research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of (1,4,7,10-tetra­aza­cyclo­do­decane-κ4N)(tetra­sulfido-κ2S1,S4)manganese(II)

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, Universität Kiel, Max-Eyth. Str. 2, 241128 Kiel, Germany
*Correspondence e-mail: wbensch@ac.uni-kiel.de

Edited by A. J. Lough, University of Toronto, Canada (Received 11 February 2020; accepted 21 February 2020; online 28 February 2020)

The title compound, [Mn(S4)(C8H20N4)], was accidentally obtained by the hydro­thermal reaction of Mn(ClO4)2·6H2O, cyclen (cyclen = 1,4,7,10-tetra­aza­cyclo­dodeca­ne) and Na3SbS4·9H2O in water at 413 K, indicating that polysulfide anions might represent inter­mediates in the synthesis of thio­metallate compounds using Na3SbS4·9H2O as a reactant. X-ray powder diffraction proves that the sample is slightly contaminated with NaSb(OH)6 and an unknown crystalline phase. The crystal investigated was twinned with a twofold rotation axis as the twin element, and therefore a twin refinement using data in HKLF-5 format was performed. The asymmetric unit of the title compound consists of one MnII cation, one [S4]2− anion and one cyclen ligand in general positions. The MnII cation is sixfold coordinated by two cis-S atoms of the [S4]2− anions, as well as four N atoms of the cyclen ligand within an irregular coordination. The complexes are linked via pairs of N—H⋯S hydrogen bonds into chains, which are further linked into layers by additional N—H⋯S hydrogen bonding. These layers are connected into a three-dimensional network by inter­molecular N—H⋯S and C—H⋯S hydrogen bonding. It is noted that only one similar complex with MnII is reported in the literature.

1. Chemical context

Investigations on the synthesis and crystal structures of new inorganic–organic chalcogenidometallates are an important topic in inorganic chemistry and many such compounds have been reported in the literature (Sheldrick & Wachhold, 1988[Sheldrick, W. S. & Wachhold, M. (1988). Coord. Chem. Rev. 176, 211-322.]; Dehnen & Melullis, 2007[Dehnen, S. & Melullis, M. (2007). Coord. Chem. Rev. 251, 1259-1280.]; Seidlhofer et al., 2010[Seidlhofer, B., Pienack, N. & Bensch, W. (2010). Z. Naturforsch. B, 65, 937-975.], 2011[Seidlhofer, B., Djamil, J., Näther, C. & Bensch, W. (2011). Cryst. Growth Des. 11, 5554-5560.]; Wang et al., 2016[Wang, K. Y., Feng, M. L., Huang, X. Y. & Li, J. (2016). Coord. Chem. Rev. 322, 41-68.]; Zhou, 2016[Zhou, J. (2016). Coord. Chem. Rev. 315, 112-134.]; Zhu & Dai, 2017[Zhu, Q. Y. & Dai, J. (2017). Coord. Chem. Rev. 330, 95-109.]; Nie et al., 2017[Nie, L., Liu, G., Xie, J., Lim, T. T., Armatas, G. S., Xu, R. & Zhang, Q. (2017). Inorg. Chem. Front, 4, 945-959.]). In this context, thio­anti­monates are of special inter­est because they show a variety of coordination numbers and can form networks of different dimensionality (Schur et al., 2001[Schur, M., Näther, C. & Bensch, W. (2001). Z. Naturforsch. B, 56, 79-84.]; Jia et al., 2004[Jia, D. X., Zhang, Y., Dai, J., Zhu, Q. Y. & Gu, X. M. (2004). J. Solid State Chem. 177, 2477-2483.]; Powell et al., 2005[Powell, A. V., Thun, J. & Chippindale, A. M. (2005). J. Solid State Chem. 178, 3414-3419.]; Zhang et al., 2007[Zhang, M., Sheng, T. L., Huang, X. H., Fu, R. B., Wang, X., Hu, S. H., Xiang, C. & Wu, X. T. (2007). Eur. J. Inorg. Chem. pp. 1606-1612.]; Liu & Zhou, 2011[Liu, X. & Zhou, J. (2011). Inorg. Chem. Commun. 14, 1268-1289.]; Engelke et al., 2004[Engelke, L., Stähler, R., Schur, M., Näther, C., Bensch, W., Pöttgen, R. & Möller, M. H. (2004). Z. Naturforsch. B. 59, 869-876.]; Puls et al., 2006[Puls, A., Näther, C. & Bensch, W. (2006). Z. Anorg. Allg. Chem. 632, 1239-1243.]). This is the reason why we have been inter­ested in this class of compounds for several years (Bensch et al., 1997[Bensch, W., Näther, C. & Schur, M. (1997). Chem. Commun. pp. 1773-1774.]; Spetzler et al., 2004[Spetzler, V., Rijnberk, H., Näther, C. & Bensch, W. (2004). Z. Anorg. Allg. Chem. 630, 142-148.], 2005[Spetzler, V., Näther, C. & Bensch, W. (2005). Inorg. Chem. 44, 5805-5812.]; Stähler et al., 2001[Stähler, R., Näther, C. & Bensch, W. (2001). Acta Cryst. C57, 26-27.]; Lühmann et al., 2008[Lühmann, H., Rejai, Z., Möller, K., Leisner, P., Ordolff, M. E., Näther, C. & Bensch, W. (2008). Z. Anorg. Allg. Chem. 634, 1687-1695.]). Most of these compounds were synthesized by solvothermal reactions using the elements as reactands, which is a disadvantage for several reasons. Recently, we have found that many such compounds are more easily available if simple metal salts such as, for example, Schlippe's salt (Na3SbS4·9H2O) or NaSbS3 are used as starting materials (Anderer et al., 2014[Anderer, C., Delwa de Alarcón, N., Näther, C. & Bensch, W. (2014). Chem. Eur. J. 20, 16953-16959.], 2016[Anderer, C., Näther, C. & Bensch, W. (2016). Cryst. Growth Des. 16, 3802-3810.]; Danker et al., 2020[Danker, F., Näther, C. & Bensch, W. (2020). Acta Cryst. E76, 32-37.]). The major advantage of this approach is the fact that different SbSx species are present in solution, which in some cases allows the preparation of thio­anti­monates already at room temperature. The reactions in solution are complex, but it has been found that Schlippe's salt is unstable and forms different species such as, for example, [SbS3O]3−, HS, [S2O3]2− or [SbS4]3− anions (Anderer et al., 2014[Anderer, C., Delwa de Alarcón, N., Näther, C. & Bensch, W. (2014). Chem. Eur. J. 20, 16953-16959.]; Long et al., 1970[Long, G. G. & Bowen, L. H. (1970). Inorg. Nucl. Chem. Lett. 6, 837-842.]; Rammelsberg, 1841[Rammelsberg, C. F. (1841). Ann. Phys. Chem. 52, 207.]; Planer-Friedrich & Wilson, 2012[Planer-Friedrich, B. & Wilson, N. (2012). Chem. Geol. 322-323, 1-10.]; Planer-Friedrich & Scheinost, 2011[Planer-Friedrich, B. & Scheinost, A. C. (2011). Environ. Sci. Technol. 45, 6855-6863.]; Mosselmans et al., 2000[Mosselmans, J. F. W., Helz, G. R., Pattrick, R. A., Charnock, J. M. & Vaughan, D. H. (2000). Appl. Geochem. 15, 879-889.]).

[Scheme 1]

In the course of our investigations we became inter­ested in compounds based on cyclen as the ligand (cyclen = 1,4,7,10-tetra­aza­cyclo­dodeca­ne); cyclen is a tetra­dentate ligand that in an octa­hedral coordination provides two free coordination sites that can be used by the metal cation to connect to a thio­anti­monate network. In this context, MnII cations are of special inter­est because this cation exhibits a high affinity to sulfur. Therefore, Na3SbS4·9H2O was reacted with manganese perchlorate under hydro­thermal conditions leading to yellow plate-like crystals, which were identified by single crystal X-ray diffraction. Surprisingly, the structure consists of discrete complexes, in which manganese is coordinated by one cyclen ligand and one tetra­sulfide dianion that must have formed in situ from Na3SbS4. This finding is of special inter­est because it indicates that polysulfide species might represent inter­mediates in the synthesis of thio­metallate compounds using Na3SbS4 as reactant. It is noted that only one similar complex has been reported in the literature, in which the MnII cations are linked to a tridentate chelating ligand, one water mol­ecule and one tetra­sulfide dianion, which was synthesized by a completely different route (Wieghardt et al., 1987[Wieghardt, K., Bossek, U., Nuber, B. & Weiss, J. (1987). Inorg. Chim. Acta, 126, 39-43.]).

Investigations using X-ray powder diffraction (XRPD) proved that the title compound was obtained as the major phase but is contaminated with small amount of mopungite [NaSb(OH)6; Schrewelius, 1938[Schrewelius, N. (1938). Z. Anorg. Allg. Chem. 238, 241-254.]; Asai, 1975[Asai, T. (1975). Bull. Chem. Soc. Jpn, 48, 2677-2679.]) and an additional crystalline phase of unknown identity (Fig. 1[link]). The title compound cannot be obtained as a pure crystalline phase if the reaction conditions are varied and therefore, no further investigations were performed.

[Figure 1]
Figure 1
Experimental and calculated XRPD powder patterns of the title compound. The reflections of side products are marked by stars.

2. Structural commentary

The asymmetric unit of the title compound consists of one MnII cation, one tetra­sulfido anion and one cyclen ligand in general positions. The MnII cations are coordinated by two terminal S atoms of the tetra­sulfido anion and the N atoms of the cyclen ligand (Fig. 2[link]). The Mn—N bond lengths range from 2.294 (5) to 2.329 (4) Å, which corresponds to literature values (Table 1[link]). The Mn—S bond lengths of 2.5894 (2) and 2.6195 (2) Å (Table 1[link]) are slightly longer that those in the similar complex aqua-(μ-1,4-tetra­sulfido)N,N′,N′′-trimethyl-1,4,7-tri­aza­cyclo­nona­nemanganese(II) (Wieghardt et al., 1987[Wieghardt, K., Bossek, U., Nuber, B. & Weiss, J. (1987). Inorg. Chim. Acta, 126, 39-43.]). The [S4]2− anion shows a staggered conformation with a value of the torsion angle along the S atoms of 61.7 (6)°. The bond angles within this complex are far from the ideal values, which shows that the MnII cations are in an irregular coordination (Fig. 3[link] and Table 1[link]). This arises for steric reasons, because the MnII cation is located 1.149 (1) Å above the plane formed by the cyclene N atoms and the terminal S atoms of the tetra­sulfido anion are enforced to be in cis-positions.

Table 1
Selected geometric parameters (Å, °)

Mn1—N1 2.294 (5) Mn1—N4 2.329 (4)
Mn1—N3 2.313 (5) Mn1—S4 2.5894 (17)
Mn1—N2 2.317 (5) Mn1—S1 2.6195 (16)
       
N1—Mn1—N3 120.76 (17) N2—Mn1—S4 145.61 (13)
N1—Mn1—N2 76.68 (16) N4—Mn1—S4 83.16 (13)
N3—Mn1—N2 74.77 (16) N1—Mn1—S1 86.82 (12)
N1—Mn1—N4 74.82 (15) N3—Mn1—S1 137.52 (11)
N3—Mn1—N4 76.56 (16) N2—Mn1—S1 82.28 (12)
N2—Mn1—N4 120.07 (17) N4—Mn1—S1 145.49 (13)
N1—Mn1—S4 136.95 (12) S4—Mn1—S1 91.36 (5)
N3—Mn1—S4 88.18 (13)    
[Figure 2]
Figure 2
Molecular structure of the title compound with atom labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 3]
Figure 3
View of the Mn coordination sphere in the molecular structure of the title compound.

3. Supra­molecular features

In the crystal structure of the title compound, the discrete complexes are linked by pairs of N—H⋯S hydrogen bonds between atom S4 (H3) of one complex and H1 (S1) of a neighbouring complex into eight-membered rings that are condensed into chains propagating in the b-axis direction (Fig. 4[link]: top and Table 2[link]). The H⋯S distances of 2.50 and 2.48 Å and the N—H⋯S angles of 148 and 152° indicate a relatively strong inter­action (Table 2[link]). The terminal S atoms S4 of two neighbouring complexes act as acceptors for a second hydrogen bond to the amino H atoms H4 of these complexes, also forming eight-membered rings that in this case are located on centers of inversion (Fig. 4[link]: bottom and Table 2[link]). These rings are condensed into chains that propagate along the c-axis direction (Fig. 4[link]: bottom). As each complex is part of both of these two chains, layers are formed parallel to the bc plane (Fig. 5[link]). The layers are linked into a three-dimensional network by C—H⋯S and additional N—H⋯S hydrogen bonding (Fig. 6[link] and Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S4i 1.00 2.50 3.389 (5) 148
N2—H2⋯S1ii 1.00 2.63 3.514 (4) 147
C3—H3A⋯S2ii 0.99 2.98 3.744 (5) 135
N3—H3⋯S1iii 1.00 2.48 3.394 (5) 152
N4—H4⋯S3iv 1.00 2.97 3.534 (4) 117
N4—H4⋯S4iv 1.00 2.64 3.570 (5) 154
C7—H7A⋯S3iv 0.99 2.98 3.699 (5) 130
C7—H7B⋯S3v 0.99 2.98 3.756 (6) 136
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z; (v) x+1, y, z.
[Figure 4]
Figure 4
View of the chains running along the b- (top) and the c-axis (bottom) directions with inter­molecular N—H⋯S hydrogen bonds shown as dashed lines.
[Figure 5]
Figure 5
Crystal structure of the title compound with view of the layers along the a-axis direction with inter­molecular N—H⋯S hydrogen bonds shown as dashed lines.
[Figure 6]
Figure 6
Crystal structure of the title compound viewed in the direction of the layers along the c axis with inter­molecular N—H⋯S and C—H⋯S hydrogen bonds shown as dashed lines.

4. Database survey

There is only one crystal structure reported in which MnII cations are linked to [S4]2− anions and this compound was obtained from the reaction of manganese acetate with ammonium sulfide. This structure is similar to that of the title compound, but in this case the MnII cation is linked to a tridentate N-donor ligand and the Mn coordination is completed by one water mol­ecule (Wieghardt et al., 1987[Wieghardt, K., Bossek, U., Nuber, B. & Weiss, J. (1987). Inorg. Chim. Acta, 126, 39-43.]). Complexes with other transition-metal cations that are related to the structure of the title compound are not reported in the Cambridge Structural Database (Version 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). For Zn and Ni, one complex is found in which the Ni cations are in a square-pyramidal coordination of four S atoms of two [S4]2− anions and charge balance is achieved by tetra­ethyl­ammonium cations (Müller et al., 1983[Müller, A., Krickemeyer, E., Bögge, H., Clegg, W. & Sheldrick, G. M. (1983). Angew. Chem. Int. Ed. Engl. 22, 1006-1007.]; (Coucouvanis et al., 1985[Coucouvanis, B., Patil, P. R., Kanatzidis, M. G., Detering, B. & Baenziger, N. C. (1985). Inorg. Chem. 24, 24-31.]). Similar compounds are also reported with Ni and Hg, but the tetra­ethyl­ammonium cations are replaced by tetra­phenyl­phospho­nium cations (Coucouvanis et al., 1985[Coucouvanis, B., Patil, P. R., Kanatzidis, M. G., Detering, B. & Baenziger, N. C. (1985). Inorg. Chem. 24, 24-31.]; Müller et al., 1985[Müller, A., Schimanski, J., Schimanski, U. & Bögge, H. (1985). Z. Naturforsch. Teil B, 40, 1277-1288.]; Bailey et al., 1991[Bailey, T. D., Banda, R. M. H., Craig, D. C., Dance, I. G., Ma, I. N. L. & Scudder, M. L. (1991). Inorg. Chem. 30, 187-191.]).

5. Synthesis and crystallization

Synthesis of Na3SbS4·9H2O:

Na3SbS4·9H2O was synthesized by adding 16.6 g (0.213 mol) of Na2xH2O (technical grade, purchased from Acros Organics) to 58 mL of demineralized water. This solution was heated to 323 K for 1h. Afterwards 19.6 g (0.058 mol) of Sb2S3 (98%, purchased from Alfa Aesar) and 3.69 g (0.115 mol) of sulfur (min. 99%, purchased from Alfa Aesar), were added and the reaction mixture was heated to 343 K for 6 h. The reaction mixture was filtered and the filtrate was stored overnight, leading to the formation of slightly yellow crystals, that were filtered off, washed with small amounts of water and dried under vacuum (yield about 30% based on Sb2S3).

Synthesis of the title compound:

The title compound was synthesized by the reaction of 36.8 mg (0.1 mmol) of Mn(ClO4)2·6H2O (99%, purchased from Alfa Aesar), 17.2 mg (0.1 mmol) of cyclen (98%, purchased from Strem Chemicals) and 288.8 mg (0.6 mmol) of Na3SbS4·9H2O. The reaction mixture was heated at 413 K for 11 d in 2 mL of water, leading to the formation of a precipitate that was filtered off. XRPD investigations proved the product to consist of the title compound as the major phase and very small amounts of NaSb(OH)6 and an additional crystalline phase of unknown identity.

Experimental methods:

The XRPD measurements were performed using a Stoe Transmission Powder Diffraction System (STADI P) with Cu Ka radiation that was equipped with a linear, position-sensitive MYTHEN detector from Stoe & Cie.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were positioned with idealized geometry (N—H = 1.00 Å, C—H = 0.99 Å) and were refined using a riding model with Uiso(H) = 1.2Ueq(C). In the first refinements, poor reliability factors and several residual electron densities were found in the difference map, for which no reasonable structure model can be found, indicating twinning. PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) immediately detected a pseudo-twofold rotation axis as the twin element, indicating non-merohedral twinning. Therefore, the data were transformed into HKLF-5 format and a twin refinement was performed, leading to a BASF parameter of 0.473 (5) and a significant improvement of all reliability factors. PLATON detected pseudo symmetry but investigations showed the unit cell and space group to be correct. Please note that symmetry-equivalent reflections had to be be merged before refinement and thus no Rint value can be given.

Table 3
Experimental details

Crystal data
Chemical formula [Mn(S4)(C8H20N4)]
Mr 355.46
Crystal system, space group Monoclinic, P21/c
Temperature (K) 170
a, b, c (Å) 9.3292 (6), 12.0371 (5), 13.1750 (8)
β (°) 95.885 (5)
V3) 1471.71 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.45
Crystal size (mm) 0.15 × 0.15 × 0.05
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Numerical (X-RED32 and X-SHAPE; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.704, 0.873
No. of measured, independent and observed [I > 2σ(I)] reflections 2959, 2959, 1919
(sin θ/λ)max−1) 0.624
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.173, 1.03
No. of reflections 2959
No. of parameters 155
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.57, −0.70
Computer programs: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

(1,4,7,10-Tetraazacyclododecane-κ4N)(tetrasulfido-κ2S1,S4)manganese(II) top
Crystal data top
[Mn(S4)(C8H20N4)]F(000) = 740
Mr = 355.46Dx = 1.604 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.3292 (6) ÅCell parameters from 9562 reflections
b = 12.0371 (5) Åθ = 2.2–26.3°
c = 13.1750 (8) ŵ = 1.45 mm1
β = 95.885 (5)°T = 170 K
V = 1471.71 (14) Å3Plate, yellow
Z = 40.15 × 0.15 × 0.05 mm
Data collection top
STOE IPDS-2
diffractometer
1919 reflections with I > 2σ(I)
ω scansθmax = 26.3°, θmin = 2.2°
Absorption correction: numerical
(X-Red32 and X-Shape; Stoe & Cie, 2008)
h = 1111
Tmin = 0.704, Tmax = 0.873k = 1414
2959 measured reflectionsl = 1416
2959 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.173 w = 1/[σ2(Fo2) + (0.0882P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2959 reflectionsΔρmax = 0.57 e Å3
155 parametersΔρmin = 0.70 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.59848 (9)0.49918 (7)0.25694 (6)0.0422 (3)
N10.7171 (5)0.6664 (4)0.2664 (3)0.0457 (11)
H10.6456210.7252110.2796590.055*
C10.8299 (6)0.6651 (5)0.3543 (4)0.0469 (13)
H1A0.8617230.7418290.3715470.056*
H1B0.9143090.6219970.3367670.056*
C20.7676 (6)0.6122 (5)0.4446 (4)0.0468 (13)
H2A0.8422060.6101020.5036990.056*
H2B0.6862710.6578680.4637840.056*
N20.7167 (5)0.4989 (4)0.4204 (3)0.0477 (11)
H20.6449620.4789370.4688260.057*
C30.8319 (6)0.4142 (5)0.4303 (4)0.0496 (14)
H3A0.8615020.3991860.5033230.060*
H3B0.9170180.4417830.3987800.060*
C40.7769 (7)0.3086 (5)0.3777 (4)0.0525 (14)
H4A0.8551110.2528130.3803710.063*
H4B0.6971430.2774930.4130070.063*
N30.7251 (5)0.3338 (4)0.2703 (3)0.0452 (11)
H30.6578630.2730020.2445500.054*
C50.8434 (6)0.3386 (5)0.2033 (4)0.0468 (13)
H5A0.8803230.2628170.1928120.056*
H5B0.9236240.3840990.2360720.056*
C60.7886 (7)0.3891 (5)0.1014 (4)0.0495 (14)
H6A0.8681930.3932850.0573100.059*
H6B0.7119960.3412720.0670120.059*
N40.7302 (5)0.5024 (4)0.1160 (3)0.0458 (11)
H40.6615310.5197470.0547720.055*
C70.8394 (6)0.5908 (5)0.1258 (4)0.0477 (14)
H7A0.8712510.6077000.0580400.057*
H7B0.9243460.5660650.1713990.057*
C80.7750 (7)0.6935 (5)0.1692 (4)0.0505 (14)
H8A0.8498520.7517190.1808540.061*
H8B0.6967850.7226480.1199040.061*
S10.39710 (16)0.59715 (13)0.34907 (10)0.0482 (4)
S20.21580 (17)0.50670 (14)0.30042 (11)0.0524 (4)
S30.22169 (17)0.48858 (14)0.14646 (10)0.0523 (4)
S40.40779 (16)0.40112 (13)0.13102 (10)0.0478 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0532 (5)0.0398 (5)0.0347 (4)0.0000 (4)0.0106 (3)0.0007 (3)
N10.053 (3)0.047 (3)0.039 (2)0.000 (2)0.0138 (19)0.0016 (19)
C10.055 (3)0.044 (3)0.043 (3)0.005 (3)0.009 (2)0.003 (2)
C20.060 (3)0.048 (3)0.034 (2)0.001 (3)0.011 (2)0.004 (2)
N20.059 (3)0.045 (3)0.041 (2)0.001 (2)0.016 (2)0.002 (2)
C30.060 (4)0.055 (4)0.034 (2)0.005 (3)0.005 (2)0.004 (2)
C40.073 (4)0.042 (3)0.044 (3)0.009 (3)0.012 (3)0.008 (3)
N30.055 (3)0.039 (3)0.043 (2)0.002 (2)0.010 (2)0.0001 (19)
C50.056 (3)0.047 (3)0.039 (3)0.008 (3)0.010 (2)0.000 (2)
C60.063 (4)0.047 (3)0.041 (3)0.005 (3)0.016 (2)0.001 (2)
N40.056 (3)0.043 (3)0.040 (2)0.006 (2)0.015 (2)0.0024 (19)
C70.064 (4)0.044 (3)0.038 (2)0.003 (3)0.019 (2)0.001 (2)
C80.066 (4)0.047 (3)0.040 (3)0.002 (3)0.011 (3)0.009 (3)
S10.0562 (9)0.0480 (9)0.0418 (7)0.0009 (7)0.0114 (6)0.0023 (6)
S20.0593 (9)0.0558 (10)0.0443 (7)0.0032 (8)0.0167 (6)0.0025 (6)
S30.0606 (9)0.0551 (10)0.0414 (7)0.0035 (8)0.0061 (6)0.0003 (6)
S40.0567 (9)0.0473 (9)0.0408 (7)0.0015 (7)0.0118 (6)0.0022 (6)
Geometric parameters (Å, º) top
Mn1—N12.294 (5)C4—H4A0.9900
Mn1—N32.313 (5)C4—H4B0.9900
Mn1—N22.317 (5)N3—C51.483 (6)
Mn1—N42.329 (4)N3—H31.0000
Mn1—S42.5894 (17)C5—C61.513 (8)
Mn1—S12.6195 (16)C5—H5A0.9900
N1—C81.477 (6)C5—H5B0.9900
N1—C11.482 (7)C6—N41.488 (7)
N1—H11.0000C6—H6A0.9900
C1—C21.517 (7)C6—H6B0.9900
C1—H1A0.9900N4—C71.470 (7)
C1—H1B0.9900N4—H41.0000
C2—N21.468 (7)C7—C81.513 (8)
C2—H2A0.9900C7—H7A0.9900
C2—H2B0.9900C7—H7B0.9900
N2—C31.477 (7)C8—H8A0.9900
N2—H21.0000C8—H8B0.9900
C3—C41.512 (8)S1—S22.058 (2)
C3—H3A0.9900S2—S32.0465 (19)
C3—H3B0.9900S3—S42.058 (2)
C4—N31.480 (7)
N1—Mn1—N3120.76 (17)N3—C4—H4A109.8
N1—Mn1—N276.68 (16)C3—C4—H4A109.8
N3—Mn1—N274.77 (16)N3—C4—H4B109.8
N1—Mn1—N474.82 (15)C3—C4—H4B109.8
N3—Mn1—N476.56 (16)H4A—C4—H4B108.3
N2—Mn1—N4120.07 (17)C4—N3—C5112.8 (5)
N1—Mn1—S4136.95 (12)C4—N3—Mn1111.3 (3)
N3—Mn1—S488.18 (13)C5—N3—Mn1109.0 (3)
N2—Mn1—S4145.61 (13)C4—N3—H3107.8
N4—Mn1—S483.16 (13)C5—N3—H3107.8
N1—Mn1—S186.82 (12)Mn1—N3—H3107.8
N3—Mn1—S1137.52 (11)N3—C5—C6109.8 (5)
N2—Mn1—S182.28 (12)N3—C5—H5A109.7
N4—Mn1—S1145.49 (13)C6—C5—H5A109.7
S4—Mn1—S191.36 (5)N3—C5—H5B109.7
C8—N1—C1112.7 (4)C6—C5—H5B109.7
C8—N1—Mn1111.3 (3)H5A—C5—H5B108.2
C1—N1—Mn1109.4 (3)N4—C6—C5110.3 (4)
C8—N1—H1107.7N4—C6—H6A109.6
C1—N1—H1107.7C5—C6—H6A109.6
Mn1—N1—H1107.7N4—C6—H6B109.6
N1—C1—C2108.6 (4)C5—C6—H6B109.6
N1—C1—H1A110.0H6A—C6—H6B108.1
C2—C1—H1A110.0C7—N4—C6114.5 (4)
N1—C1—H1B110.0C7—N4—Mn1111.1 (3)
C2—C1—H1B110.0C6—N4—Mn1108.5 (3)
H1A—C1—H1B108.4C7—N4—H4107.4
N2—C2—C1111.1 (4)C6—N4—H4107.4
N2—C2—H2A109.4Mn1—N4—H4107.4
C1—C2—H2A109.4N4—C7—C8109.0 (4)
N2—C2—H2B109.4N4—C7—H7A109.9
C1—C2—H2B109.4C8—C7—H7A109.9
H2A—C2—H2B108.0N4—C7—H7B109.9
C2—N2—C3114.0 (5)C8—C7—H7B109.9
C2—N2—Mn1108.2 (3)H7A—C7—H7B108.3
C3—N2—Mn1110.8 (3)N1—C8—C7110.0 (5)
C2—N2—H2107.9N1—C8—H8A109.7
C3—N2—H2107.9C7—C8—H8A109.7
Mn1—N2—H2107.9N1—C8—H8B109.7
N2—C3—C4109.2 (5)C7—C8—H8B109.7
N2—C3—H3A109.8H8A—C8—H8B108.2
C4—C3—H3A109.8S2—S1—Mn1102.89 (7)
N2—C3—H3B109.8S3—S2—S1105.09 (9)
C4—C3—H3B109.8S2—S3—S4105.14 (9)
H3A—C3—H3B108.3S3—S4—Mn1103.57 (7)
N3—C4—C3109.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S4i1.002.503.389 (5)148
N2—H2···S1ii1.002.633.514 (4)147
C3—H3A···S2ii0.992.983.744 (5)135
N3—H3···S1iii1.002.483.394 (5)152
N4—H4···S3iv1.002.973.534 (4)117
N4—H4···S4iv1.002.643.570 (5)154
C7—H7A···S3iv0.992.983.699 (5)130
C7—H7B···S3v0.992.983.756 (6)136
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1, z; (v) x+1, y, z.
 

Acknowledgements

Financial support by the State of Schleswig-Holstein is gratefully acknowledged.

References

First citationAnderer, C., Delwa de Alarcón, N., Näther, C. & Bensch, W. (2014). Chem. Eur. J. 20, 16953–16959.  CrossRef CAS PubMed Google Scholar
First citationAnderer, C., Näther, C. & Bensch, W. (2016). Cryst. Growth Des. 16, 3802–3810.  CrossRef CAS Google Scholar
First citationAsai, T. (1975). Bull. Chem. Soc. Jpn, 48, 2677–2679.  CrossRef ICSD CAS Web of Science Google Scholar
First citationBailey, T. D., Banda, R. M. H., Craig, D. C., Dance, I. G., Ma, I. N. L. & Scudder, M. L. (1991). Inorg. Chem. 30, 187–191.  CrossRef CAS Google Scholar
First citationBensch, W., Näther, C. & Schur, M. (1997). Chem. Commun. pp. 1773–1774.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCoucouvanis, B., Patil, P. R., Kanatzidis, M. G., Detering, B. & Baenziger, N. C. (1985). Inorg. Chem. 24, 24–31.  CrossRef CAS Google Scholar
First citationDanker, F., Näther, C. & Bensch, W. (2020). Acta Cryst. E76, 32–37.  CrossRef IUCr Journals Google Scholar
First citationDehnen, S. & Melullis, M. (2007). Coord. Chem. Rev. 251, 1259–1280.  Web of Science CrossRef CAS Google Scholar
First citationEngelke, L., Stähler, R., Schur, M., Näther, C., Bensch, W., Pöttgen, R. & Möller, M. H. (2004). Z. Naturforsch. B. 59, 869–876.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJia, D. X., Zhang, Y., Dai, J., Zhu, Q. Y. & Gu, X. M. (2004). J. Solid State Chem. 177, 2477–2483.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, X. & Zhou, J. (2011). Inorg. Chem. Commun. 14, 1268–1289.  Google Scholar
First citationLong, G. G. & Bowen, L. H. (1970). Inorg. Nucl. Chem. Lett. 6, 837–842.  CrossRef CAS Google Scholar
First citationLühmann, H., Rejai, Z., Möller, K., Leisner, P., Ordolff, M. E., Näther, C. & Bensch, W. (2008). Z. Anorg. Allg. Chem. 634, 1687–1695.  Google Scholar
First citationMosselmans, J. F. W., Helz, G. R., Pattrick, R. A., Charnock, J. M. & Vaughan, D. H. (2000). Appl. Geochem. 15, 879–889.  CrossRef CAS Google Scholar
First citationMüller, A., Krickemeyer, E., Bögge, H., Clegg, W. & Sheldrick, G. M. (1983). Angew. Chem. Int. Ed. Engl. 22, 1006–1007.  Google Scholar
First citationMüller, A., Schimanski, J., Schimanski, U. & Bögge, H. (1985). Z. Naturforsch. Teil B, 40, 1277–1288.  Google Scholar
First citationNie, L., Liu, G., Xie, J., Lim, T. T., Armatas, G. S., Xu, R. & Zhang, Q. (2017). Inorg. Chem. Front, 4, 945–959.  Google Scholar
First citationPlaner-Friedrich, B. & Scheinost, A. C. (2011). Environ. Sci. Technol. 45, 6855–6863.  CAS PubMed Google Scholar
First citationPlaner-Friedrich, B. & Wilson, N. (2012). Chem. Geol. 322–323, 1–10.  CAS Google Scholar
First citationPowell, A. V., Thun, J. & Chippindale, A. M. (2005). J. Solid State Chem. 178, 3414–3419.  Web of Science CSD CrossRef CAS Google Scholar
First citationPuls, A., Näther, C. & Bensch, W. (2006). Z. Anorg. Allg. Chem. 632, 1239–1243.  Web of Science CSD CrossRef CAS Google Scholar
First citationRammelsberg, C. F. (1841). Ann. Phys. Chem. 52, 207.  Google Scholar
First citationSchrewelius, N. (1938). Z. Anorg. Allg. Chem. 238, 241–254.  CrossRef CAS Google Scholar
First citationSchur, M., Näther, C. & Bensch, W. (2001). Z. Naturforsch. B, 56, 79–84.  CrossRef CAS Google Scholar
First citationSeidlhofer, B., Djamil, J., Näther, C. & Bensch, W. (2011). Cryst. Growth Des. 11, 5554–5560.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeidlhofer, B., Pienack, N. & Bensch, W. (2010). Z. Naturforsch. B, 65, 937–975.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, W. S. & Wachhold, M. (1988). Coord. Chem. Rev. 176, 211–322.  CrossRef Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpetzler, V., Näther, C. & Bensch, W. (2005). Inorg. Chem. 44, 5805–5812.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSpetzler, V., Rijnberk, H., Näther, C. & Bensch, W. (2004). Z. Anorg. Allg. Chem. 630, 142–148.  Web of Science CSD CrossRef CAS Google Scholar
First citationStähler, R., Näther, C. & Bensch, W. (2001). Acta Cryst. C57, 26–27.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWang, K. Y., Feng, M. L., Huang, X. Y. & Li, J. (2016). Coord. Chem. Rev. 322, 41–68.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWieghardt, K., Bossek, U., Nuber, B. & Weiss, J. (1987). Inorg. Chim. Acta, 126, 39–43.  CSD CrossRef CAS Web of Science Google Scholar
First citationZhang, M., Sheng, T. L., Huang, X. H., Fu, R. B., Wang, X., Hu, S. H., Xiang, C. & Wu, X. T. (2007). Eur. J. Inorg. Chem. pp. 1606–1612.  Web of Science CSD CrossRef Google Scholar
First citationZhou, J. (2016). Coord. Chem. Rev. 315, 112–134.  Web of Science CrossRef CAS Google Scholar
First citationZhu, Q. Y. & Dai, J. (2017). Coord. Chem. Rev. 330, 95–109.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds