, and fTaras Shevchenko National University of Kyiv, Department of Chemistry, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: sibeld@gantep.edu.tr, necmid@omu.edu.tr, igolenya@ua.fm

Edited by M. Weil, Vienna University of Technology, Austria (Received 20 March 2019; accepted 7 May 2019; online 10 May 2019)

This work presents the synthesis and structural characterization of [4-(1H-benzo[d]imidazol-2-yl)phen­oxy]phthalo­nitrile, a phthalo­nitrile derivative carrying a benzimidazole moiety. The compound crystallizes as its dimethyl sulfoxide monosolvate, C21H12N4O·(CH3)2SO. The dihedral angle between the two fused rings in the heterocyclic ring system is 2.11 (1)°, while the phenyl ring attached to the imidazole moiety is inclined by 20.7 (1)° to the latter. In the crystal structure, adjacent mol­ecules are connected by pairs of weak inter­molecular C—H⋯N hydrogen bonds into inversion dimers. N—H⋯O and C—H⋯O hydrogen bonds with R21(7) graph-set motifs are also formed between the organic mol­ecule and the disordered dimethyl sulfoxide solvent [occupancy ratio of 0.623 (5):0.377 (5) for the two sites of the sulfur atom]. Hirshfeld surface analysis and fingerprint plots were used to investigate the inter­molecular inter­actions in the crystalline state.

1. Chemical context

Benzimidazole and its derivatives are some of the oldest and chemically most-studied nitro­gen-containing aromatic heterocyclic compounds (Srestha et al., 2014[Srestha, N., Banerjee, J. & Srivastava, S. (2014). IOSR J. Pharma 4, 28-41.]). They have a wide range of applications in medicinal chemistry and in biological processes including as anti­cancer, anti­ulcer, anti­fungal and anti-inflammatory agents, and exhibit anti­mycobacterial and anti­oxidant activities (El Rashedy & Aboul-Enein, 2013[El Rashedy, A. A. & Aboul-Enein, H. Y. (2013). Mini Rev. Med. Chem. 13, 399-407.]; Gaba et al., 2014[Gaba, M., Singh, S. & Mohan, C. (2014). Eur. J. Med. Chem. 76, 494-505.]; Kathiravan et al., 2012[Kathiravan, M. K., Salake, A. B., Chothe, A. S., Dudhe, P. B., Watode, R. P., Mukta, M. S. & Gadhwe, S. (2012). Bioorg. Med. Chem. 20, 5678-5698.]). They are also used as ligands with fluorescent properties. The fluorescent characteristic of these compounds can be changed by substitution or derivatization of different groups at the NH position of the benzimidazole skeleton.

Phthalo­nitrile derivatives are some of the most widely used precursors for the preparation of phthalocyanines (Pc). The preparation of phthalocyanines is frequently carried out by a cyclo­tetra­merization reaction of phthalo­nitriles. The synthesis of the latter compound family, carrying different functional groups, leads to functionalized phthalocyanines that are of great importance with respect to new mol­ecular materials and targeted applications such as catalysis, liquid crystals, photosensitizers for photodynamic therapy (PDT), non-linear optics, nanotechnology or dye-sensitized solar cells (Torre et al., 2004[Torre, G. de la, Vázquez, P., Agulló-López, F. & Torres, T. (2004). Chem. Rev. 104, 3723-3750.]; Martínez-Díaz et al., 2011[Martínez-Díaz, M. V., Ince, M. & Torres, T. (2011). Monatsh. Chem. 142, 699-707.]). In this context, we have recently described a model study, i.e. the synthesis, characterization and Hirshfeld surface analysis of zinc phthalocyanines carrying benzimidazole groups through oxygen bridges to a Zn–Pc core (Sen et al., 2018b[Sen, P., Atmaca, G. Y., Erdogmus, A., Kanmazalp, S. D., Dege, N. & Yildiz, S. Z. (2018b). J. Lumin. 194, 123-130.]). Here we report the synthesis, structural characterization and Hirshfeld surface analysis of a related ligand that crystallizes as its di­methyl­sulfoxide monosolvate, C21H12N4O·(CH3)2SO.

[Scheme 1]

2. Structural commentary

The mol­ecular components of the title compound are shown in Fig. 1[link]. The mol­ecular structure of the phthalo­nitrile derivative is constructed from three ring systems, viz. a central phen­oxy ring, a terminal phthalo­nitrile system and a terminal benzimidazole ring. The bond lengths of the cyano groups, 1.132 (6) and 1.137 (6) Å, for C21≡N4 and C20≡N3, respectively, conform well with literature values (Saraçoğlu et al., 2011[Saraçoğlu, H., Güntepe, F., Yüksektepe, Ç. N. & Saydam, S. (2011). Mol. Cryst. Liq. Cryst. 537, 111-127.]). The corresponding C—C≡N angles [179.4 (6) and 177.9 (7)°] are almost linear and are also in good agreement with literature values (Saraçoğlu et al., 2011[Saraçoğlu, H., Güntepe, F., Yüksektepe, Ç. N. & Saydam, S. (2011). Mol. Cryst. Liq. Cryst. 537, 111-127.]; Sen et al., 2018a[Sen, P., Kansiz, S., Dege, N., Iskenderov, T. S. & Yildiz, S. Z. (2018a). Acta Cryst. E74, 994-997.]). The C—C bond lengths of the phenyl rings are in the normal range of 1.356 (5)–1.395 (6) Å, i.e. characteristic of a delocalized system. The dihedral angle of 2.11 (1)° between the fused C1–C6 and C5/N2/C7/N1/C6 rings in the heterocycle indicate a minute deviation from planarity, whereas the attached C8–C13 ring is inclined by 20.7 (1)° to the C5/N2/C7/N1/C6 ring plane.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds (Table 1[link]) are shown as dashed lines.

3. Supra­molecular features

In the crystal structure, N2—H2⋯O2 and C9—H9⋯O2 inter­molecular hydrogen bonding inter­actions with an R21(7) graph-set motif are present, whereby the O2 atom acts as an acceptor in both cases (Fig. 1[link]). There are also weak inter­molecular N2—H2⋯S1A inter­actions between the the N—H group of the imidazole ring and the disordered dimethyl sulfate solvent, and a C23—H23D⋯N4 inter­action between one of the methyl groups of the dimethyl sulfoxide solvent and one of the nitrile N atoms (Table 1[link], Fig. 2[link]). These inter­actions lead to the formation of a three-dimensional supra­molecular network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.86 1.94 2.794 (5) 172
N2—H2⋯S1A 0.86 2.83 3.614 (4) 152
C9—H9⋯O2 0.93 2.40 3.175 (5) 141
C23—H23D⋯N4i 0.96 2.63 3.500 (9) 151
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view of the crystal packing of the title compound. Dashed lines denote the N2—H2⋯S1A, N2—H2⋯O2 and C23—H23D⋯N4 inter­molecular hydrogen-bonding inter­actions.

4. Database survey

A search of the Cambridge Structural database (CSD, version 5.40, update November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 4-[4-(1H-benzo[d]imidazole-2­yl)phen­oxy]phthalo­nitrile moiety revealed two hits. Distinctive bond lengths (N4≡C21, N3≡C20, C7—N2, C5—N2) in the title structure are the same within standard uncertainties as the corresponding bond lengths in the structures of 4-[4-(1H-benzimidazol-2-yl)phen­oxy]benzene-1,2-dicarbo­nitrile monohydrate (HIDHEK; Sen et al., 2018b[Sen, P., Atmaca, G. Y., Erdogmus, A., Kanmazalp, S. D., Dege, N. & Yildiz, S. Z. (2018b). J. Lumin. 194, 123-130.]) or 4-{4-[1-(prop-2-en-1-yl)-1H-benzimidazol-2-yl]phen­oxy}benzene-1,2-dicarbo­nitrile (RELBUI; Sen et al., 2018a[Sen, P., Kansiz, S., Dege, N., Iskenderov, T. S. & Yildiz, S. Z. (2018a). Acta Cryst. E74, 994-997.]). In these structures, the C—O bond lengths vary from 1.363–1.407 Å. In the title mol­ecule, the corresponding bond lengths are 1.367 (5) and 1.406 (4) Å, respectively. In all these structures, the mol­ecules are linked into chains by C—H⋯N hydrogen bonds.

5. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun., pp. 3814-3816.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]). The Hirshfeld surfaces were generated using a standard (high) surface resolution with the three-dimensional surfaces mapped over dnorm (Fig. 3[link]). For the title mol­ecule, the H⋯H inter­actions appear in the middle of the scattered points in the fingerprint plots with a contribution to the overall Hirshfeld surface of 36.1% (Fig. 4[link]). The contribution from the N⋯H/H⋯N contacts, corresponding to the C—H⋯N inter­actions, is represented by a pair of sharp spikes characteristic of a rather strong hydrogen-bonding inter­action (23.6%). The whole fingerprint region and all other inter­actions are displayed in Fig. 4[link]. In particular, the O⋯H/H⋯O contacts indicate the presence of inter­molecular C—H⋯O and N—H⋯O inter­actions.

[Figure 3]
Figure 3
The Hirshfeld surface of the title compound mapped with dnorm in the range −0.6328 to 1.3784 a.u.
[Figure 4]
Figure 4
Two-dimensional fingerprint plots with a dnorm view of all inter­actions in the title compound, and subdivided into H⋯H (36.1%), N⋯H/H⋯N(23.6%), C⋯H/H⋯C (15.1%), C⋯C/C⋯C (12.4%), O⋯H/H⋯O (5.0%), C⋯N/N⋯C (3.7%), C⋯O/O⋯C (1.8%) and S⋯H/H⋯S (1.6%) contacts.

A view of the mol­ecular electrostatic potential for the title compound, using the STO-3G basis set at the Hartree–Fock level of theory, is shown in Fig. 5[link]. The N—H⋯N and C—H⋯N hydrogen-bond donor and acceptor groups are shown as blue and red areas around the atoms related with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively.

[Figure 5]
Figure 5
A view of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potentials in the range −0.0893 to 0.1930 a.u.

6. Synthesis and crystallization

2-(4-Hy­droxy-phen­yl)-benzimidazole (1.2 g, 5.71 mmol), which was synthesized by the reaction of o-phenyl­enedi­amine and 4-hy­droxy­benzaldehyde, and 4-nitro­phthalo­nitrile (0.989 g, 5.71 mmol) were dissolved in DMF (15 ml) and degassed by argon in a dual-bank vacuum-gas manifold system. After stirring for 15 min, finely ground anhydrous K2CO3 (0.790 g, 5.71 mmol) was added portion-wise over 2 h under stirring. The suspension solution was maintained at 333 K for 24 h. After completion of the reaction, the crude product was precipitated by pouring into ice–water. The precipitate was collected by filtration, washed with hot water, ethanol, diethyl ether and was finally dried in vacuo. The desired compound was obtained in sufficient purity. The obtained spectroscopic data are accordance with the literature (Khan et al., 2009[Khan, A. T., Parvin, T. & Choudhury, L. H. (2009). Synth. Commun. 39, 2339-2346.]). Single crystals for structure analysis were obtained from slow evaporation of a DMSO solution.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å for aromatic groups, with N—H = 0.86 Å for the imidazole moiety and with 0.96 Å for methyl groups. Uiso(H) values were constrained to 1.2–1.5 Ueq of their carrier atoms. The sulfur atom of the di­methyl­sulfate solvent is disordered over two sites (S1A and S1B), with an occupancy ratio of 0.623 (5):0.377 (5).

Table 2
Experimental details

Crystal data
Chemical formula C21H12N4O·C2H6OS
Mr 414.47
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 296
a, b, c (Å) 20.9154 (11), 11.4208 (6), 8.8938 (6)
V3) 2124.5 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.18
Crystal size (mm) 0.65 × 0.56 × 0.47
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.966, 0.977
No. of measured, independent and observed [I > 2σ(I)] reflections 15225, 4660, 2281
Rint 0.058
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.098, 0.83
No. of reflections 4660
No. of parameters 281
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.12
Absolute structure Flack x determined using 771 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.02 (8)
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

4-[4-(1H-Benzo[d]imidazol-2-yl)phenoxy]phthalonitrile dimethyl sulfoxide monosolvate top
Crystal data top
C21H12N4O·C2H6OSDx = 1.296 Mg m3
Mr = 414.47Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 9474 reflections
a = 20.9154 (11) Åθ = 1.8–27.0°
b = 11.4208 (6) ŵ = 0.18 mm1
c = 8.8938 (6) ÅT = 296 K
V = 2124.5 (2) Å3Prism, yellow
Z = 40.65 × 0.56 × 0.47 mm
F(000) = 864
Data collection top
Stoe IPDS 2
diffractometer
4660 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2281 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.058
Detector resolution: 6.67 pixels mm-1θmax = 27.1°, θmin = 2.0°
rotation method scansh = 2622
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1414
Tmin = 0.966, Tmax = 0.977l = 1111
15225 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0409P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098(Δ/σ)max < 0.001
S = 0.83Δρmax = 0.20 e Å3
4660 reflectionsΔρmin = 0.12 e Å3
281 parametersAbsolute structure: Flack x determined using 771 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.02 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S1A0.55296 (11)0.14556 (16)0.7814 (2)0.0869 (9)0.623 (5)
S1B0.4957 (2)0.1452 (4)0.7420 (4)0.114 (2)0.377 (5)
O10.39958 (15)0.4586 (3)0.0943 (3)0.0925 (8)
O20.53727 (19)0.1838 (3)0.6323 (4)0.1425 (15)
N10.69349 (16)0.3756 (2)0.2997 (4)0.0751 (8)
N20.64212 (17)0.2699 (2)0.4721 (3)0.0720 (8)
H20.6110360.2365980.5187710.086*
N30.1249 (2)0.4056 (4)0.1258 (7)0.1429 (19)
N40.1428 (2)0.5716 (5)0.5187 (7)0.156 (2)
C10.8034 (2)0.3391 (4)0.4030 (6)0.0968 (13)
H10.8249930.3809860.3292420.116*
C20.8361 (3)0.2860 (5)0.5198 (7)0.1100 (17)
H2A0.8803520.2931170.5261120.132*
C30.8032 (3)0.2223 (5)0.6272 (7)0.1098 (16)
H30.8263490.1872420.7042340.132*
C40.7380 (3)0.2085 (4)0.6256 (6)0.0957 (13)
H40.7168240.1651470.6987810.115*
C50.7054 (2)0.2630 (3)0.5081 (4)0.0724 (10)
C60.7375 (2)0.3280 (3)0.3992 (5)0.0748 (10)
C70.6375 (2)0.3395 (3)0.3484 (4)0.0652 (10)
C80.57530 (16)0.3683 (3)0.2821 (4)0.0605 (8)
C90.52110 (19)0.3027 (3)0.3118 (4)0.0679 (10)
H90.5239360.2371620.3734820.081*
C100.46302 (19)0.3338 (3)0.2509 (4)0.0785 (11)
H100.4270350.2883230.2701140.094*
C110.45811 (19)0.4303 (4)0.1630 (4)0.0716 (10)
C120.5104 (2)0.4970 (4)0.1317 (5)0.0783 (11)
H120.5067250.5628190.0707820.094*
C130.5690 (2)0.4659 (3)0.1912 (4)0.0752 (11)
H130.6048010.5113320.1698240.090*
C140.3486 (2)0.4793 (3)0.1868 (5)0.0734 (11)
C150.2890 (2)0.4466 (3)0.1358 (5)0.0804 (11)
H150.2849320.4089920.0435660.096*
C160.2358 (2)0.4694 (4)0.2210 (6)0.0827 (12)
C170.2414 (2)0.5253 (4)0.3584 (5)0.0845 (12)
C180.3018 (2)0.5574 (4)0.4094 (5)0.0890 (12)
H180.3061980.5942940.5020000.107*
C190.3549 (2)0.5347 (4)0.3231 (5)0.0820 (11)
H190.3951190.5569880.3570670.098*
C200.1739 (3)0.4332 (4)0.1682 (6)0.1069 (17)
C210.1857 (3)0.5498 (5)0.4466 (6)0.1113 (17)
C220.5253 (2)0.0068 (4)0.8099 (6)0.1185 (17)
H22A0.5360120.0180400.9099460.178*0.623 (5)
H22B0.4797130.0055670.7976000.178*0.623 (5)
H22C0.5446330.0452150.7383620.178*0.623 (5)
H22D0.4972560.0223690.8867370.178*0.377 (5)
H22E0.5270350.0481980.7284170.178*0.377 (5)
H22F0.5673870.0172280.8509140.178*0.377 (5)
C230.4951 (4)0.2180 (5)0.8988 (7)0.151 (2)
H23A0.5023260.1969301.0019080.227*0.623 (5)
H23B0.4993470.3012700.8875930.227*0.623 (5)
H23C0.4528450.1945380.8695470.227*0.623 (5)
H23D0.4646600.1836330.9663960.227*0.377 (5)
H23E0.5368930.2156260.9434430.227*0.377 (5)
H23F0.4834540.2978860.8792700.227*0.377 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0892 (19)0.1040 (13)0.0676 (11)0.0240 (11)0.0011 (11)0.0104 (10)
S1B0.124 (5)0.131 (3)0.087 (3)0.016 (3)0.017 (2)0.002 (2)
O10.081 (2)0.135 (2)0.0614 (15)0.0085 (18)0.0017 (16)0.0154 (17)
O20.159 (4)0.159 (3)0.109 (3)0.021 (3)0.056 (3)0.056 (2)
N10.068 (2)0.0793 (19)0.078 (2)0.0039 (17)0.0160 (19)0.0036 (19)
N20.078 (2)0.0676 (19)0.070 (2)0.0024 (17)0.0048 (19)0.0014 (16)
N30.097 (3)0.166 (4)0.165 (4)0.038 (3)0.028 (3)0.051 (4)
N40.102 (4)0.230 (6)0.135 (4)0.061 (4)0.025 (3)0.029 (4)
C10.080 (3)0.110 (3)0.100 (3)0.005 (3)0.014 (3)0.028 (3)
C20.079 (3)0.138 (5)0.113 (4)0.030 (3)0.003 (4)0.042 (4)
C30.111 (5)0.112 (4)0.106 (4)0.052 (3)0.008 (4)0.028 (3)
C40.103 (4)0.083 (3)0.101 (3)0.023 (3)0.001 (3)0.010 (3)
C50.084 (3)0.062 (2)0.072 (3)0.014 (2)0.001 (3)0.011 (2)
C60.068 (3)0.078 (3)0.078 (3)0.006 (2)0.009 (2)0.019 (2)
C70.079 (3)0.0538 (19)0.063 (2)0.001 (2)0.011 (2)0.0006 (19)
C80.070 (2)0.0558 (19)0.0556 (19)0.0026 (18)0.010 (2)0.0016 (19)
C90.079 (3)0.064 (2)0.061 (2)0.009 (2)0.008 (2)0.0118 (18)
C100.075 (3)0.085 (3)0.076 (3)0.013 (2)0.008 (2)0.010 (2)
C110.071 (3)0.087 (3)0.057 (2)0.007 (2)0.006 (2)0.010 (2)
C120.084 (3)0.076 (3)0.075 (3)0.002 (2)0.007 (2)0.020 (2)
C130.081 (3)0.067 (2)0.077 (3)0.008 (2)0.011 (2)0.007 (2)
C140.074 (3)0.085 (3)0.062 (2)0.003 (2)0.004 (2)0.022 (2)
C150.084 (3)0.086 (3)0.071 (3)0.005 (2)0.013 (2)0.020 (2)
C160.067 (3)0.087 (3)0.094 (3)0.004 (2)0.007 (3)0.037 (3)
C170.075 (3)0.099 (3)0.079 (3)0.016 (2)0.000 (3)0.029 (3)
C180.088 (4)0.106 (3)0.073 (3)0.021 (3)0.007 (3)0.007 (3)
C190.073 (3)0.103 (3)0.071 (3)0.004 (2)0.009 (2)0.007 (2)
C200.085 (3)0.117 (4)0.119 (4)0.012 (3)0.012 (3)0.050 (3)
C210.089 (4)0.139 (4)0.106 (4)0.034 (3)0.008 (3)0.034 (3)
C220.150 (5)0.096 (3)0.110 (4)0.009 (3)0.006 (3)0.021 (3)
C230.231 (7)0.101 (4)0.122 (4)0.003 (4)0.046 (5)0.007 (4)
Geometric parameters (Å, º) top
S1A—O21.434 (4)C10—C111.356 (5)
S1A—C221.706 (5)C10—H100.9300
S1A—C231.800 (6)C11—C121.362 (5)
S1B—O21.379 (5)C12—C131.381 (5)
S1B—C231.624 (7)C12—H120.9300
S1B—C221.801 (6)C13—H130.9300
O1—C141.367 (5)C14—C191.374 (5)
O1—C111.406 (4)C14—C151.378 (5)
N1—C71.314 (4)C15—C161.372 (6)
N1—C61.388 (5)C15—H150.9300
N2—C71.361 (4)C16—C171.384 (6)
N2—C51.365 (5)C16—C201.437 (7)
N2—H20.8600C17—C181.390 (6)
N3—C201.137 (6)C17—C211.433 (7)
N4—C211.132 (6)C18—C191.375 (5)
C1—C61.384 (6)C18—H180.9300
C1—C21.384 (7)C19—H190.9300
C1—H10.9300C22—H22A0.9600
C2—C31.384 (7)C22—H22B0.9600
C2—H2A0.9300C22—H22C0.9600
C3—C41.372 (7)C22—H22D0.9600
C3—H30.9300C22—H22E0.9600
C4—C51.395 (6)C22—H22F0.9600
C4—H40.9300C23—H23A0.9600
C5—C61.392 (5)C23—H23B0.9600
C7—C81.466 (5)C23—H23C0.9600
C8—C91.384 (5)C23—H23D0.9600
C8—C131.384 (5)C23—H23E0.9600
C9—C101.376 (5)C23—H23F0.9600
C9—H90.9300
O2—S1A—C22110.0 (3)C12—C13—C8121.0 (4)
O2—S1A—C23104.1 (3)C12—C13—H13119.5
C22—S1A—C2396.5 (3)C8—C13—H13119.5
O2—S1B—C23116.7 (4)O1—C14—C19122.5 (4)
O2—S1B—C22107.6 (4)O1—C14—C15117.4 (4)
C23—S1B—C2299.4 (3)C19—C14—C15120.1 (4)
C14—O1—C11117.2 (3)C16—C15—C14120.1 (4)
C7—N1—C6104.9 (3)C16—C15—H15120.0
C7—N2—C5106.9 (3)C14—C15—H15120.0
C7—N2—H2126.5C15—C16—C17120.3 (4)
C5—N2—H2126.5C15—C16—C20119.8 (5)
C6—C1—C2118.1 (5)C17—C16—C20119.9 (5)
C6—C1—H1120.9C16—C17—C18119.2 (5)
C2—C1—H1120.9C16—C17—C21120.3 (5)
C1—C2—C3120.1 (5)C18—C17—C21120.6 (5)
C1—C2—H2A120.0C19—C18—C17120.1 (4)
C3—C2—H2A120.0C19—C18—H18119.9
C4—C3—C2123.3 (5)C17—C18—H18119.9
C4—C3—H3118.4C14—C19—C18120.2 (4)
C2—C3—H3118.4C14—C19—H19119.9
C3—C4—C5116.2 (5)C18—C19—H19119.9
C3—C4—H4121.9N3—C20—C16179.4 (6)
C5—C4—H4121.9N4—C21—C17177.9 (7)
N2—C5—C6105.9 (4)S1A—C22—H22A109.5
N2—C5—C4132.5 (4)S1A—C22—H22B109.5
C6—C5—C4121.6 (5)H22A—C22—H22B109.5
C1—C6—N1129.8 (4)S1A—C22—H22C109.5
C1—C6—C5120.7 (4)H22A—C22—H22C109.5
N1—C6—C5109.4 (4)H22B—C22—H22C109.5
N1—C7—N2112.8 (4)S1B—C22—H22D109.5
N1—C7—C8126.0 (3)S1B—C22—H22E109.5
N2—C7—C8121.2 (3)H22D—C22—H22E109.5
C9—C8—C13118.0 (4)S1B—C22—H22F109.5
C9—C8—C7122.0 (3)H22D—C22—H22F109.5
C13—C8—C7120.0 (3)H22E—C22—H22F109.5
C10—C9—C8120.6 (4)S1A—C23—H23A109.5
C10—C9—H9119.7S1A—C23—H23B109.5
C8—C9—H9119.7H23A—C23—H23B109.5
C11—C10—C9120.2 (4)S1A—C23—H23C109.5
C11—C10—H10119.9H23A—C23—H23C109.5
C9—C10—H10119.9H23B—C23—H23C109.5
C10—C11—C12120.8 (4)S1B—C23—H23D109.5
C10—C11—O1120.3 (4)S1B—C23—H23E109.5
C12—C11—O1118.8 (4)H23D—C23—H23E109.5
C11—C12—C13119.4 (4)S1B—C23—H23F109.5
C11—C12—H12120.3H23D—C23—H23F109.5
C13—C12—H12120.3H23E—C23—H23F109.5
C6—C1—C2—C31.1 (7)C8—C9—C10—C111.2 (6)
C1—C2—C3—C40.3 (7)C9—C10—C11—C121.0 (6)
C2—C3—C4—C50.2 (7)C9—C10—C11—O1176.6 (3)
C7—N2—C5—C61.6 (4)C14—O1—C11—C1060.5 (5)
C7—N2—C5—C4177.2 (4)C14—O1—C11—C12123.7 (4)
C3—C4—C5—N2178.8 (4)C10—C11—C12—C130.4 (6)
C3—C4—C5—C60.1 (6)O1—C11—C12—C13176.1 (4)
C2—C1—C6—N1177.1 (4)C11—C12—C13—C80.1 (6)
C2—C1—C6—C51.4 (6)C9—C8—C13—C120.1 (5)
C7—N1—C6—C1178.8 (4)C7—C8—C13—C12177.8 (4)
C7—N1—C6—C50.2 (4)C11—O1—C14—C1936.2 (5)
N2—C5—C6—C1179.9 (3)C11—O1—C14—C15146.4 (3)
C4—C5—C6—C10.9 (6)O1—C14—C15—C16177.3 (3)
N2—C5—C6—N11.1 (4)C19—C14—C15—C160.1 (6)
C4—C5—C6—N1177.9 (3)C14—C15—C16—C170.0 (6)
C6—N1—C7—N20.9 (4)C14—C15—C16—C20178.9 (4)
C6—N1—C7—C8178.9 (3)C15—C16—C17—C180.3 (6)
C5—N2—C7—N11.6 (4)C20—C16—C17—C18178.6 (4)
C5—N2—C7—C8178.1 (3)C15—C16—C17—C21179.5 (4)
N1—C7—C8—C9161.5 (3)C20—C16—C17—C211.6 (6)
N2—C7—C8—C918.8 (5)C16—C17—C18—C190.6 (6)
N1—C7—C8—C1320.9 (5)C21—C17—C18—C19179.2 (4)
N2—C7—C8—C13158.9 (3)O1—C14—C19—C18177.5 (4)
C13—C8—C9—C100.7 (5)C15—C14—C19—C180.2 (5)
C7—C8—C9—C10178.3 (3)C17—C18—C19—C140.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.861.942.794 (5)172
N2—H2···S1A0.862.833.614 (4)152
C9—H9···O20.932.403.175 (5)141
C23—H23D···N4i0.962.633.500 (9)151
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

Funding information

This study was supported by Ondokuz Mayıs University under project No. PYOFEN.1906.19.001 (contract No. PYOFEN.1906.19.001).

References

First citationEl Rashedy, A. A. & Aboul-Enein, H. Y. (2013). Mini Rev. Med. Chem. 13, 399–407.  Web of Science CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGaba, M., Singh, S. & Mohan, C. (2014). Eur. J. Med. Chem. 76, 494–505.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKathiravan, M. K., Salake, A. B., Chothe, A. S., Dudhe, P. B., Watode, R. P., Mukta, M. S. & Gadhwe, S. (2012). Bioorg. Med. Chem. 20, 5678–5698.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKhan, A. T., Parvin, T. & Choudhury, L. H. (2009). Synth. Commun. 39, 2339–2346.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartínez-Díaz, M. V., Ince, M. & Torres, T. (2011). Monatsh. Chem. 142, 699–707.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun., pp. 3814–3816.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSaraçoğlu, H., Güntepe, F., Yüksektepe, Ç. N. & Saydam, S. (2011). Mol. Cryst. Liq. Cryst. 537, 111–127.  Google Scholar
First citationSen, P., Atmaca, G. Y., Erdogmus, A., Kanmazalp, S. D., Dege, N. & Yildiz, S. Z. (2018b). J. Lumin. 194, 123–130.  Web of Science CSD CrossRef CAS Google Scholar
First citationSen, P., Kansiz, S., Dege, N., Iskenderov, T. S. & Yildiz, S. Z. (2018a). Acta Cryst. E74, 994–997.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrestha, N., Banerjee, J. & Srivastava, S. (2014). IOSR J. Pharma 4, 28–41.  Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTorre, G. de la, Vázquez, P., Agulló-López, F. & Torres, T. (2004). Chem. Rev. 104, 3723–3750.  Web of Science PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds