research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of the recreational drug N-(4-meth­­oxy­phen­yl)piperazine (MeOPP) and three of its salts

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India, bInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and cSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com

Edited by M. Zeller, Purdue University, USA (Received 14 February 2020; accepted 28 February 2020; online 5 March 2020)

Crystal structures are reported for N-(4-meth­oxy­phen­yl)piperazine (MeOPP), (I), and for its 3,5-di­nitro­benzoate, 2,4,6-tri­nitro­phenolate (picrate) and 4-amino­benzoate salts, (II)–(IV), the last of which crystallizes as a monohydrate. In MeOPP, C11H16N2O, (I), the 4-meth­oxy­phenyl group is nearly planar and it occupies an equatorial site on the piperazine ring: the mol­ecules are linked into simple C(10) chains by N—H⋯O hydrogen bonds. In each of the salts, i.e., C11H17N2O+·C7H3N2O6, (II), C11H17N2O+·C6H2N3O7, (III), and C11H17N2O+·C7H6NO2·H2O, (IV), the effectively planar 4-meth­oxy­phenyl substituent again occupies an equatorial site on the piperazine ring. In (II), two of the nitro groups are disordered over two sets of atomic sites and the bond distances in the anion indicate considerable delocalization of the negative charge over the C atoms of the ring. The ions in (II) are linked by two N—H⋯O hydrogen bonds to form a cyclic, centrosymmetric four-ion aggregate; those in (III) are linked by a combination of N—H⋯O and C—H⋯π(arene) hydrogen bonds to form sheets; and the components of (IV) are linked by N—H⋯O, O—H⋯O and C—H⋯π(arene) hydrogen bonds to form a three-dimensional framework structure. Comparisons are made with the structures of some related compounds.

1. Chemical context

N-(4-Meth­oxy­phen­yl)piperazine (MeOPP) has fairly recently emerged as a new addition to the range of designer drugs aimed at recreational use, and considerable effort has consequently been invested in the development of rapid and reliable methods for the detection in human fluids not only of MeOPP itself but also of its primary metabolites N-(4-hy­droxy­phen­yl)piperazine and 4-hy­droxy­aniline (Staack & Maurer, 2003[Staack, R. F. & Maurer, H. H. (2003). J. Chromatogr. B, 798, 333-342.]; Staack et al., 2004[Staack, R. F., Theobald, D. S., Paul, D., Springer, D., Kraemer, T. & Maurer, H. H. (2004). Xenobiotica, 34, 179-192.]). The action of MeOPP on human physiology is similar to that of amphetamines, but it has a significantly lower potential for abuse (Nagai et al., 2007[Nagai, F., Nonaka, R. & Kamimura, K. S. H. (2007). Eur. J. Pharmacol. 559, 132-137.]). In view of these observations, coupled with the broad range of biological activities exhibited by piperazine derivatives in general (Asif, 2015[Asif, M. (2015). Int. J. Adv. Sci. Res. 1, 5-11.]; Brito et al., 2019[Brito, A., Moreira, L. K. S., Menegatti, R. & Costa, E. A. (2019). Fundam. Clin. Pharmacol. 33, 13-24.]), we have recently initiated a programme of study centred on N-(4-meth­oxy­phen­yl)piperazine derivatives. Thus, we have recently reported the synthesis and structures of a range of salts derived from MeOPP (Kiran Kumar, Yathirajan, Foro et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494-1506.]), as well as those of a range of neutral 1-aroyl-4-(4-meth­oxy­phen­yl)piperazines (Kiran Kumar, Yathirajan, Sagar et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1253-1260.]). In a continuation of the earlier work, we have now prepared a further series of salts, whose mol­ecular and supra­molecular structures we report here, along with that of MeOPP itself: the structures reported here are those of N-(4-meth­oxy­phen­yl)piperazine (I)[link], 4-(4-meth­oxy­phen­yl)pip­er­az­in-1-ium 3,5-di­nitro­benzoate (II)[link], 4-(4-meth­oxy­phen­yl)piperazin-1-ium 2,4,6-tri­nitro­phenolate (III)[link] and 4-(4-meth­oxy­phen­yl)piperazin-1-ium 4-amino­benzoate monohydrate (IV)[link] (Figs. [link]1–4[link][link][link]). The salts (II)–(IV) were readily prepared by co-crystallization of MeOPP with the appropriate acidic component in methanol.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link] showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The independent components of compound (II)[link] showing the atom-labelling scheme and the hydrogen bond, drawn as a dashed line, within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
The independent components of compound (III)[link] showing the atom-labelling scheme, the hydrogen bonds, drawn as dashed lines, within the selected asymmetric unit, and the disorder in the nitro groups: the major disorder components are drawn with full lines and the minor disorder components are drawn with broken lines. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
The independent components of compound (IV)[link] showing the atom-labelling scheme and the hydrogen bonds, drawn as dashed lines, within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.

2. Structural commentary

Compound (I)[link] is the neutral N-(4-meth­oxy­phen­yl)piperazine (MeOPP), and compounds (II)[link] and (III)[link] are unsolvated 1:1 3,5-di­nitro­benzoate and 2,4,6-tri­nitro­phenolate (picrate) salts, respectively, while compound (IV)[link] is the 1:1 4-amino­benzoate salt, which crystallizes as a stoichiometric monohydrate in which the water component is firmly embedded in the overall hydrogen-bonded network (see Section 3, below). In each of (I)–(IV), the 4-meth­oxy­phenyl substituent occupies an equatorial site on the piperazine ring but the MeOPP component exhibits no inter­nal symmetry, so that it is conformationally chiral: the space groups (Table 2[link]) confirm that each compound has crystallized as a conformational racemate. In each compound, the reference MeOPP unit was selected as one having a torsional angle C23—C24—O24—C27 that was close to 180°, as opposed to the alternative value close to zero degrees, and with the ring-puckering angle θ (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]), as calculated for the atom sequence (N1,C2,C3,N4,C5,C6) which was close to 0°, as opposed to a value close to 180° for the opposite conformational enanti­omer.

Table 2
Experimental details

  (I) (II) (III) (IV)
Crystal data
Chemical formula C11H16N2O C11H17N2O+·C7H3N2O6 C11H17N2O+·C6H2N3O7 C7H6NO2+·C11H17N2O·H2O
Mr 192.26 404.38 421.37 347.41
Crystal system, space group Orthorhombic, Pna21 Triclinic, P[\overline{1}] Monoclinic, P21/n Triclinic, P[\overline{1}]
Temperature (K) 293 293 293 293
a, b, c (Å) 6.9683 (7), 7.9683 (8), 18.975 (2) 7.4365 (4), 10.6276 (6), 13.2700 (6) 8.7568 (6), 6.6292 (5), 34.024 (2) 6.2590 (7), 7.4549 (9), 19.269 (2)
α, β, γ (°) 90, 90, 90 92.238 (4), 97.057 (4), 108.618 (5) 90, 96.987 (6), 90 83.28 (1), 84.740 (1), 85.38 (1)
V3) 1053.60 (19) 982.92 (9) 1960.4 (2) 886.94 (17)
Z 4 2 4 2
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.08 0.11 0.12 0.09
Crystal size (mm) 0.48 × 0.48 × 0.40 0.50 × 0.48 × 0.48 0.48 × 0.42 × 0.20 0.40 × 0.20 × 0.14
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.])
Tmin, Tmax 0.814, 0.969 0.765, 0.950 0.844, 0.977 0.814, 0.987
No. of measured, independent and observed [I > 2σ(I)] reflections 4066, 1984, 1545 7013, 4202, 3057 14483, 4353, 2844 5786, 3500, 1923
Rint 0.012 0.011 0.023 0.031
(sin θ/λ)max−1) 0.654 0.650 0.659 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.088, 1.06 0.041, 0.110, 1.02 0.058, 0.136, 1.09 0.069, 0.187, 1.07
No. of reflections 1984 4202 4353 3500
No. of parameters 131 268 333 240
No. of restraints 1 0 216 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.10, −0.12 0.15, −0.19 0.18, −0.18 0.24, −0.20
Absolute structure Flack x determined using 546 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

In the salt (III)[link], the nitro substituents at atoms C32 and C36 (Fig. 3[link]) are both disordered over two sets of atomic sites having refined occupancies of 0.531 (16) and 0.469 (16) for the nitro group at atom C32, and 0.62 (6) and 0.38 (6) for that at atom C36. The major and minor disorder components of both these nitro groups are rotated about the exocyclic C—N bonds: for the C32 substituent, the two components are rotated by similar amounts, 22.6 (5) and 24.2 (5)° for the major and minor components, but in opposite senses, so that the dihedral angle between the two components is 46.8 (6)°; by contrast, the rotations at C36 are in the same sense, by 25.2 (8) and 5.0 (3)°, with a dihedral angle between the components of 20.7 (18)°. The bond distances within this anion show some inter­esting features: firstly, the distance C31—O31, 1.235 (2) Å, is short for a phenolic bond [mean value (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]) 1.362 Å, lower quartile value 1.353 Å] and more reminiscent of the distances observed in ketones (mean value 1.210 Å); secondly, the two C—C distances flanking this C—O unit, 1.448 (3) and 1.455 (3) Å, are much longer that the other C—C distances in this ring, which lie in the range 1.364 (3)–1.383 (3) Å. These metrical observations support the formulation of the picrate anion here as containing an effectively double C=O bond at atom C31, with extensive delocalization of the negative charge over the atoms C32–C36, as indicated in the scheme.

In each compound, the meth­oxy C atom lies close to the plane of the adjacent aryl ring: the deviations from this plane are 0.176 (5), 0.033 (3), 0.040 (6) and 0.277 (7) Å in (I)–(IV), respectively. Associated with this near co-planarity, the two exocyclic O—C—C angles differ by ca 10° in each case, as is often observed when alk­oxy­arene systems are planar or nearly so (Seip & Seip, 1973[Seip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024-4027.]; Ferguson et al., 1996[Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420-423.]).

3. Supra­molecular features

The supra­molecular assembly of compound (I)[link] is extremely simple: a single N—H⋯O hydrogen bond (Table 1[link]) links mol­ecules that are related by a 21 screw axis to form a C(10) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain running parallel to the [001] direction (Fig. 5[link]). However, there are no direction-specific inter­actions between adjacent chains so that the supra­molecular assembly here is one-dimensional.

Table 1
Hydrogen bonds and short inter­molecular contacts (Å, °) for compounds (I)–(IV)

Cg1 and Cg2 represent the centroids of the rings (C21–C26) and (C31–C36), respectively.

Compound D—H⋯A D—H H⋯A DA D—H⋯A
(I) N1—H1⋯O24i 0.91 (4) 2.23 (4) 3.139 (3) 171 (3)
(II) N1—H11⋯O31 0.96 (2) 1.814 (19) 2.7638 (18) 169 (2)
  N1—H12⋯O32ii 0.964 (18) 1.740 (18) 2.6953 (18) 170.5 (17)
(III) N1—H11⋯O31 0.92 (3) 1.81 (3) 2.704 (3) 163 (2)
  N1—H11⋯O37 0.92 (3) 2.56 (3) 2.982 (11) 108.7 (19)
  N1—H11⋯O47 0.92 (3) 2.42 (3) 2.870 (15) 110.1 (19)
  N1—H12⋯O33iii 0.91 (3) 2.12 (3) 2.926 (6) 148 (2)
  N1—H12⋯O43iii 0.91 (3) 1.92 (3) 2.815 (6) 168 (2)
  N1—H12⋯O47 0.91 (3) 2.54 (3) 2.870 (15) 102.1 (19)
  C12—H12⋯Cg1iv 0.93 2.86 3.769 (3) 164
(IV) N1—H11⋯O41 0.95 (2) 1.88 (2) 2.803 (3) 165.2 (8)
  N1—H12⋯O31 0.943 (7) 1.793 (18) 2.728 (3) 171.2 (7)
  O41—H41⋯O32v 0.85 (3) 1.78 (3) 2.631 (4) 178 (4)
  O41—H42⋯O31vi 0.85 (3) 1.95 (3) 2.772 (3) 164 (3)
  N34—H341⋯O24vii 0.82 (4) 2.23 (4) 3.057 (4) 177 (4)
  C22—H22⋯Cg2v 0.93 2.93 3.666 (3) 137
  C26—H26⋯Cg2viii 0.93 2.77 3.531 (3) 139
Symmetry codes: (i) 1 − x, 1 − y, [{1\over 2}] + z; (ii) 1 − x, 1 − y, 1 − z; (iii) −1 + x, y, z; (iv) [{1\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z; (v) −x, 1 − y, 2 − z; (vi) 1 − x, 1 − y, 2 − z; (vii) x, y, 1 + z; (viii) −x, 2 − y, 2 − z.
[Figure 5]
Figure 5
Part of the crystal structure of compound (I)[link] showing the formation of a hydrogen-bonded chain parallel to [001]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (1 − x, 1 − y, [{1\over 2}] + z) and (1 − x, 1 − y, −[{1\over 2}] + z), respectively.

The assembly in the 3,5-di­nitro­benzoate salt (II)[link] is also very simple. Two independent N—H⋯O hydrogen bonds (Table 1[link]) link inversion-related ion-pairs to form a cyclic centrosymmetric four-ion aggregate characterized by an R44(12) motif, and centred at (0.5, 0.5, 0.5) (Fig. 6[link]). There are no direction-specific inter­actions between adjacent aggregates, so that the supra­molecular assembly here is finite, or zero-dimensional.

[Figure 6]
Figure 6
Part of the crystal structure of compound (II)[link] showing the formation of a cyclic hydrogen-bonded R44(12) aggregate. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).

The component ions of compound (III)[link] are linked by a combination of N—H⋯O and C—H⋯π(arene) hydrogen bonds to form complex sheets; however, the formation of the sheet structure is readily analysed in terms of two simpler, one-dimensional sub-structures (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]). Although two of the nitro groups exhibit positional disorder (see Section 2, above), the hydrogen bonds involving the two sets of disorder components are fairly similar (Table 1[link]), so that it is only necessary here to consider the inter­actions involving the major disorder components. The two ions within the selected asymmetric unit (Fig. 3[link]) are linked by a markedly asymmetric N—H⋯(O)2 three-centre system containing an R12(6) ring, and ion-pairs of this type, which are related by translation, are linked by a two-centre N—H⋯O hydrogen bond to form a C(8)C(11)[R12(6)] chain of rings running parallel to [100] (Fig. 7[link]). In the second sub-structure, cations, which are related by a 21 screw axis, are linked by a C—H⋯π(arene) hydrogen bond, to form a chain running parallel to the [010] direction (Fig. 8[link]). The combination of chains running parallel to the [100] and [010] directions then generates a sheet lying parallel to (001) in the domain 0.5 < z < 1.0. A second sheet of this type, related to the first by inversion, lies in the domain 0 < z < 0.5: although there are no direction-specific inter­actions between adjacent sheets, so that the supra­molecular assembly in (III)[link] is two dimensional, the sheets are, however, strongly inter­digitated (Fig. 9[link]).

[Figure 7]
Figure 7
Part of the crystal structure of compound (III)[link] showing the formation of a hydrogen-bonded chain of rings parallel to [100]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the minor disorder components and the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (1 + x, y, z) and (−1 + x, y, z), respectively.
[Figure 8]
Figure 8
Part of the crystal structure of compound (III)[link], showing the formation of a hydrogen-bonded chain of cations along [010]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the unit-cell outline, the minor disorder components and the H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions ([{1\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z) and ([{1\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z), respectively.
[Figure 9]
Figure 9
A projection along [100] of part of the crystal structure of (III)[link], showing the inter­digitation of the sheets lying parallel to (001). Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the minor disorder components and the H atoms not involved in the motifs shown have been omitted.

For compound (IV)[link], the supra­molecular assembly is more complex than for any of compounds (I)–(III), as a result of the presence of both an additional amino substituent in the cation and a water mol­ecule, which acts as both a donor and an acceptor of hydrogen bonds (Table 1[link]). The combination of N—H⋯O, O—H⋯O and C—H⋯π(arene) hydrogen bonds links the components into a three-dimensional framework structure but, again, this can readily be analysed in terms of fairly simple sub-structures. In the first of these, the ionic components and the water mol­ecules form a chain of centrosymmetric rings running parallel to the [100] direction, in which R66(16) rings centred at (n, 0.5, 1) alternate with R64(12) rings centred at (n + 0.5, 0.5, 1), where n represents an integer in each case (Fig. 10[link]). In the second sub-structure, the two N—H⋯O hydrogen bonds having atoms O24 and O31 as the acceptors (Table 1[link]) link the ions into a simple C22(18) chain running parallel to the [001] direction (Fig. 11[link]).

[Figure 10]
Figure 10
Part of the crystal structure of compound (IV)[link] showing the formation of a hydrogen-bonded chain of rings parallel to [100]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the unit-cell outline and the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*), a hash (#), a dollar sign ($) or an ampersand (&) are at the symmetry positions (1 − x, 1 − y, 2 − z), (−x, 1 − y, 2 − z), (1 + x, y, z) and (−1 + x, y, z) respectively.
[Figure 11]
Figure 11
Part of the crystal structure of compound (IV)[link] showing the formation of a hydrogen-bonded chain parallel to [001]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the water mol­ecules and the H atoms bonded to C atoms have been omitted.

There are two C—H⋯π(arene) inter­actions in the structure of compound (IV)[link]: the longer of these, involving atom C22, lies within the chain of rings along [100] but the other, shorter, inter­action combines with some of the N—H⋯O and O—H⋯O hydrogen bonds to generate a complex chain running parallel to the [010] direction (Fig. 12[link]). The combination of chains along [100], [010] and [001] then suffices to generate a three-dimensional supra­molecular structure.

[Figure 12]
Figure 12
Part of the crystal structure of compound (IV)[link] showing the formation of a hydrogen-bonded chain parallel to [010] and built from N—H⋯O, O—H⋯O and C—H⋯π(arene) hydrogen bonds; these are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to the C atoms not involved in the motifs shown have been omitted.

Hence the supra­molecular aggregation is zero-, one-, two- and three-dimensional in compounds (II)[link], (I)[link], (III)[link] and (IV)[link], respectively.

4. Database survey

The first salt of MeOPP to have its structure reported was 4-(4-meth­oxy­phen­yl)piperazin-1-ium chloride (V) (Zia-ur-Rehman et al., 2009[Zia-ur-Rehman, Tahir, M. N., Danish, M., Muhammad, N. & Ali, S. (2009). Acta Cryst. E65, o503.]), in which two N—H⋯Cl hydrogen bonds link the ions into simple chains. The aggregation in the 3,5-di­nitro­benzoate salt (II)[link] reported here, where two independent N—H⋯O hydrogen bonds generate a cyclic R44(12) motif, can be contrasted with that in the tri­chloro­acetate salt (VI) (Kiran Kumar, Yathirajan, Foro et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494-1506.]), where two independent N—H⋯O hydrogen bonds generate a continuous C22(6) chain: the reason for the finite aggregation in (II)[link] versus the continuous aggregation in (VI) is not obvious. The electronic delocalization in the anion of (III)[link] reported here is similar to that in the anion of the 5-hy­droxy-3,5-di­nitro­benzoate salt (VII) (Kiran Kumar, Yathirajan, Foro et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494-1506.]), where it is the phenolic hydroxyl group that has ionized rather than the carboxyl group, so forming an anion more reminiscent of a picrate ion than of a 3,5-di­nitro­benzoate ion. The aggregation in (VII) takes the form of a chain of rings generated by a combination of N—H⋯O and C—H⋯O hydrogen bonds, with chains of this type further linked by C—H⋯π(arene) hydrogen bonds to form a three-dimensional structure. The unit-cell dimensions of compound (IV)[link] reported here are similar to those in a series of isomorphous monohydrated benzoate salts containing anions of type (4–C6H4COO), where - = H, F, Cl or Br, compounds (VIII)–(XI), in all of which the 4-meth­oxy­phenyl unit exhibits disorder (Kiran Kumar, Yathirajan, Foro et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494-1506.]): however, despite the similarity in cell dimensions, the structure of (IV)[link] differs from those of (VIII)–(XI) firstly in showing no disorder and secondly in forming a three-dimensional hydrogen-bonded structure as opposed to the one-dimensional assembly in (VIII)–(XI). By contrast with compounds (VIII)–(XI) in space group P[\overline{1}], the 4-iodo­benzoate analogue (XII), also a monohydrate (Kiran Kumar, Yathirajan, Harish Chinthal et al., 2020[Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). CSD Communication (CCDC 1982784). CCDC, Cambridge, England. DOI: 10.5517/ccdc.csd.cc24k7sr.]) crystallizes in space group P21/c with Z′ = 3, but with no disorder, and an extensive series of N—H⋯O and O—H⋯O hydrogen bonds links the nine independent components into complex sheets.

5. Synthesis and crystallization

N-[4-Meth­oxy­phen­yl]piperazine (I)[link], was purchased from Sigma–Aldrich, and crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of a solution in methanol, m.p. 316–318 K. For the preparation of the salts (II)–(IV), solutions of (I)[link] (100 mg, 0.52 mmol) in methanol (10 ml), and of 0.52 mmol of the appropriate acidic component [3,5-di­nitro­benzoic acid (110.3 mg) for (II)[link], picric acid (119.1 mg) for (III)[link], and 4-amino­benzoic acid (71.3 mg) for (IV)] also in methanol (10 ml) were mixed and then briefly held at 313 K with stirring. The solutions were allowed to cool to ambient temperature and then set aside to crystallize, giving the products (II)–(IV). The products were collected by filtration, and dried in air: m.p. (II)[link] 393–395 K, (III)[link] 420–422 K, and (IV)[link] 407–409 K. Crystals of the salts (II)–(IV) suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in methanol/ethyl acetate (1:1, v/v).

6. Refinement

Crystal data, data collection and refinement details are summarized in Table 2[link]. All H atoms were located in difference maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C—H distances of 0.93 Å (aromatic), 0.96 Å (CH3) or 0.97 Å (CH2), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups which were permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms. For the H atoms bonded to N atoms in (I)[link] and (II)[link], the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N) giving the N—H distances shown in Table 1[link]. In (III)[link] and (IV)[link], free refinement of the atomic coordinates for the H atoms bonded to N in the cations, and to O in the water component of (IV)[link] gave N—H and O—H distances which were rather unsatisfactory: hence these H atoms bonded to N were treated as riding atoms with Uiso(H) = 1.2Ueq(N), while for those bonded to O in (IV)[link], the O—H distances were restrained to a value of 0.84 (2) Å, with Uiso(H) = 1.5Ueq(O), giving the distances shown in Table 1[link]. In compound (III)[link], two of the nitro groups exhibited disorder over two sets of atomic sites having unequal occupancy. For the minor disorder components, the bonded distances and the 1,3 non-bonded distances were restrained to be the same as the corresponding distances in the major disorder components subject to s. u. values of 0.01 and 0.02 Å, respectively, giving refined occupancies of 0.531 (16) and 0.469 (16) for the nitro group at atom C32, and 0.62 (6) and 0.38 (6) for that at atom C36. In addition, for each of the disordered substituents, the component atoms were restrained to have the same Uij components. In the absence of significant resonant scattering, the correct orientation of the structure of (I)[link] with respect to the polar axis direction could not be established: the value of the Flack x parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), as calculated (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) using 546 quotients of the type [(I+) − (I)]/[(I+) + (I)] was −0.5 (8), so that the correct orientation is indeterminate (Flack & Bernardinelli, 2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]): however, in the space group Pna21, this parameter does not carry any information of chemical significance.

Supporting information


Computing details top

For all structures, data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).

N-(4-Methoxyphenyl)piperazine (I) top
Crystal data top
C11H16N2ODx = 1.212 Mg m3
Mr = 192.26Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 1984 reflections
a = 6.9683 (7) Åθ = 2.8–27.7°
b = 7.9683 (8) ŵ = 0.08 mm1
c = 18.975 (2) ÅT = 293 K
V = 1053.60 (19) Å3Block, colourless
Z = 40.48 × 0.48 × 0.40 mm
F(000) = 416
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
1984 independent reflections
Radiation source: Enhance (Mo) X-ray Source1545 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
ω scansθmax = 27.7°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 88
Tmin = 0.814, Tmax = 0.969k = 1010
4066 measured reflectionsl = 2421
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.042P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1984 reflectionsΔρmax = 0.10 e Å3
131 parametersΔρmin = 0.12 e Å3
1 restraintAbsolute structure: Flack x determined using 546 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7092 (4)0.4549 (3)0.62326 (14)0.0784 (6)
H10.790 (5)0.480 (4)0.6597 (19)0.094*
C20.8074 (4)0.4800 (3)0.55762 (17)0.0709 (7)
H2A0.92390.41340.55680.085*
H2B0.84280.59720.55280.085*
C30.6799 (3)0.4296 (3)0.49739 (15)0.0617 (6)
H3A0.74530.45090.45320.074*
H3B0.65310.31030.50020.074*
N40.4997 (3)0.5231 (2)0.49904 (11)0.0502 (4)
C50.4049 (3)0.5099 (3)0.56726 (13)0.0582 (6)
H5A0.36220.39540.57460.070*
H5B0.29300.58230.56800.070*
C60.5390 (4)0.5596 (4)0.62554 (15)0.0716 (7)
H6A0.57490.67650.62030.086*
H6B0.47540.54640.67070.086*
C210.3791 (3)0.5080 (2)0.43961 (12)0.0465 (5)
C220.4222 (3)0.4034 (3)0.38284 (13)0.0568 (6)
H220.53030.33510.38480.068*
C230.3067 (4)0.3998 (3)0.32390 (13)0.0614 (6)
H230.33910.33000.28640.074*
C240.1445 (4)0.4975 (3)0.31948 (13)0.0568 (7)
C250.0979 (3)0.6002 (3)0.37552 (14)0.0567 (6)
H250.01170.66650.37360.068*
C260.2136 (3)0.6042 (2)0.43401 (13)0.0539 (6)
H260.17990.67390.47130.065*
O240.0395 (3)0.4861 (2)0.25830 (11)0.0798 (6)
C270.1153 (4)0.5990 (5)0.2494 (2)0.1065 (12)
H27A0.16520.58890.20240.160*
H27B0.07130.71180.25700.160*
H27C0.21450.57310.28280.160*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0715 (15)0.0896 (15)0.0739 (15)0.0055 (13)0.0133 (12)0.0146 (12)
C20.0555 (13)0.0649 (14)0.0923 (19)0.0004 (12)0.0035 (15)0.0092 (14)
C30.0523 (12)0.0568 (12)0.0761 (15)0.0058 (11)0.0081 (13)0.0058 (12)
N40.0450 (8)0.0497 (9)0.0560 (11)0.0007 (7)0.0087 (9)0.0028 (8)
C50.0531 (12)0.0625 (13)0.0588 (14)0.0064 (10)0.0095 (12)0.0008 (10)
C60.0707 (16)0.0855 (18)0.0586 (14)0.0130 (14)0.0012 (13)0.0009 (12)
C210.0475 (11)0.0390 (11)0.0532 (13)0.0030 (9)0.0137 (10)0.0035 (10)
C220.0580 (14)0.0531 (13)0.0594 (15)0.0095 (10)0.0132 (13)0.0007 (10)
C230.0710 (15)0.0595 (14)0.0538 (15)0.0044 (13)0.0187 (13)0.0080 (10)
C240.0574 (14)0.0637 (15)0.0492 (15)0.0055 (11)0.0077 (12)0.0029 (10)
C250.0487 (12)0.0570 (13)0.0643 (15)0.0047 (10)0.0089 (12)0.0001 (11)
C260.0535 (12)0.0500 (12)0.0581 (14)0.0031 (10)0.0123 (12)0.0069 (10)
O240.0771 (12)0.1029 (15)0.0595 (12)0.0020 (11)0.0017 (11)0.0059 (10)
C270.077 (2)0.154 (4)0.089 (2)0.0160 (18)0.0205 (19)0.007 (2)
Geometric parameters (Å, º) top
N1—C21.435 (4)C21—C261.389 (3)
N1—C61.451 (4)C21—C221.395 (3)
N1—H10.91 (4)C22—C231.378 (4)
C2—C31.502 (4)C22—H220.9300
C2—H2A0.9700C23—C241.375 (3)
C2—H2B0.9700C23—H230.9300
C3—N41.460 (3)C24—O241.375 (3)
C3—H3A0.9700C24—C251.380 (4)
C3—H3B0.9700C25—C261.372 (4)
N4—C211.411 (3)C25—H250.9300
N4—C51.457 (3)C26—H260.9300
C5—C61.501 (4)O24—C271.415 (4)
C5—H5A0.9700C27—H27A0.9600
C5—H5B0.9700C27—H27B0.9600
C6—H6A0.9700C27—H27C0.9600
C6—H6B0.9700
C2—N1—C6109.6 (2)C5—C6—H6B109.7
C2—N1—H1110 (2)H6A—C6—H6B108.2
C6—N1—H1111 (2)C26—C21—C22116.7 (2)
N1—C2—C3109.9 (2)C26—C21—N4120.58 (19)
N1—C2—H2A109.7C22—C21—N4122.66 (19)
C3—C2—H2A109.7C23—C22—C21120.9 (2)
N1—C2—H2B109.7C23—C22—H22119.6
C3—C2—H2B109.7C21—C22—H22119.6
H2A—C2—H2B108.2C24—C23—C22121.2 (2)
N4—C3—C2110.8 (2)C24—C23—H23119.4
N4—C3—H3A109.5C22—C23—H23119.4
C2—C3—H3A109.5O24—C24—C23116.8 (2)
N4—C3—H3B109.5O24—C24—C25124.4 (2)
C2—C3—H3B109.5C23—C24—C25118.8 (2)
H3A—C3—H3B108.1C26—C25—C24119.9 (2)
C21—N4—C5115.72 (15)C26—C25—H25120.0
C21—N4—C3116.8 (2)C24—C25—H25120.0
C5—N4—C3111.8 (2)C25—C26—C21122.5 (2)
N4—C5—C6110.71 (18)C25—C26—H26118.8
N4—C5—H5A109.5C21—C26—H26118.8
C6—C5—H5A109.5C24—O24—C27117.7 (2)
N4—C5—H5B109.5O24—C27—H27A109.5
C6—C5—H5B109.5O24—C27—H27B109.5
H5A—C5—H5B108.1H27A—C27—H27B109.5
N1—C6—C5109.6 (2)O24—C27—H27C109.5
N1—C6—H6A109.7H27A—C27—H27C109.5
C5—C6—H6A109.7H27B—C27—H27C109.5
N1—C6—H6B109.7
C6—N1—C2—C361.6 (3)C26—C21—C22—C231.3 (3)
N1—C2—C3—N457.0 (3)N4—C21—C22—C23176.0 (2)
C2—C3—N4—C21170.30 (19)C21—C22—C23—C240.8 (3)
C2—C3—N4—C553.1 (3)C22—C23—C24—O24179.5 (2)
C21—N4—C5—C6169.38 (19)C22—C23—C24—C250.1 (3)
C3—N4—C5—C653.5 (2)O24—C24—C25—C26179.1 (2)
C2—N1—C6—C561.8 (3)C23—C24—C25—C260.5 (3)
N4—C5—C6—N157.4 (3)C24—C25—C26—C210.1 (3)
C5—N4—C21—C2650.9 (2)C22—C21—C26—C251.0 (3)
C3—N4—C21—C26174.17 (19)N4—C21—C26—C25176.40 (19)
C5—N4—C21—C22131.9 (2)C23—C24—O24—C27173.1 (3)
C3—N4—C21—C223.0 (3)C25—C24—O24—C276.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O24i0.91 (4)2.23 (4)3.139 (3)171 (3)
Symmetry code: (i) x+1, y+1, z+1/2.
4-(4-Methoxyphenyl)piperazin-1-ium 3,5-dinitrobenzoate (II) top
Crystal data top
C11H17N2O+·C7H3N2O6Z = 2
Mr = 404.38F(000) = 424
Triclinic, P1Dx = 1.366 Mg m3
a = 7.4365 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6276 (6) ÅCell parameters from 4210 reflections
c = 13.2700 (6) Åθ = 2.7–27.8°
α = 92.238 (4)°µ = 0.11 mm1
β = 97.057 (4)°T = 293 K
γ = 108.618 (5)°Block, yellow
V = 982.92 (9) Å30.50 × 0.48 × 0.48 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
4202 independent reflections
Radiation source: Enhance (Mo) X-ray Source3057 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 79
Tmin = 0.765, Tmax = 0.950k = 1313
7013 measured reflectionsl = 169
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.2082P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4202 reflectionsΔρmax = 0.15 e Å3
268 parametersΔρmin = 0.19 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4909 (2)0.44996 (14)0.34081 (10)0.0521 (3)
H110.578 (3)0.5249 (19)0.3837 (14)0.063*
H120.464 (3)0.3711 (18)0.3776 (14)0.063*
C20.3094 (3)0.47725 (16)0.31197 (13)0.0579 (4)
H2A0.26200.49930.37290.070*
H2B0.21400.39820.27610.070*
C30.3399 (3)0.59140 (16)0.24455 (12)0.0518 (4)
H3A0.21910.60680.22490.062*
H3B0.42900.67190.28190.062*
N40.41580 (19)0.56126 (12)0.15311 (9)0.0475 (3)
C50.5974 (3)0.54000 (17)0.18174 (12)0.0532 (4)
H5A0.68900.62040.21800.064*
H5B0.64730.52050.12090.064*
C60.5732 (3)0.42574 (17)0.24871 (13)0.0601 (5)
H6A0.48930.34410.21050.072*
H6B0.69670.41470.26890.072*
C210.4128 (2)0.65236 (14)0.07691 (11)0.0443 (3)
C220.2377 (2)0.65974 (17)0.03241 (12)0.0555 (4)
H220.12560.60630.05360.067*
C230.2264 (2)0.74413 (18)0.04220 (13)0.0572 (4)
H230.10740.74740.07060.069*
C240.3915 (2)0.82446 (16)0.07540 (11)0.0468 (4)
C250.5662 (2)0.81844 (16)0.03278 (11)0.0477 (4)
H250.67790.87150.05460.057*
C260.5764 (2)0.73326 (16)0.04294 (11)0.0477 (4)
H260.69570.73050.07140.057*
O240.36537 (16)0.90394 (12)0.15109 (9)0.0609 (3)
C270.5312 (2)0.98606 (18)0.18771 (14)0.0595 (4)
H27A0.49411.03640.24010.089*
H27B0.61431.04590.13270.089*
H27C0.59730.93140.21510.089*
C310.75477 (19)0.90885 (13)0.44906 (10)0.0370 (3)
C320.74671 (19)1.02627 (13)0.49332 (11)0.0379 (3)
H320.69191.02660.55260.045*
C330.8211 (2)1.14339 (13)0.44845 (11)0.0397 (3)
C340.9027 (2)1.14837 (15)0.36080 (11)0.0425 (3)
H340.95021.22780.33100.051*
C350.91080 (19)1.03023 (15)0.31926 (10)0.0416 (3)
C360.8395 (2)0.91119 (14)0.36128 (11)0.0413 (3)
H360.84800.83310.33120.050*
C370.6792 (2)0.77976 (14)0.49869 (12)0.0442 (3)
O310.70674 (18)0.67975 (10)0.46073 (10)0.0624 (3)
O320.59993 (18)0.78544 (11)0.57568 (10)0.0617 (3)
N330.8205 (2)1.26892 (13)0.49865 (12)0.0556 (4)
O330.7947 (3)1.26858 (14)0.58726 (12)0.0877 (5)
O340.8460 (2)1.36548 (11)0.44914 (12)0.0745 (4)
N351.00278 (19)1.03268 (17)0.22712 (11)0.0575 (4)
O350.9969 (2)0.92646 (16)0.18661 (11)0.0886 (5)
O361.08186 (19)1.14064 (15)0.19653 (10)0.0723 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0813 (10)0.0340 (7)0.0413 (7)0.0163 (7)0.0151 (7)0.0085 (6)
C20.0783 (12)0.0465 (9)0.0517 (9)0.0171 (8)0.0255 (9)0.0128 (7)
C30.0688 (11)0.0490 (9)0.0434 (8)0.0220 (8)0.0200 (8)0.0106 (7)
N40.0625 (8)0.0452 (7)0.0365 (6)0.0178 (6)0.0121 (6)0.0052 (5)
C50.0726 (11)0.0562 (9)0.0390 (8)0.0285 (8)0.0170 (8)0.0091 (7)
C60.0932 (14)0.0516 (9)0.0463 (9)0.0353 (9)0.0179 (9)0.0066 (7)
C210.0539 (9)0.0432 (8)0.0331 (7)0.0126 (7)0.0060 (6)0.0004 (6)
C220.0475 (9)0.0609 (10)0.0494 (9)0.0045 (8)0.0083 (7)0.0100 (8)
C230.0430 (9)0.0721 (11)0.0525 (9)0.0141 (8)0.0020 (7)0.0152 (8)
C240.0511 (9)0.0534 (9)0.0352 (7)0.0161 (7)0.0056 (6)0.0062 (7)
C250.0458 (9)0.0581 (9)0.0386 (8)0.0140 (7)0.0101 (6)0.0090 (7)
C260.0475 (9)0.0591 (9)0.0378 (8)0.0186 (7)0.0067 (6)0.0069 (7)
O240.0505 (7)0.0792 (8)0.0544 (7)0.0201 (6)0.0080 (5)0.0293 (6)
C270.0565 (10)0.0651 (11)0.0575 (10)0.0177 (8)0.0105 (8)0.0234 (9)
C310.0330 (7)0.0355 (7)0.0397 (7)0.0091 (5)0.0009 (5)0.0061 (6)
C320.0348 (7)0.0413 (7)0.0382 (7)0.0127 (6)0.0052 (6)0.0074 (6)
C330.0377 (7)0.0351 (7)0.0466 (8)0.0131 (6)0.0030 (6)0.0062 (6)
C340.0367 (8)0.0421 (8)0.0464 (8)0.0092 (6)0.0036 (6)0.0155 (6)
C350.0328 (7)0.0539 (9)0.0357 (7)0.0107 (6)0.0038 (6)0.0073 (6)
C360.0385 (8)0.0398 (7)0.0433 (8)0.0120 (6)0.0008 (6)0.0011 (6)
C370.0415 (8)0.0353 (7)0.0505 (9)0.0077 (6)0.0015 (7)0.0091 (6)
O310.0784 (8)0.0349 (6)0.0698 (8)0.0157 (5)0.0036 (6)0.0028 (5)
O320.0726 (8)0.0484 (6)0.0700 (8)0.0186 (6)0.0285 (7)0.0260 (6)
N330.0577 (9)0.0405 (7)0.0724 (10)0.0205 (6)0.0109 (7)0.0057 (7)
O330.1379 (14)0.0651 (9)0.0746 (10)0.0460 (9)0.0368 (9)0.0020 (7)
O340.0822 (9)0.0374 (6)0.1060 (11)0.0211 (6)0.0133 (8)0.0183 (7)
N350.0442 (8)0.0778 (11)0.0466 (8)0.0131 (7)0.0107 (6)0.0044 (8)
O350.0877 (11)0.0931 (11)0.0767 (9)0.0117 (8)0.0374 (8)0.0187 (8)
O360.0611 (8)0.0951 (10)0.0654 (8)0.0219 (7)0.0285 (6)0.0330 (7)
Geometric parameters (Å, º) top
N1—C21.478 (2)C25—C261.390 (2)
N1—C61.481 (2)C25—H250.9300
N1—H110.96 (2)C26—H260.9300
N1—H120.965 (18)O24—C271.4181 (19)
C2—C31.511 (2)C27—H27A0.9600
C2—H2A0.9700C27—H27B0.9600
C2—H2B0.9700C27—H27C0.9600
C3—N41.4654 (19)C31—C321.3803 (19)
C3—H3A0.9700C31—C361.388 (2)
C3—H3B0.9700C31—C371.5169 (19)
N4—C211.4301 (18)C32—C331.3817 (19)
N4—C51.448 (2)C32—H320.9300
C5—C61.510 (2)C33—C341.372 (2)
C5—H5A0.9700C33—N331.4693 (19)
C5—H5B0.9700C34—C351.374 (2)
C6—H6A0.9700C34—H340.9300
C6—H6B0.9700C35—C361.376 (2)
C21—C261.386 (2)C35—N351.4696 (19)
C21—C221.389 (2)C36—H360.9300
C22—C231.374 (2)C37—O311.2440 (18)
C22—H220.9300C37—O321.2495 (19)
C23—C241.387 (2)N33—O331.2143 (19)
C23—H230.9300N33—O341.2165 (17)
C24—O241.3724 (18)N35—O351.2169 (19)
C24—C251.373 (2)N35—O361.2211 (18)
C2—N1—C6110.43 (13)O24—C24—C23116.04 (14)
C2—N1—H11108.2 (11)C25—C24—C23119.13 (14)
C6—N1—H11111.1 (11)C24—C25—C26120.16 (14)
C2—N1—H12108.4 (11)C24—C25—H25119.9
C6—N1—H12108.7 (10)C26—C25—H25119.9
H11—N1—H12110.0 (15)C21—C26—C25121.40 (15)
N1—C2—C3110.47 (14)C21—C26—H26119.3
N1—C2—H2A109.6C25—C26—H26119.3
C3—C2—H2A109.6C24—O24—C27117.47 (13)
N1—C2—H2B109.6O24—C27—H27A109.5
C3—C2—H2B109.6O24—C27—H27B109.5
H2A—C2—H2B108.1H27A—C27—H27B109.5
N4—C3—C2110.40 (13)O24—C27—H27C109.5
N4—C3—H3A109.6H27A—C27—H27C109.5
C2—C3—H3A109.6H27B—C27—H27C109.5
N4—C3—H3B109.6C32—C31—C36119.36 (12)
C2—C3—H3B109.6C32—C31—C37120.07 (13)
H3A—C3—H3B108.1C36—C31—C37120.52 (13)
C21—N4—C5115.97 (12)C31—C32—C33119.18 (13)
C21—N4—C3113.26 (12)C31—C32—H32120.4
C5—N4—C3109.90 (12)C33—C32—H32120.4
N4—C5—C6110.50 (14)C34—C33—C32122.74 (13)
N4—C5—H5A109.6C34—C33—N33118.33 (13)
C6—C5—H5A109.6C32—C33—N33118.88 (13)
N4—C5—H5B109.6C33—C34—C35116.73 (13)
C6—C5—H5B109.6C33—C34—H34121.6
H5A—C5—H5B108.1C35—C34—H34121.6
N1—C6—C5111.08 (13)C34—C35—C36122.71 (13)
N1—C6—H6A109.4C34—C35—N35118.15 (13)
C5—C6—H6A109.4C36—C35—N35119.13 (14)
N1—C6—H6B109.4C35—C36—C31119.26 (13)
C5—C6—H6B109.4C35—C36—H36120.4
H6A—C6—H6B108.0C31—C36—H36120.4
C26—C21—C22117.42 (14)O31—C37—O32126.39 (14)
C26—C21—N4123.45 (14)O31—C37—C31117.10 (14)
C22—C21—N4119.12 (14)O32—C37—C31116.49 (13)
C23—C22—C21121.53 (15)O33—N33—O34124.64 (15)
C23—C22—H22119.2O33—N33—C33117.22 (13)
C21—C22—H22119.2O34—N33—C33118.14 (15)
C22—C23—C24120.35 (15)O35—N35—O36124.03 (15)
C22—C23—H23119.8O35—N35—C35117.67 (15)
C24—C23—H23119.8O36—N35—C35118.29 (15)
O24—C24—C25124.83 (14)
C6—N1—C2—C355.07 (17)C36—C31—C32—C330.8 (2)
N1—C2—C3—N457.89 (18)C37—C31—C32—C33178.20 (12)
C2—C3—N4—C21168.46 (14)C31—C32—C33—C340.3 (2)
C2—C3—N4—C560.05 (18)C31—C32—C33—N33177.08 (13)
C21—N4—C5—C6170.46 (12)C32—C33—C34—C351.1 (2)
C3—N4—C5—C659.49 (16)N33—C33—C34—C35176.30 (13)
C2—N1—C6—C554.81 (19)C33—C34—C35—C360.8 (2)
N4—C5—C6—N157.29 (19)C33—C34—C35—N35178.10 (13)
C5—N4—C21—C2610.3 (2)C34—C35—C36—C310.3 (2)
C3—N4—C21—C26118.13 (17)N35—C35—C36—C31179.18 (12)
C5—N4—C21—C22168.48 (14)C32—C31—C36—C351.1 (2)
C3—N4—C21—C2263.10 (18)C37—C31—C36—C35178.48 (12)
C26—C21—C22—C230.2 (2)C32—C31—C37—O31173.38 (14)
N4—C21—C22—C23179.05 (15)C36—C31—C37—O314.0 (2)
C21—C22—C23—C240.2 (3)C32—C31—C37—O324.7 (2)
C22—C23—C24—O24179.14 (16)C36—C31—C37—O32177.93 (13)
C22—C23—C24—C250.0 (3)C34—C33—N33—O33161.49 (16)
O24—C24—C25—C26179.33 (14)C32—C33—N33—O3316.0 (2)
C23—C24—C25—C260.3 (2)C34—C33—N33—O3418.4 (2)
C22—C21—C26—C250.1 (2)C32—C33—N33—O34164.13 (14)
N4—C21—C26—C25178.71 (14)C34—C35—N35—O35174.75 (15)
C24—C25—C26—C210.3 (2)C36—C35—N35—O356.3 (2)
C25—C24—O24—C270.2 (2)C34—C35—N35—O366.0 (2)
C23—C24—O24—C27179.20 (15)C36—C35—N35—O36172.92 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O310.96 (2)1.814 (19)2.7638 (18)169 (2)
N1—H12···O32i0.964 (18)1.740 (18)2.6953 (18)170.5 (17)
Symmetry code: (i) x+1, y+1, z+1.
4-(4-Methoxyphenyl)piperazin-1-ium 2,4,6-trinitrophenolate (III) top
Crystal data top
C11H17N2O+·C6H2N3O7F(000) = 880
Mr = 421.37Dx = 1.428 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.7568 (6) ÅCell parameters from 4353 reflections
b = 6.6292 (5) Åθ = 2.8–27.9°
c = 34.024 (2) ŵ = 0.12 mm1
β = 96.987 (6)°T = 293 K
V = 1960.4 (2) Å3Plate, yellow
Z = 40.48 × 0.42 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
4353 independent reflections
Radiation source: Enhance (Mo) X-ray Source2844 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.9°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1111
Tmin = 0.844, Tmax = 0.977k = 88
14483 measured reflectionsl = 4042
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0408P)2 + 1.052P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
4353 reflectionsΔρmax = 0.18 e Å3
333 parametersΔρmin = 0.18 e Å3
216 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.0738 (2)0.1834 (3)0.59884 (5)0.0479 (5)
H110.151 (3)0.169 (4)0.5830 (7)0.058*
H120.019 (3)0.169 (4)0.5837 (7)0.058*
C20.0862 (3)0.0294 (4)0.63061 (6)0.0525 (6)
H2A0.08700.10420.61900.063*
H2B0.00210.03870.64520.063*
C30.2321 (3)0.0615 (4)0.65845 (7)0.0500 (6)
H3A0.23740.03660.67970.060*
H3B0.32050.04120.64430.060*
N40.23682 (19)0.2647 (3)0.67506 (5)0.0400 (4)
C50.2311 (3)0.4129 (4)0.64346 (6)0.0466 (6)
H5A0.31900.39500.62900.056*
H5B0.23620.54760.65470.056*
C60.0844 (3)0.3897 (4)0.61558 (7)0.0541 (6)
H6A0.00330.41530.62970.065*
H6B0.08270.48740.59430.065*
C210.3552 (2)0.2940 (3)0.70738 (6)0.0395 (5)
C220.3572 (3)0.1707 (4)0.74060 (6)0.0484 (6)
H220.28400.06920.74090.058*
C230.4660 (3)0.1966 (4)0.77304 (6)0.0544 (7)
H230.46670.11080.79470.065*
C240.5738 (3)0.3482 (4)0.77367 (6)0.0528 (6)
C250.5737 (3)0.4715 (4)0.74137 (7)0.0562 (7)
H250.64570.57470.74150.067*
C260.4657 (3)0.4422 (4)0.70826 (6)0.0487 (6)
H260.46840.52470.68620.058*
O240.6749 (2)0.3618 (3)0.80799 (5)0.0735 (6)
C270.7871 (4)0.5171 (6)0.81017 (8)0.1008 (13)
H27A0.85000.51070.83530.151*
H27B0.85050.49980.78930.151*
H27C0.73680.64580.80740.151*
C310.3734 (2)0.2329 (3)0.52703 (6)0.0356 (5)
O310.32183 (18)0.2105 (3)0.55895 (4)0.0597 (5)
C330.5987 (2)0.2562 (3)0.48889 (6)0.0370 (5)
H330.70470.26250.48880.044*
C340.5007 (2)0.2576 (3)0.45381 (6)0.0383 (5)
C350.3436 (2)0.2518 (3)0.45352 (6)0.0393 (5)
H350.27960.25480.42960.047*
C320.5365 (2)0.2455 (3)0.52377 (6)0.0339 (4)0.531 (16)
N320.6471 (5)0.244 (2)0.55966 (13)0.036 (3)0.531 (16)
O320.6107 (6)0.1681 (18)0.58975 (13)0.068 (2)0.531 (16)
O330.7762 (6)0.3080 (16)0.55749 (18)0.0608 (18)0.531 (16)
C420.5365 (2)0.2455 (3)0.52377 (6)0.0339 (4)0.469 (16)
N420.6434 (7)0.242 (3)0.55983 (17)0.056 (5)0.469 (16)
O420.6039 (6)0.306 (2)0.59065 (15)0.071 (3)0.469 (16)
O430.7755 (7)0.191 (2)0.5573 (2)0.073 (2)0.469 (16)
N340.5657 (2)0.2627 (3)0.41672 (5)0.0514 (5)
O340.7052 (2)0.2600 (3)0.41785 (5)0.0689 (5)
O350.4782 (2)0.2684 (3)0.38591 (5)0.0800 (6)
C360.2819 (2)0.2416 (3)0.48841 (6)0.0370 (5)0.62 (6)
N360.1151 (5)0.2315 (18)0.4864 (3)0.056 (3)0.62 (6)
O360.0431 (11)0.178 (4)0.4554 (4)0.096 (4)0.62 (6)
O370.0549 (12)0.301 (3)0.5138 (3)0.084 (3)0.62 (6)
C460.2819 (2)0.2416 (3)0.48841 (6)0.0370 (5)0.38 (6)
N460.1144 (7)0.238 (3)0.4844 (3)0.055 (5)0.38 (6)
O460.0441 (16)0.215 (5)0.4518 (4)0.080 (5)0.38 (6)
O470.0510 (15)0.227 (9)0.5144 (4)0.089 (7)0.38 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0325 (10)0.0750 (15)0.0359 (10)0.0069 (10)0.0025 (8)0.0021 (10)
C20.0542 (14)0.0582 (16)0.0448 (13)0.0104 (12)0.0050 (11)0.0058 (11)
C30.0576 (14)0.0484 (15)0.0423 (12)0.0008 (11)0.0007 (10)0.0018 (11)
N40.0431 (10)0.0433 (11)0.0332 (8)0.0024 (8)0.0034 (7)0.0004 (8)
C50.0506 (13)0.0499 (14)0.0379 (11)0.0036 (11)0.0001 (10)0.0040 (10)
C60.0508 (14)0.0640 (17)0.0457 (13)0.0036 (12)0.0017 (11)0.0073 (12)
C210.0395 (11)0.0485 (14)0.0314 (10)0.0006 (10)0.0080 (8)0.0022 (9)
C220.0515 (13)0.0573 (15)0.0371 (12)0.0095 (12)0.0078 (10)0.0040 (10)
C230.0574 (15)0.0734 (18)0.0328 (11)0.0057 (13)0.0074 (10)0.0102 (11)
C240.0456 (13)0.0809 (19)0.0312 (11)0.0042 (13)0.0024 (9)0.0026 (12)
C250.0540 (14)0.0710 (18)0.0425 (13)0.0193 (13)0.0018 (11)0.0005 (12)
C260.0535 (14)0.0582 (16)0.0341 (11)0.0094 (12)0.0039 (10)0.0061 (10)
O240.0634 (11)0.1146 (17)0.0390 (9)0.0199 (11)0.0082 (8)0.0053 (10)
C270.082 (2)0.160 (4)0.0538 (17)0.051 (2)0.0169 (15)0.003 (2)
C310.0367 (10)0.0329 (11)0.0372 (11)0.0006 (9)0.0038 (8)0.0029 (9)
O310.0439 (9)0.0975 (15)0.0388 (8)0.0007 (9)0.0093 (7)0.0006 (9)
C330.0345 (10)0.0303 (11)0.0469 (11)0.0010 (9)0.0081 (9)0.0000 (9)
C340.0459 (12)0.0340 (11)0.0361 (10)0.0020 (10)0.0089 (9)0.0014 (9)
C350.0472 (12)0.0343 (11)0.0345 (10)0.0022 (10)0.0033 (9)0.0010 (9)
C320.0349 (10)0.0298 (11)0.0351 (10)0.0001 (9)0.0032 (8)0.0027 (9)
N320.029 (4)0.035 (5)0.038 (5)0.004 (4)0.022 (4)0.005 (4)
O320.072 (3)0.094 (6)0.034 (2)0.018 (3)0.0095 (17)0.013 (3)
O330.033 (2)0.075 (4)0.070 (3)0.002 (3)0.0091 (17)0.010 (3)
C420.0349 (10)0.0298 (11)0.0351 (10)0.0001 (9)0.0032 (8)0.0027 (9)
N420.062 (7)0.050 (8)0.058 (7)0.003 (6)0.022 (5)0.013 (6)
O420.069 (3)0.095 (7)0.044 (3)0.005 (3)0.0066 (19)0.007 (3)
O430.036 (3)0.096 (7)0.080 (3)0.014 (3)0.015 (2)0.013 (4)
N340.0644 (13)0.0488 (12)0.0427 (11)0.0041 (11)0.0135 (10)0.0020 (9)
O340.0609 (11)0.0862 (14)0.0653 (11)0.0002 (11)0.0300 (9)0.0074 (10)
O350.0879 (14)0.1139 (18)0.0383 (9)0.0126 (13)0.0081 (9)0.0024 (11)
C360.0324 (10)0.0363 (11)0.0414 (11)0.0010 (9)0.0011 (8)0.0007 (9)
N360.034 (4)0.069 (5)0.060 (6)0.012 (4)0.016 (4)0.003 (4)
O360.049 (4)0.147 (9)0.085 (6)0.019 (4)0.020 (4)0.037 (7)
O370.046 (4)0.129 (8)0.079 (5)0.024 (4)0.018 (3)0.006 (3)
C460.0324 (10)0.0363 (11)0.0414 (11)0.0010 (9)0.0011 (8)0.0007 (9)
N460.045 (8)0.075 (9)0.049 (8)0.023 (7)0.020 (7)0.014 (7)
O460.043 (6)0.138 (11)0.054 (6)0.015 (7)0.010 (5)0.013 (8)
O470.038 (5)0.18 (2)0.043 (6)0.017 (7)0.006 (4)0.012 (6)
Geometric parameters (Å, º) top
N1—C61.480 (3)C26—H260.9300
N1—C21.481 (3)O24—C271.419 (4)
N1—H110.92 (3)C27—H27A0.9600
N1—H120.91 (3)C27—H27B0.9600
C2—C31.510 (3)C27—H27C0.9600
C2—H2A0.9700C31—O311.235 (2)
C2—H2B0.9700C31—C321.448 (3)
C3—N41.460 (3)C31—C361.455 (3)
C3—H3A0.9700C33—C321.366 (3)
C3—H3B0.9700C33—C341.383 (3)
N4—C211.430 (3)C33—H330.9300
N4—C51.453 (3)C34—C351.375 (3)
C5—C61.509 (3)C34—N341.446 (3)
C5—H5A0.9700C35—C361.364 (3)
C5—H5B0.9700C35—H350.9300
C6—H6A0.9700C32—N321.463 (4)
C6—H6B0.9700N32—O321.218 (7)
C21—C261.377 (3)N32—O331.218 (7)
C21—C221.393 (3)N42—O431.218 (7)
C22—C231.378 (3)N42—O421.222 (8)
C22—H220.9300N34—O341.217 (2)
C23—C241.377 (3)N34—O351.221 (2)
C23—H230.9300C36—N361.455 (5)
C24—C251.369 (3)N36—O361.213 (5)
C24—O241.380 (3)N36—O371.218 (7)
C25—C261.393 (3)N46—O461.213 (7)
C25—H250.9300N46—O471.220 (8)
C6—N1—C2111.14 (18)C25—C24—O24125.3 (2)
C6—N1—H11107.7 (16)C23—C24—O24115.4 (2)
C2—N1—H11111.3 (15)C24—C25—C26120.0 (2)
C6—N1—H12108.7 (16)C24—C25—H25120.0
C2—N1—H12108.8 (16)C26—C25—H25120.0
H11—N1—H12109 (2)C21—C26—C25121.5 (2)
N1—C2—C3110.02 (19)C21—C26—H26119.2
N1—C2—H2A109.7C25—C26—H26119.2
C3—C2—H2A109.7C24—O24—C27117.4 (2)
N1—C2—H2B109.7O24—C27—H27A109.5
C3—C2—H2B109.7O24—C27—H27B109.5
H2A—C2—H2B108.2H27A—C27—H27B109.5
N4—C3—C2110.8 (2)O24—C27—H27C109.5
N4—C3—H3A109.5H27A—C27—H27C109.5
C2—C3—H3A109.5H27B—C27—H27C109.5
N4—C3—H3B109.5O31—C31—C32122.96 (18)
C2—C3—H3B109.5O31—C31—C36125.38 (18)
H3A—C3—H3B108.1C32—C33—C34118.62 (18)
C21—N4—C5115.72 (17)C32—C33—H33120.7
C21—N4—C3114.01 (17)C34—C33—H33120.7
C5—N4—C3109.92 (17)C35—C34—C33121.41 (18)
N4—C5—C6110.26 (19)C35—C34—N34119.60 (18)
N4—C5—H5A109.6C33—C34—N34118.99 (19)
C6—C5—H5A109.6C36—C35—C34119.79 (18)
N4—C5—H5B109.6C36—C35—H35120.1
C6—C5—H5B109.6C34—C35—H35120.1
H5A—C5—H5B108.1C33—C32—C31124.80 (17)
N1—C6—C5110.2 (2)C33—C32—N32115.6 (3)
N1—C6—H6A109.6C31—C32—N32119.6 (3)
C5—C6—H6A109.6O32—N32—O33122.3 (4)
N1—C6—H6B109.6O32—N32—C32119.3 (6)
C5—C6—H6B109.6O33—N32—C32118.2 (5)
H6A—C6—H6B108.1O43—N42—O42122.0 (6)
C26—C21—C22117.5 (2)O34—N34—O35123.3 (2)
C26—C21—N4123.74 (19)O34—N34—C34118.16 (19)
C22—C21—N4118.75 (19)O35—N34—C34118.5 (2)
C23—C22—C21121.1 (2)C35—C36—C31123.71 (18)
C23—C22—H22119.5C35—C36—N36117.5 (4)
C21—C22—H22119.5C31—C36—N36118.7 (4)
C24—C23—C22120.6 (2)O36—N36—O37123.3 (7)
C24—C23—H23119.7O36—N36—C36117.9 (6)
C22—C23—H23119.7O37—N36—C36118.1 (6)
C25—C24—C23119.3 (2)O46—N46—O47121.8 (10)
C6—N1—C2—C354.9 (3)C33—C34—C35—C360.9 (3)
N1—C2—C3—N456.9 (2)N34—C34—C35—C36178.29 (19)
C2—C3—N4—C21168.24 (18)C34—C33—C32—C310.7 (3)
C2—C3—N4—C559.9 (2)C34—C33—C32—N32179.8 (6)
C21—N4—C5—C6168.80 (19)O31—C31—C32—C33175.2 (2)
C3—N4—C5—C660.3 (2)C36—C31—C32—C332.4 (3)
C2—N1—C6—C555.6 (2)O31—C31—C32—N323.8 (7)
N4—C5—C6—N158.2 (2)C36—C31—C32—N32178.5 (6)
C5—N4—C21—C264.7 (3)C33—C32—N32—O32155.0 (10)
C3—N4—C21—C26124.3 (2)C31—C32—N32—O3224.2 (15)
C5—N4—C21—C22173.2 (2)C33—C32—N32—O3320.3 (13)
C3—N4—C21—C2257.8 (3)C31—C32—N32—O33160.6 (8)
C26—C21—C22—C230.0 (3)C35—C34—N34—O34177.3 (2)
N4—C21—C22—C23178.0 (2)C33—C34—N34—O342.0 (3)
C21—C22—C23—C241.3 (4)C35—C34—N34—O352.4 (3)
C22—C23—C24—C251.2 (4)C33—C34—N34—O35178.4 (2)
C22—C23—C24—O24178.8 (2)C34—C35—C36—C311.1 (3)
C23—C24—C25—C260.3 (4)C34—C35—C36—N36178.7 (6)
O24—C24—C25—C26179.8 (2)O31—C31—C36—C35175.0 (2)
C22—C21—C26—C251.4 (3)C32—C31—C36—C352.6 (3)
N4—C21—C26—C25176.5 (2)O31—C31—C36—N362.6 (6)
C24—C25—C26—C211.6 (4)C32—C31—C36—N36179.8 (6)
C25—C24—O24—C270.6 (4)C35—C36—N36—O3619.8 (18)
C23—C24—O24—C27179.4 (3)C31—C36—N36—O36158.0 (16)
C32—C33—C34—C351.1 (3)C35—C36—N36—O37151.0 (14)
C32—C33—C34—N34178.13 (19)C31—C36—N36—O3731.3 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O310.92 (3)1.81 (3)2.704 (3)163 (2)
N1—H11···O370.92 (3)2.56 (3)2.982 (11)108.7 (19)
N1—H11···O470.92 (3)2.42 (3)2.870 (15)110.1 (19)
N1—H12···O33i0.91 (3)2.12 (3)2.926 (6)148 (2)
N1—H12···O43i0.91 (3)1.92 (3)2.815 (6)168 (2)
C22—H22···Cg1ii0.932.863.769 (3)164
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y1/2, z+3/2.
4-(4-Methoxyphenyl)piperazin-1-ium 4-aminobenzoate monohydrate (IV) top
Crystal data top
C7H6NO2+·C11H17N2O·H2OZ = 2
Mr = 347.41F(000) = 372
Triclinic, P1Dx = 1.301 Mg m3
a = 6.2590 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.4549 (9) ÅCell parameters from 3815 reflections
c = 19.269 (2) Åθ = 2.9–28.0°
α = 83.28 (1)°µ = 0.09 mm1
β = 84.740 (1)°T = 293 K
γ = 85.38 (1)°Needle, orange
V = 886.94 (17) Å30.40 × 0.20 × 0.14 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
3500 independent reflections
Radiation source: Enhance (Mo) X-ray Source1923 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 26.0°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 77
Tmin = 0.814, Tmax = 0.987k = 99
5786 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.069H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.187 w = 1/[σ2(Fo2) + (0.0852P)2 + 0.1253P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3500 reflectionsΔρmax = 0.24 e Å3
240 parametersΔρmin = 0.20 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2828 (4)0.7421 (3)0.95242 (13)0.0450 (7)
H110.2404 (10)0.622 (3)0.9597 (2)0.054*
H120.3170 (8)0.7746 (7)0.9957 (10)0.054*
C20.4741 (5)0.7531 (5)0.90102 (16)0.0497 (8)
H2A0.58970.66950.91790.060*
H2B0.52300.87450.89590.060*
C30.4195 (5)0.7068 (4)0.83065 (15)0.0441 (8)
H3A0.54340.72290.79700.053*
H3B0.38850.58040.83490.053*
N40.2361 (4)0.8177 (3)0.80430 (12)0.0364 (6)
C50.0500 (5)0.8148 (4)0.85669 (15)0.0439 (7)
H5A0.00180.69430.86370.053*
H5B0.06480.89820.83910.053*
C60.1042 (5)0.8661 (4)0.92564 (15)0.0483 (8)
H6A0.14610.98980.91970.058*
H6B0.02120.85900.95910.058*
C210.1873 (4)0.7910 (4)0.73590 (14)0.0360 (7)
C220.3250 (5)0.6885 (4)0.69232 (16)0.0486 (8)
H220.45270.63380.70840.058*
C230.2747 (5)0.6671 (5)0.62568 (17)0.0560 (9)
H230.36960.59900.59740.067*
C240.0876 (5)0.7445 (5)0.60071 (16)0.0492 (8)
C250.0491 (5)0.8463 (5)0.64207 (17)0.0560 (9)
H250.17610.90080.62540.067*
C260.0006 (5)0.8689 (4)0.70887 (16)0.0524 (9)
H260.09470.93870.73640.063*
O240.0508 (4)0.7097 (4)0.53404 (12)0.0751 (8)
C270.1543 (7)0.7604 (7)0.5111 (2)0.0904 (15)
H27A0.26190.71360.54570.136*
H27B0.16640.71230.46760.136*
H27C0.17480.89010.50420.136*
C310.2985 (4)0.7266 (4)1.20437 (15)0.0377 (7)
C320.1577 (5)0.6559 (4)1.25859 (17)0.0499 (8)
H320.03660.60331.24800.060*
C330.1932 (5)0.6617 (4)1.32757 (17)0.0543 (9)
H330.09610.61281.36280.065*
C340.3719 (5)0.7394 (4)1.34546 (16)0.0501 (8)
C350.5129 (5)0.8063 (4)1.29165 (17)0.0497 (8)
H350.63520.85701.30230.060*
C360.4789 (5)0.8008 (4)1.22268 (16)0.0439 (8)
H360.57810.84741.18770.053*
C370.2566 (5)0.7256 (4)1.12955 (17)0.0477 (8)
O310.3847 (4)0.7999 (3)1.08228 (12)0.0614 (7)
O320.0963 (4)0.6528 (4)1.11651 (14)0.0866 (9)
N340.4074 (6)0.7461 (6)1.41482 (17)0.0767 (11)
H3410.312 (7)0.732 (6)1.447 (2)0.092*
H3420.511 (7)0.811 (6)1.421 (2)0.092*
O410.2239 (4)0.3712 (3)0.96061 (13)0.0592 (7)
H410.122 (5)0.361 (5)0.9356 (18)0.089*
H420.329 (5)0.307 (5)0.943 (2)0.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0545 (17)0.0468 (15)0.0367 (14)0.0123 (12)0.0095 (12)0.0066 (11)
C20.0439 (19)0.062 (2)0.0445 (19)0.0063 (15)0.0093 (15)0.0065 (15)
C30.0361 (17)0.0536 (19)0.0422 (18)0.0048 (14)0.0056 (13)0.0072 (14)
N40.0364 (13)0.0388 (13)0.0345 (13)0.0009 (10)0.0026 (10)0.0074 (10)
C50.0384 (17)0.0543 (19)0.0390 (17)0.0001 (14)0.0030 (13)0.0072 (14)
C60.052 (2)0.0528 (19)0.0394 (18)0.0008 (15)0.0025 (15)0.0072 (14)
C210.0351 (16)0.0327 (16)0.0404 (17)0.0017 (12)0.0040 (13)0.0049 (12)
C220.0357 (17)0.065 (2)0.0461 (19)0.0099 (15)0.0072 (14)0.0152 (16)
C230.046 (2)0.076 (2)0.047 (2)0.0101 (17)0.0033 (16)0.0237 (17)
C240.049 (2)0.066 (2)0.0344 (18)0.0069 (16)0.0061 (14)0.0105 (15)
C250.054 (2)0.067 (2)0.048 (2)0.0168 (17)0.0173 (16)0.0139 (17)
C260.055 (2)0.058 (2)0.0441 (19)0.0151 (16)0.0079 (15)0.0156 (16)
O240.0604 (16)0.123 (2)0.0470 (15)0.0053 (15)0.0153 (12)0.0311 (14)
C270.075 (3)0.148 (4)0.055 (3)0.002 (3)0.026 (2)0.030 (3)
C310.0366 (16)0.0332 (16)0.0448 (18)0.0014 (13)0.0080 (13)0.0098 (13)
C320.0438 (18)0.0477 (19)0.061 (2)0.0079 (15)0.0035 (16)0.0152 (16)
C330.052 (2)0.057 (2)0.052 (2)0.0068 (17)0.0088 (16)0.0039 (16)
C340.054 (2)0.054 (2)0.0415 (19)0.0096 (16)0.0099 (16)0.0073 (15)
C350.0440 (19)0.058 (2)0.050 (2)0.0055 (15)0.0149 (16)0.0075 (16)
C360.0431 (18)0.0435 (18)0.0461 (19)0.0079 (14)0.0061 (14)0.0031 (14)
C370.052 (2)0.0399 (18)0.054 (2)0.0030 (15)0.0137 (17)0.0144 (15)
O310.0741 (17)0.0713 (16)0.0416 (14)0.0104 (13)0.0126 (12)0.0088 (11)
O320.0760 (19)0.116 (2)0.080 (2)0.0354 (17)0.0310 (15)0.0252 (16)
N340.075 (3)0.112 (3)0.044 (2)0.009 (2)0.0138 (16)0.0150 (19)
O410.0597 (16)0.0589 (16)0.0637 (16)0.0143 (12)0.0196 (12)0.0088 (12)
Geometric parameters (Å, º) top
N1—C61.483 (4)C25—C261.384 (4)
N1—C21.484 (4)C25—H250.9300
N1—H110.94 (2)C26—H260.9300
N1—H120.94 (2)O24—C271.405 (4)
C2—C31.513 (4)C27—H27A0.9600
C2—H2A0.9700C27—H27B0.9600
C2—H2B0.9700C27—H27C0.9600
C3—N41.454 (3)C31—C321.387 (4)
C3—H3A0.9700C31—C361.387 (4)
C3—H3B0.9700C31—C371.490 (4)
N4—C211.420 (3)C32—C331.374 (4)
N4—C51.470 (3)C32—H320.9300
C5—C61.500 (4)C33—C341.388 (5)
C5—H5A0.9700C33—H330.9300
C5—H5B0.9700C34—C351.373 (4)
C6—H6A0.9700C34—N341.382 (4)
C6—H6B0.9700C35—C361.371 (4)
C21—C261.381 (4)C35—H350.9300
C21—C221.393 (4)C36—H360.9300
C22—C231.380 (4)C37—O321.237 (4)
C22—H220.9300C37—O311.265 (4)
C23—C241.366 (4)N34—H3410.82 (4)
C23—H230.9300N34—H3420.87 (4)
C24—C251.362 (4)O41—H410.850 (19)
C24—O241.383 (4)O41—H420.856 (19)
C6—N1—C2109.6 (2)C25—C24—C23119.2 (3)
C6—N1—H11109.8C25—C24—O24124.8 (3)
C2—N1—H11109.8C23—C24—O24116.0 (3)
C6—N1—H12109.8C24—C25—C26120.2 (3)
C2—N1—H12109.8C24—C25—H25119.9
H11—N1—H12108.2C26—C25—H25119.9
N1—C2—C3110.3 (2)C21—C26—C25122.0 (3)
N1—C2—H2A109.6C21—C26—H26119.0
C3—C2—H2A109.6C25—C26—H26119.0
N1—C2—H2B109.6C24—O24—C27117.7 (3)
C3—C2—H2B109.6O24—C27—H27A109.5
H2A—C2—H2B108.1O24—C27—H27B109.5
N4—C3—C2112.8 (2)H27A—C27—H27B109.5
N4—C3—H3A109.0O24—C27—H27C109.5
C2—C3—H3A109.0H27A—C27—H27C109.5
N4—C3—H3B109.0H27B—C27—H27C109.5
C2—C3—H3B109.0C32—C31—C36117.2 (3)
H3A—C3—H3B107.8C32—C31—C37121.5 (3)
C21—N4—C3115.5 (2)C36—C31—C37121.3 (3)
C21—N4—C5114.3 (2)C33—C32—C31121.5 (3)
C3—N4—C5111.3 (2)C33—C32—H32119.3
N4—C5—C6112.2 (2)C31—C32—H32119.3
N4—C5—H5A109.2C32—C33—C34121.0 (3)
C6—C5—H5A109.2C32—C33—H33119.5
N4—C5—H5B109.2C34—C33—H33119.5
C6—C5—H5B109.2C35—C34—N34121.6 (3)
H5A—C5—H5B107.9C35—C34—C33117.4 (3)
N1—C6—C5109.8 (2)N34—C34—C33121.1 (3)
N1—C6—H6A109.7C36—C35—C34122.0 (3)
C5—C6—H6A109.7C36—C35—H35119.0
N1—C6—H6B109.7C34—C35—H35119.0
C5—C6—H6B109.7C35—C36—C31120.9 (3)
H6A—C6—H6B108.2C35—C36—H36119.5
C26—C21—C22116.6 (3)C31—C36—H36119.5
C26—C21—N4121.0 (2)O32—C37—O31122.9 (3)
C22—C21—N4122.3 (3)O32—C37—C31118.2 (3)
C23—C22—C21121.0 (3)O31—C37—C31118.9 (3)
C23—C22—H22119.5C34—N34—H341122 (3)
C21—C22—H22119.5C34—N34—H342115 (3)
C24—C23—C22120.9 (3)H341—N34—H342117 (4)
C24—C23—H23119.5H41—O41—H42104 (4)
C22—C23—H23119.5
C6—N1—C2—C357.7 (3)C22—C21—C26—C250.3 (5)
N1—C2—C3—N454.8 (3)N4—C21—C26—C25179.3 (3)
C2—C3—N4—C21175.1 (2)C24—C25—C26—C210.1 (5)
C2—C3—N4—C552.3 (3)C25—C24—O24—C279.6 (5)
C21—N4—C5—C6173.0 (2)C23—C24—O24—C27169.5 (4)
C3—N4—C5—C653.8 (3)C36—C31—C32—C331.1 (4)
C2—N1—C6—C559.3 (3)C37—C31—C32—C33178.0 (3)
N4—C5—C6—N157.6 (3)C31—C32—C33—C340.2 (5)
C3—N4—C21—C26170.9 (3)C32—C33—C34—C351.3 (5)
C5—N4—C21—C2639.7 (4)C32—C33—C34—N34179.7 (3)
C3—N4—C21—C2210.2 (4)N34—C34—C35—C36179.8 (3)
C5—N4—C21—C22141.4 (3)C33—C34—C35—C361.2 (5)
C26—C21—C22—C230.1 (5)C34—C35—C36—C310.0 (5)
N4—C21—C22—C23179.0 (3)C32—C31—C36—C351.2 (4)
C21—C22—C23—C240.5 (5)C37—C31—C36—C35177.9 (3)
C22—C23—C24—C251.0 (5)C32—C31—C37—O322.9 (4)
C22—C23—C24—O24178.2 (3)C36—C31—C37—O32178.0 (3)
C23—C24—C25—C260.8 (5)C32—C31—C37—O31176.5 (3)
O24—C24—C25—C26178.3 (3)C36—C31—C37—O312.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O410.95 (2)1.88 (2)2.803 (3)165 (1)
N1—H12···O310.94 (1)1.79 (2)2.728 (3)171 (1)
O41—H41···O32i0.85 (3)1.78 (3)2.631 (4)178 (4)
O41—H42···O31ii0.85 (3)1.95 (3)2.772 (3)164 (3)
N34—H341···O24iii0.82 (4)2.23 (4)3.057 (4)177 (4)
C22—H22···Cg2i0.932.933.666 (3)137
C26—H26···Cg2iv0.932.773.531 (3)139
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+2; (iii) x, y, z+1; (iv) x, y+2, z+2.
Hydrogen bonds and short intermolecular contacts (Å, °) for compounds (I)–(IV) top
Cg1 and Cg2 represent the centroids of the rings (C21–C26) and (C31–C36), respectively.
CompoundD—H···AD—HH···AD···AD—H···A
(I)N1—H1···O24i0.91 (4)2.23 (4)3.139 (3)171 (3)
(II)N1—H11···O310.96 (2)1.814 (19)2.7638 (18)169 (2)
N1—H12···O32ii0.964 (18)1.740 (18)2.6953 (18)170.5 (17)
(III)N1—H11···O310.92 (3)1.81 (3)2.704 (3)163 (2)
N1—H11···O370.92 (3)2.56 (3)2.982 (11)108.7 (19)
N1—H11···O470.92 (3)2.42 (3)2.870 (15)110.1 (19)
N1—H12···O33iii0.91 (3)2.12 (3)2.926 (6)148 (2)
N1—H12···O43iii0.91 (3)1.92 (3)2.815 (6)168 (2)
N1—H12···O470.91 (3)2.54 (3)2.870 (15)102.1 (19)
C12—H12···Cg1iv0.932.863.769 (3)164
(IV)N1—H11···O410.95 (2)1.88 (2)2.803 (3)165.2 (8)
N1—H12···O310.943 (7)1.793 (18)2.728 (3)171.2 (7)
O41—H41···O32v0.85 (3)1.78 (3)2.631 (4)178 (4)
O41—H42···O31vi0.85 (3)1.95 (3)2.772 (3)164 (3)
N34—H341···O24vii0.82 (4)2.23 (4)3.057 (4)177 (4)
C22—H22···Cg2v0.932.933.666 (3)137
C26—H26···Cg2viii0.932.773.531 (3)139
Symmetry codes: (i) 1 - x, 1 - y, 1/2 + z; (ii) 1 - x, 1 - y, 1 - z; (iii) -1 + x, y, z; (iv) 1/2 - x, -1/2 + y, 3/2 - z; (v) -x, 1 - y, 2 - z; (vi) 1 - x, 1 - y, 2 - z; (vii) x, y, 1 + z; (viii) -x, 2 - y, 2 - z.
 

Acknowledgements

HKK thanks University of Mysore for research facilities.

Funding information

HSY thanks the University Grants Commission, New Delhi for the award of a BSR Faculty Fellowship for three years.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationAsif, M. (2015). Int. J. Adv. Sci. Res. 1, 5–11.  CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrito, A., Moreira, L. K. S., Menegatti, R. & Costa, E. A. (2019). Fundam. Clin. Pharmacol. 33, 13–24.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420–423.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494–1506.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). CSD Communication (CCDC 1982784). CCDC, Cambridge, England. DOI: 10.5517/ccdc.csd.cc24k7sr.  Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1253–1260.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNagai, F., Nonaka, R. & Kamimura, K. S. H. (2007). Eur. J. Pharmacol. 559, 132–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSeip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024–4027.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStaack, R. F. & Maurer, H. H. (2003). J. Chromatogr. B, 798, 333–342.  Web of Science CrossRef CAS Google Scholar
First citationStaack, R. F., Theobald, D. S., Paul, D., Springer, D., Kraemer, T. & Maurer, H. H. (2004). Xenobiotica, 34, 179–192.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZia-ur-Rehman, Tahir, M. N., Danish, M., Muhammad, N. & Ali, S. (2009). Acta Cryst. E65, o503.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds