research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld analysis of N-ethyl-2-{3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclo­pent-2-en-1-yl­­idene}hydrazinecarbo­thio­amide

crossmark logo

aDepartamento de Química, Universidade Federal de Sergipe, Av. Marcelo Deda Chagas s/n, Campus Universitário, 49107-230 São Cristóvão-SE, Brazil, and bInstitut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
*Correspondence e-mail: adriano@daad-alumni.de

Edited by C. Schulzke, Universität Greifswald, Germany (Received 20 March 2024; accepted 2 April 2024; online 9 April 2024)

The title compound (C14H23N3S, common name: cis-jasmone 4-ethyl­thio­semicarbazone) was synthesized by the equimolar reaction of cis-jasmone and 4-ethyl­thio­semicarbazide in ethanol facilitated by acid catalysis. There is one crystallographically independent mol­ecule in the asymmetric unit, which shows disorder of the terminal ethyl group of the jasmone carbon chain [site-occupancy ratio = 0.911 (5):0.089 (5)]. The thio­semicarbazone entity [N—N—C(=S)—N] is approximately planar, with the maximum deviation of the mean plane through the N/N/C/S/N atoms being 0.0331 (8) Å, while the maximum deviation of the mean plane through the five-membered ring of the jasmone fragment amounts to −0.0337 (8) Å. The dihedral angle between the two planes is 4.98 (7)°. The mol­ecule is not planar due to this structural feature and the sp3-hybridized atoms of the jasmone carbon chain. Additionally, one H⋯N intra­molecular inter­action is observed, with graph-set motif S(5). In the crystal, the mol­ecules are connected through pairs of H⋯S inter­actions with R22(8) and R21(7) graph-set motifs into centrosymmetric dimers. The dimers are further connected by H⋯N inter­actions with graph-set motif R22(12), which are related by an inversion centre, forming a mono-periodic hydrogen-bonded ribbon parallel to the b-axis. The crystal structure and the supra­molecular assembly of the title compound are compared with four known cis-jasmone thio­semicarbazone derivatives (two crystalline modifications of the non-substituted form, the 4-methyl and the 4-phenyl derivatives). A Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are from H⋯H (70.7%), H⋯S/S⋯H (13.5%), H⋯C/C⋯H (8.8%), and H⋯N/N⋯H (6.6%) inter­faces (only the disordered atoms with the highest s.o.f. were considered for the evaluation).

1. Chemical context

Thio­semicarbazones [R1R2C=N—N(H)C(=S)NR3R4] can be readily prepared through a well-known condensation reaction between a ketone or an aldehyde (R1R2C=O) and a thio­semicarbazide derivative [H2N—N(H)C(=S)NR3R4] (Freund & Schander, 1902[Freund, M. & Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 2602-2606.]). Due to the structural diversity of the educts, a huge number of thio­semicarbazone derivatives (TSC) can be synthesized for numerous applications across a wide range of scientific disciplines, such as coordination chemistry, medicinal chemistry and materials science. These three main approaches are inter­connected, as demonstrated by Farias et al. (2021[Farias, R. L., Polez, A. M. R., Silva, D. E. S., Zanetti, R. D., Moreira, M. B., Batista, V. S., Reis, B. L., Nascimento-Júnior, N. M., Rocha, F. V., Lima, M. A., Oliveira, A. B., Ellena, J., Scarim, C. B., Zambom, C. R., Brito, L. D., Garrido, S. S., Melo, A. P. L., Bresolin, L., Tirloni, B., Pereira, J. C. M. & Netto, A. V. G. (2021). Mater. Sci. Eng. C, 121, 111815.]) in a report concerning the synthesis, in vitro and in silico evaluations of the anti­tumor activities of two thio­semicarbazone NiII complexes, which were considered materials with biological properties. The coordination chemistry of thio­semicarbazone derivatives was addressed in a review by Lobana et al. (2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.]), illustrating the chemical bonding of TSCs with metal centres of different Lewis acidity, the coordination modes and geometries, and some biological and analytical applications.

Several thio­semicarbazone derivatives have biological properties either as metal complexes or as non-coordinated mol­ecules. For examples of thio­semicarbazone complexes with biological activity, see: Gupta et al. (2022[Gupta, S., Singh, N., Khan, T. & Joshi, S. (2022). Results Chem. 4, 100459.]); Khan et al. (2022[Khan, T., Raza, S. & Lawrence, A. J. (2022). Russ. J. Coord. Chem. 48, 877-895.]); Monsur Showkot Hossain et al. (2023[Monsur Showkot Hossain, A., Méndez-Arriaga, J. M., Gómez-Ruiz, S., Xie, J., Gregory, D. H., Akitsu, T., Ibragimov, A. B., Sun, B. & Xia, C. (2023). Polyhedron, 244, 116576.]); Parrilha et al. (2022[Parrilha, G. L., dos Santos, R. G. & Beraldo, H. (2022). Coord. Chem. Rev. 458, 214418.]), which covers compounds for chemotherapy and medical diagnostic imaging combined, also referred to as theranostics, and Singh et al. (2023[Singh, V., Palakkeezhillam, V. N. V., Manakkadan, V., Rasin, P., Valsan, A. K., Kumar, V. S. & Sreekanth, A. (2023). Polyhedron, 245, 116658.]). For a review of TSC complexes in the inhibition of topoisomerases, which are biological targets of prime importance in cancer research, see: Jiang et al. (2023[Jiang, X., Fielding, L. A., Davis, H., Carroll, W., Lisic, E. C. & Deweese, J. E. (2023). Int. J. Mol. Sci. 24, 12010.]). For examples of the biological activity of non-coordinated thio­semicarbazone derivatives, see: Fatondji et al. (2013[Fatondji, H. R., Kpoviessi, S., Gbaguidi, F., Bero, J., Hannaert, V., Quetin-Leclercq, J., Poupaert, J., Moudachirou, M. & Accrombessi, G. C. (2013). Med. Chem. Res. 22, 2151-2162.]), which shows a small chemical library with 35 derivatives with trypanocidal activity against the Trypanosoma brucei brucei parasite, and for a review on tyrosinase inhibitory activity, which is another important biological target, see: Hałdys & Latajka (2019[Hałdys, K. & Latajka, R. (2019). MedChemComm 10, 378-389.]). The non-coordinated TSCs are also mentioned in a review on tyrosinase inhibition by Zolghadri et al. (2019[Zolghadri, S., Bahrami, A., Hassan Khan, M. T., Munoz-Munoz, J., Garcia-Molina, F., Garcia-Canovas, F. & Saboury, A. A. (2019). J. Enzyme Inhib. Med. Chem. 34, 279-309.]). In addition, thio­semicarbazone derivatives have been studied for the treatment of Parkinson's disease (Mathew et al., 2021[Mathew, G. E., Oh, J. M., Mohan, K., Tengli, A., Mathew, B. & Kim, H. (2021). J. Biomol. Struct. Dyn. 39, 4786-4794.]), microbial growth inhibition (D'Agostino et al., 2022[D'Agostino, I., Mathew, G. E., Angelini, P., Venanzoni, R., Angeles Flores, G., Angeli, A., Carradori, S., Marinacci, B., Menghini, L., Abdelgawad, M. A., Ghoneim, M. M., Mathew, B. & Supuran, C. T. (2022). J. Enzyme Inhib. Med. Chem. 37, 986-993.]), anti-inflammatory pathologies (Kanso et al., 2021[Kanso, F., Khalil, A., Noureddine, H. & El-Makhour, Y. (2021). Int. Immunopharmacol. 96, 107778.]) and anti­fungal activity (Bajaj et al., 2021[Bajaj, K., Buchanan, R. M. & Grapperhaus, C. A. (2021). J. Inorg. Biochem. 225, 111620.]). Specifically, in the context of this work, the parent cis-jasmone thio­semicarbazone derivative has shown fungistatic biological activity as a free mol­ecule (Jamiołkowska et al., 2022[Jamiołkowska, A., Skwaryło-Bednarz, B., Mielniczuk, E., Bisceglie, F., Pelosi, G., Degola, F., Gałązka, A. & Grzęda, E. (2022). Agronomy 12, 116.]) and also as a CuII complex (Orsoni et al., 2020[Orsoni, N., Degola, F., Nerva, L., Bisceglie, F., Spadola, G., Chitarra, W., Terzi, V., Delbono, S., Ghizzoni, R., Morcia, C., Jamiołkowska, A., Mielniczuk, E., Restivo, F. M. & Pelosi, G. (2020). Int. J. Mol. Sci. 21, 8681.]).

In materials science, thio­semicarbazone complexes are employed as single-source educts for the synthesis of nanostructured materials, e.g., CdS nanocrystals (Masikane et al., 2019[Masikane, S. C., Sixberth Mlowe, S., Pawar, A. S., Garje, S. S. & Revaprasadu, N. (2019). Russ. J. Inorg. Chem. 64, 1063-1071.]) and nanostructured CuFeS2, which is being used as an electrode material for supercapacitors (Ansari et al., 2022[Ansari, A., Badhe, R. A., Babar, D. G. & Garje, S. S. (2022). Appl. Surf. Sci. Adv. 9, 100231.]). Non-coordinated thio­semicarbazones have been used to functionalize metal–organic frameworks (MOFs), such as zeolitic imidazolate frameworks (mainly, ZIF-8), for the removal of HgII from aqueous solutions at room temperature and neutral pH (Jaafar et al., 2021[Jaafar, A., Platas-Iglesias, C. & Bilbeisi, R. A. (2021). RSC Adv. 11, 16192-16199.]). TSC derivatives have also been studied as corrosion inhibitors for metals and alloys. For the respective theoretical approach, see: Silva & Martínez-Huitle (2021[Silva, R. L. & Martínez-Huitle, C. A. (2021). J. Mol. Liq. 343, 117660.]). Additionally, thio­semicarbazone derivatives have turned out to be useful in several fields of analytical chemistry, including calorimetry, fluorimetry and electrochemical sensors, e.g., in the detection of anions and metallic cations (Özbek & Berkel, 2023[Özbek, O. & Berkel, C. (2023). Polyhedron, 238, 116426.]).

[Scheme 1]

In this context and as a contribution to the TSC chemistry, we report here the synthesis, crystal structure and Hirshfeld analysis of cis-jasmone 4-ethyl­thio­semicarbazone.

2. Structural commentary

For the title compound, cis-jasmone 4-ethyl­thio­semicarbazone (JETSC), the asymmetric unit consists of one mol­ecule with all atoms in general positions, which shows disorder over the jasmone carbon chain [s.o.f. = 0.911 (5):0.089 (5)]. The disordered atoms with higher s.o.f. are A-labelled and the atoms with lower s.o.f. are B-labelled (Fig. 1[link]). The thio­semicarbazone entity is approximately planar, with the maximum deviation of the mean plane through the N1/N2/C12/S1 atoms being 0.0331 (8) Å for N2 (r.m.s.d. = 0.0215 Å). For the five-membered ring of the jasmone fragment, the maximum deviation of the mean plane through the selected atoms amounts to −0.0337 (8) Å for C2 (r.m.s.d. = 0.0256 Å) and the dihedral angle between the two planes is 4.98 (7)°. The mol­ecule is not planar due to this angle and to the sp3-hybridized atoms of the jasmone carbon chain, with the torsion angles for the C5—C6—C7—C8, C7—C8—C9A—C10A and C7—C8— C9B—C10B fragments being −138.74 (16), −106.5 (2) and 132.7 (10)°. Finally, an intra­molecular hydrogen-bond inter­action is observed, N3—H3⋯N1, which forms a ring of graph-set motif S(5) (Fig. 1[link] and Table 1[link]). For a review addressing hydrogen bonding in the solid state, see: Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯S1i 0.873 (18) 2.608 (18) 3.4808 (12) 177.6 (15)
N3—H3⋯N1 0.828 (16) 2.187 (15) 2.6008 (15) 111.0 (13)
C2—H2A⋯S1i 1.003 (16) 2.822 (15) 3.3535 (13) 113.7 (10)
C13—H13B⋯N1ii 0.966 (15) 2.655 (15) 3.5466 (17) 153.5 (12)
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [-x+1, -y+1, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 40% probability level. Disordered atoms are drawn with 40% transparency and labelled C9A/C10A [s.o.f. = 0.911 (5)] and C9B/C10B [s.o.f. = 0.089 (5)]. For the N3—H3⋯N1 intra­molecular inter­action, a ring with graph-set motif S(5) is observed.

3. Supra­molecular features

In the crystal, the mol­ecules are connected through H⋯S and H⋯N inter­actions, forming rings of graph-set motifs R22(8), R21(7) and R22(12) for the C2H2N2S2, C2H2N2S and C4H2N6 entities, respectively (Fig. 2[link]). The S1 and N1 atoms act as double hydrogen-bond acceptors, where the N1 atoms play an important role in the supra­molecular arrangement of the mol­ecules. Firstly, the mol­ecules are connected into centrosymmetric dimers through C2—H2A⋯S1i and N2—H2⋯S1i inter­molecular inter­actions [symmetry code: (i) −x + 1, −y, −z + 1], as has also been observed in other cis-jasmone thio­semicarbazone derivatives (Oliveira et al., 2023a[Oliveira, A. B. de, Bresolin, L., Beck, J. & Daniels, J. (2023a). IUCrData, 8, x230971.], 2024[Oliveira, A. B. de, Bresolin, L., Beck, J. & Daniels, J. (2024). IUCrData, 9, x240013.]). These centrosymmetric dimers, in which rings of graph-set motif R22(8) and R21(7) are present, have their centres of gravity located in the centre of the ac planes. In addition, the dimers are further connected by C13—H13B⋯N1ii inter­molecular inter­actions [symmetry code: (ii) −x + 1, −y + 1, −z + 1], where rings of graph-set motif R22(12) are observed (Fig. 2[link], Table 1[link]). The centre of gravity of the centrosymmetric C4H2N6 ring lies at an inversion centre of the cell and thus, the mol­ecules are linked into a mono-periodic hydrogen-bonded ribbon parallel to the b-axis. (Fig. 3[link]).

[Figure 2]
Figure 2
Crystal structure section of the title compound showing the inter­molecular hydrogen-bonding inter­actions as dashed lines. The mol­ecules are linked via pairs of C2—H2A⋯S1i, N—H2⋯S1i and C13—H13B—N1ii inter­actions with graph-set motifs R22(8), R21(7) and R22(12). [Symmetry codes: (i) −x + 1, −y, −z + 1; (ii) −x + 1, −y + 1, −z + 1.]
[Figure 3]
Figure 3
Crystal structure section of the title compound, showing the inter­molecular hydrogen-bonded inter­actions as dashed lines. Disorder is not shown for clarity. The mol­ecules are linked into mono-periodic hydrogen-bonded ribbons parallel to the b-axis via pairs of N—H⋯S, C—H⋯S and C—H⋯N inter­actions with graph-set motifs R22(8), R21(7) and R22(12).

The Hirshfeld surface analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]), the graphical representations and the two-dimensional Hirshfeld surface fingerprint plots (HSFP) were calculated with the Crystal Explorer software (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer 3.1. University of Western Australia, Perth, Australia.]) and only the atoms with the higher s.o.f. were taken into account. The Hirshfeld surface analysis of the title compound suggests that the most relevant inter­molecular inter­actions for the crystal packing are H⋯H (70.7%), H⋯S/S⋯H (13.5%), H⋯C/C⋯H (8.8%) and H ⋯N/N⋯H (6.4%). The graphical representation of the Hirshfeld surface (dnorm) is given in a figure with transparency and using the ball-and-stick model. Locations of the strongest inter­molecular contacts, i.e, the regions around the H2, H2A and S1 atoms are indicated in red (Fig. 4[link]). These atoms are those involved in the H⋯S inter­actions shown in previous figures (Figs. 2[link] and 3[link]). The contributions to the crystal cohesion are represented as two-dimensional Hirshfeld surface fingerprint plots (HSFP) with coloured dots (Fig. 5[link]). The di (x-axis) and the de (y-axis) values are the closest inter­nal and external distances from given points on the Hirshfeld surface contacts (in Å).

[Figure 4]
Figure 4
Hirshfeld surface graphical representation (dnorm) for the title compound. The surface is drawn with transparency, the mol­ecules are drawn in ball and stick model and the disorder is not shown for clarity. The regions with strongest inter­molecular inter­actions are shown in red.
[Figure 5]
Figure 5
The Hirshfeld surface two-dimensional fingerprint plot (HSFP) for the title compound, showing the contacts in detail (coloured). The major contributions of the inter­actions to the crystal cohesion amount to (a) H⋯H (70.7%), (b) H⋯S/S⋯H (13.5%), (c) H⋯C/C⋯H (8.8%) and (d) H⋯N/N⋯H (6.4%). The di (x-axis) and the de (y-axis) values are the closest inter­nal and external distances from given points on the Hirshfeld surface contacts (in Å). Regarding the disorder, only the atoms with the highest s.o.f. were considered.

4. Database survey

To the best of our knowledge and from using database tools such as the Cambridge Structural Database (CSD, accessed via WebCSD on March 15, 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), there are four crystal structures of cis-jasmone thio­semicarbazone derivatives reported in the literature: the α-crystalline modification of cis-jasmone thio­semicarbazone, α-JTSC (refcode ZAJRUB; Orsoni et al., 2020[Orsoni, N., Degola, F., Nerva, L., Bisceglie, F., Spadola, G., Chitarra, W., Terzi, V., Delbono, S., Ghizzoni, R., Morcia, C., Jamiołkowska, A., Mielniczuk, E., Restivo, F. M. & Pelosi, G. (2020). Int. J. Mol. Sci. 21, 8681.]), the β-crystalline modification, β-JTSC (ZAJRUB01; Oliveira et al., 2023b[Oliveira, A. B. de, Bresolin, L., Gervini, V. C., Beck, J. & Daniels, J. (2023b). IUCrData, 8, x231018.]), cis-jasmone 4-methyl­thio­semicarbazone, JMTSC (JOFYOW; Oliveira et al., 2024[Oliveira, A. B. de, Bresolin, L., Beck, J. & Daniels, J. (2024). IUCrData, 9, x240013.]), cis-jasmone 4-phenyl­thio­semicarbazone, JPTSC (QIVYIH; Oliveira et al., 2023a[Oliveira, A. B. de, Bresolin, L., Beck, J. & Daniels, J. (2023a). IUCrData, 8, x230971.]), with cis-jasmone 4-ethyl­thio­semicarbazone, JETSC (this work) being the fifth. For the Hirshfeld analysis comparison, of the α-JTSC and the β-JTSC crystalline modifications, only β-JTSC was considered and will be designated in the following merely as JTSC. Fig. 6[link] provides the chemical structures of JTSC, JMTSC, JETSC and JPTSC. The Hirshfeld surface fingerprint signatures of the TSC derivatives are drawn as two-dimensional plots (HSFP) and the most relevant contribution for the crystal packing, the H⋯H inter­molecular inter­actions, are highlighted (coloured) (Fig. 7[link]). Their contributions for the crystal cohesion are 67.8% for JTSC, 70.6% for JMTSC, 70.7% for the title compound, JETSC, and 65.3% for JPTSC. It might be argued that the methyl and ethyl derivatives show more C—H entities for H⋯H inter­molecular inter­actions in comparison to the non-substituted JTSC, and less steric hindrance than the phenyl derivative JPTSC. These structural features would explain the higher values of the H⋯H contributions to the crystal packing for JMTSC and JETSC, and the lower contributions for JTSC and JPTSC. In addition, the H⋯N/N⋯H contacts, which are important for the supra­molecular arrangement of JETSC (this work) are clearly represented in the HSFP signature of the crystal structure and do not appear in the same way in the signature of the related compounds (Fig. 8[link]). Although the contributions of the H⋯N/N⋯H contacts to the crystal packing for all the jasmone thio­semicarbazone derivatives are very similar in value, within a range of 4.9% to 6.4%, the H⋯N inter­molecular inter­actions are of major importance for the mol­ecular assembly of JETSC, as shown in Figs. 2[link] and 3[link].

[Figure 6]
Figure 6
Chemical structure formulae of (a) cis-jasmone thio­semicarbazone, JTSC, (b) cis-jasmone 4-methyl­thio­semicarbazone, JMTSC, (c) cis-jasmone 4-ethyl­thio­semicarbazone, JETSC, and (d) cis-jasmone 4-phenyl­thio­semicarbazone, JPTSC.
[Figure 7]
Figure 7
The Hirshfeld surface two-dimensional fingerprint plot (HSFP) signatures for (a) JTSC (Oliveira et al., 2023b[Oliveira, A. B. de, Bresolin, L., Gervini, V. C., Beck, J. & Daniels, J. (2023b). IUCrData, 8, x231018.]), (b) JMTSC (Oliveira et al., 2024[Oliveira, A. B. de, Bresolin, L., Beck, J. & Daniels, J. (2024). IUCrData, 9, x240013.]), (c) JETSC (this work) and (d) JPTSC (Oliveira et al., 2023a[Oliveira, A. B. de, Bresolin, L., Beck, J. & Daniels, J. (2023a). IUCrData, 8, x230971.]). The major contributions for the crystal cohesion in all structures are the H⋯H inter­molecular inter­actions, which amount to 67.8%, 70.6%, 70.7% and 65.3%, respectively, and are highlighted (coloured). The di (x-axis) and the de (y-axis) values are the closest inter­nal and external distances from given points on the Hirshfeld surface contacts (in Å). Regarding the disorder, only the atoms with the highest s.o.f. were considered.
[Figure 8]
Figure 8
The Hirshfeld surface two-dimensional fingerprint plot (HSFP) signatures for (a) JTSC (Oliveira et al., 2023b[Oliveira, A. B. de, Bresolin, L., Gervini, V. C., Beck, J. & Daniels, J. (2023b). IUCrData, 8, x231018.]), (b) JMTSC (Oliveira et al., 2024[Oliveira, A. B. de, Bresolin, L., Beck, J. & Daniels, J. (2024). IUCrData, 9, x240013.]), (c) JETSC (this work) and (d) JPTSC (Oliveira et al., 2023a[Oliveira, A. B. de, Bresolin, L., Beck, J. & Daniels, J. (2023a). IUCrData, 8, x230971.]), with the H⋯N/N⋯H contacts highlighted (coloured). The di (x-axis) and the de (y-axis) values are the closest inter­nal and external distances from given points on the Hirshfeld surface contacts (in Å). Regarding the disorder, only the atoms with the highest s.o.f. were considered.

The influence of the substituent at the terminal N atom on the supra­molecular assembly in the crystal structures of jasmone TSC derivatives is shown in Figs. 9[link] and 10[link]. For the non-substituted α- and β-crystalline modifications of cis-jasmone thio­semicarbazone, α-JTSC (Orsoni et al., 2020[Orsoni, N., Degola, F., Nerva, L., Bisceglie, F., Spadola, G., Chitarra, W., Terzi, V., Delbono, S., Ghizzoni, R., Morcia, C., Jamiołkowska, A., Mielniczuk, E., Restivo, F. M. & Pelosi, G. (2020). Int. J. Mol. Sci. 21, 8681.]) and β-JTSC (Oliveira et al., 2023b[Oliveira, A. B. de, Bresolin, L., Gervini, V. C., Beck, J. & Daniels, J. (2023b). IUCrData, 8, x231018.]), the mol­ecules are connected via pairs of H⋯S inter­actions into mono-periodic hydrogen-bonded ribbons. The crystal structure of α-JTSC shows three crystallographically independent mol­ecules in the asymmetric unit. The mol­ecules are linked by H⋯S inter­actions with graph-set motif R22(8) along [100] into two independent one-dimensional hydrogen-bonded polymers (Fig. 9[link]a). For β-JTSC, with one crystallographically independent mol­ecule in the asymmetric unit, the mol­ecules are connected by H⋯S inter­actions with graph-set motifs R22(8) and R21(7) into mono-periodic hydrogen-bonded ribbons along [010] (Fig. 9[link]b). For the supra­molecular assembly of cis-jasmone 4-methyl­thio­semicarbazone, JMTSC, (Oliveira et al., 2024[Oliveira, A. B. de, Bresolin, L., Beck, J. & Daniels, J. (2024). IUCrData, 9, x240013.]) and of cis-jasmone 4-phenyl­thio­semicarbazone, JPTSC, (Oliveira et al., 2023a[Oliveira, A. B. de, Bresolin, L., Beck, J. & Daniels, J. (2023a). IUCrData, 8, x230971.]), a structural similarity can be observed. In the crystal, the mol­ecules are linked into centrosymmetric dimers by pairs of H⋯S inter­actions, in which rings of graph-set motifs R22(8) and R21(7) are present. As a result of the steric hindrance of the methyl and phenyl groups, respectively, the dimers are assembled as discrete units and only weak inter­molecular inter­actions, viz., London dispersion forces can be assumed (Fig. 10[link]a,b). The C—H⋯N inter­molecular inter­actions observed in the crystal structure of the title compound, which cause the increase of the supra­molecular dimensionality, are not observed in any of the four crystal structures of closely related mol­ecules mentioned above.

[Figure 9]
Figure 9
(a) Section of the mol­ecular arrangement of α-JTSC (Orsoni et al., 2020[Orsoni, N., Degola, F., Nerva, L., Bisceglie, F., Spadola, G., Chitarra, W., Terzi, V., Delbono, S., Ghizzoni, R., Morcia, C., Jamiołkowska, A., Mielniczuk, E., Restivo, F. M. & Pelosi, G. (2020). Int. J. Mol. Sci. 21, 8681.]). The three crystallographically independent mol­ecules are A-, B-, and C-labelled. They are linked by pairs of N—H⋯S inter­actions, with rings of graph-set motif R22(8), into two independent mono-periodic hydrogen-bonded ribbons along [100]. [Symmetry codes: (i) x + 1, y, z; (ii) x − 1, y, z; (iii) −x + 1, −y, −z + 1; (iv) −x, −y, −z + 1.] (b) Section of the mol­ecular arrangement of β-JTSC (Oliveira et al., 2023b[Oliveira, A. B. de, Bresolin, L., Gervini, V. C., Beck, J. & Daniels, J. (2023b). IUCrData, 8, x231018.]). The mol­ecules are connected by pairs of N—H⋯S and C—H⋯S inter­molecular inter­actions, with rings of graph-set motifs R22(8) and R21(7), into mono-periodic hydrogen-bonded ribbons along [010]. Disorder is not shown for clarity. [Symmetry codes: (i) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]; (ii) −x + 1, y − [{1\over 2}], −z + [{1\over 2}].]
[Figure 10]
Figure 10
(a) Graphical representation of the JMTSC dimeric arrangement. The mol­ecules are connected by pairs of N—H⋯S and C—H⋯S inter­molecular inter­actions, with rings of graph-set motifs R22(8) and R21(7), into centrosymmetric dimers. Only the non-disordered JMTSC-1 dimer is drawn for clarity (Oliveira et al., 2024[Oliveira, A. B. de, Bresolin, L., Beck, J. & Daniels, J. (2024). IUCrData, 9, x240013.]). [Symmetry code: (i) −x, −y, −z + 2]. (b) Graphical representation of the JPTSC dimeric arrangement (Oliveira et al., 2023a[Oliveira, A. B. de, Bresolin, L., Beck, J. & Daniels, J. (2023a). IUCrData, 8, x230971.]). The mol­ecules are linked also via pairs of N—H⋯S and C—H⋯S inter­molecular inter­actions, with rings of graph-set motifs R22(8) and R21(7), into centrosymmetric dimers. One N—H⋯N intra­molecular inter­action of graph-set S(5) is observed. [Symmetry code: (i) −x + 1, −y, −z.]

5. Synthesis and crystallization

The starting materials are commercially available and were used without further purification. The synthesis of the cis-jasmone 4-ethyl­thio­semicarbazone derivative was adapted from previously reported procedures (Freund & Schander, 1902[Freund, M. & Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 2602-2606.]; Oliveira et al., 2024[Oliveira, A. B. de, Bresolin, L., Beck, J. & Daniels, J. (2024). IUCrData, 9, x240013.]; Orsoni et al., 2020[Orsoni, N., Degola, F., Nerva, L., Bisceglie, F., Spadola, G., Chitarra, W., Terzi, V., Delbono, S., Ghizzoni, R., Morcia, C., Jamiołkowska, A., Mielniczuk, E., Restivo, F. M. & Pelosi, G. (2020). Int. J. Mol. Sci. 21, 8681.]). cis-Jasmone was dissolved in ethanol under magnetic stirring at room temperature (8 mmol, 1.3139 g, in 50 mL). A solution of 4-ethyl­thio­semicarbazide in ethanol (8 mmol, 0.9535 g, in 50 mL) was prepared under the same conditions. The solutions were combined, the HCl catalyst was added (1 mL, 1 M), and the final mixture was refluxed under magnetic stirring for 8 h. After cooling, the precipitated product was filtered off and washed with cold ethanol. Yield = 0.7431 g (35%). Colourless single crystals suitable for X-ray diffraction were obtained from tetra­hydro­furan by slow evaporation of the solvent at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. There is one crystallographically independent mol­ecule in the asymmetric unit of the title compound, which shows disorder over the chain of the cis-jasmone fragment, viz., the C9 and C10 atoms [Fig. 1[link]; site-occupancy ratio = 0.911 (5):0.089 (5)]. The H atoms were refined freely, with exception of those bonded to C9B and C10B. These constrained H atoms were located in a difference-Fourier map, but were positioned with idealized geometry and refined isotropically using a riding model. For the H atoms attached to atom C9B with Uiso(H) = 1.2 Ueq(C), the C—H bonds were set to 0.97 Å. For the C10B atom, the methyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density, with Uiso(H) = 1.5 Ueq(C), and the C—H bonds were set to 0.96 Å.

Table 2
Experimental details

Crystal data
Chemical formula C14H23N3S
Mr 265.41
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 123
a, b, c (Å) 7.4584 (2), 7.7429 (3), 13.2461 (3)
α, β, γ (°) 103.025 (2), 98.735 (2), 90.769 (2)
V3) 735.73 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.30 × 0.20 × 0.05
 
Data collection
Diffractometer Enraf–Nonius FR590 Kappa CCD
Absorption correction Analytical (using the de Meulenaer & Tompa algorithm; Alcock, 1970[Alcock, N. W. (1970). The Analytical Method for Absorption Correction. In: Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 271-278. Copenhagen: Munksgaard.])
Tmin, Tmax 0.944, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 13116, 3325, 2810
Rint 0.047
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.085, 1.02
No. of reflections 3325
No. of parameters 275
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.21
Computer programs: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), HKL, DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), CrystalExplorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer 3.1. University of Western Australia, Perth, Australia.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Computing details top

N-Ethyl-2-{3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-ylidene}hydrazinecarbothioamide top
Crystal data top
C14H23N3SZ = 2
Mr = 265.41F(000) = 288
Triclinic, P1Dx = 1.198 Mg m3
a = 7.4584 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.7429 (3) ÅCell parameters from 27549 reflections
c = 13.2461 (3) Åθ = 2.9–27.5°
α = 103.025 (2)°µ = 0.21 mm1
β = 98.735 (2)°T = 123 K
γ = 90.769 (2)°Fragment, colourless
V = 735.73 (4) Å30.30 × 0.20 × 0.05 mm
Data collection top
Enraf–Nonius FR590 Kappa CCD
diffractometer
3325 independent reflections
Radiation source: sealed X-ray tube, Enraf Nonius FR5902810 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.047
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD rotation images, thick slices, κ–goniostat scansh = 99
Absorption correction: analytical
(using the de Meulenaer & Tompa algorithm; Alcock, 1970)
k = 1010
Tmin = 0.944, Tmax = 0.990l = 1717
13116 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: mixed
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0336P)2 + 0.2782P]
where P = (Fo2 + 2Fc2)/3
3325 reflections(Δ/σ)max < 0.001
275 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.87223 (16)0.34727 (16)0.71554 (9)0.0198 (3)
C20.95725 (17)0.17051 (17)0.68820 (10)0.0224 (3)
C31.14804 (18)0.20144 (18)0.75527 (11)0.0243 (3)
C41.16282 (17)0.39689 (17)0.80623 (10)0.0217 (3)
C51.00677 (16)0.47688 (17)0.78541 (9)0.0207 (3)
C60.96603 (18)0.66839 (18)0.82233 (11)0.0246 (3)
C70.8584 (2)0.69971 (19)0.91194 (11)0.0304 (3)
C80.7226 (2)0.8050 (2)0.92470 (12)0.0328 (3)
C9A0.6346 (2)0.9092 (3)0.84930 (14)0.0342 (5)0.911 (5)
C10A0.6880 (4)1.1062 (3)0.8879 (2)0.0465 (6)0.911 (5)
H9A0.500 (3)0.894 (3)0.8412 (16)0.050 (6)*0.911 (5)
H9B0.666 (2)0.859 (2)0.7779 (15)0.036 (5)*0.911 (5)
H10A0.823 (3)1.124 (3)0.8960 (16)0.048 (6)*0.911 (5)
H10B0.625 (3)1.173 (3)0.837 (2)0.065 (7)*0.911 (5)
H10C0.655 (3)1.149 (3)0.959 (2)0.063 (7)*0.911 (5)
C9B0.778 (3)1.006 (2)0.9103 (13)0.033 (5)0.089 (5)
H9C0.7945261.0929240.9766730.039*0.089 (5)
H9D0.8862581.0058300.8782290.039*0.089 (5)
C10B0.614 (3)1.036 (3)0.839 (2)0.042 (6)0.089 (5)
H10D0.5950420.9410050.7776140.064*0.089 (5)
H10E0.6303321.1465350.8198650.064*0.089 (5)
H10F0.5103401.0400270.8747480.064*0.089 (5)
C111.33750 (18)0.4800 (2)0.87064 (12)0.0284 (3)
C120.43231 (16)0.31557 (17)0.57148 (10)0.0203 (3)
C130.22713 (17)0.56201 (18)0.56951 (11)0.0226 (3)
C140.2314 (2)0.75737 (19)0.62214 (12)0.0279 (3)
H20.627 (2)0.157 (2)0.5899 (13)0.037 (5)*
H30.477 (2)0.548 (2)0.6476 (12)0.026 (4)*
H2A0.883 (2)0.072 (2)0.7024 (12)0.029 (4)*
H2B0.967 (2)0.139 (2)0.6138 (13)0.028 (4)*
H3A1.243 (2)0.167 (2)0.7122 (12)0.030 (4)*
H3B1.163 (2)0.132 (2)0.8094 (12)0.029 (4)*
H6A0.900 (2)0.712 (2)0.7621 (12)0.028 (4)*
H6B1.081 (2)0.739 (2)0.8457 (12)0.033 (4)*
H70.899 (3)0.636 (3)0.9680 (15)0.054 (5)*
H80.670 (2)0.817 (2)0.9901 (14)0.040 (5)*
H11A1.438 (3)0.449 (2)0.8318 (14)0.045 (5)*
H11B1.335 (2)0.609 (3)0.8935 (14)0.046 (5)*
H11C1.366 (3)0.434 (3)0.9314 (15)0.051 (5)*
H13A0.127 (2)0.4975 (19)0.5857 (11)0.021 (3)*
H13B0.211 (2)0.5436 (19)0.4940 (12)0.024 (4)*
H14A0.244 (2)0.775 (2)0.6981 (13)0.032 (4)*
H14B0.332 (2)0.821 (2)0.6068 (13)0.035 (4)*
H14C0.118 (2)0.805 (2)0.5956 (13)0.038 (4)*
N10.71169 (14)0.39345 (14)0.68391 (8)0.0214 (2)
N20.59457 (14)0.26386 (15)0.61441 (9)0.0222 (2)
N30.39593 (14)0.48485 (15)0.60530 (9)0.0217 (2)
S10.28777 (4)0.16924 (4)0.48084 (3)0.02554 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0176 (6)0.0227 (6)0.0190 (6)0.0003 (5)0.0017 (5)0.0055 (5)
C20.0184 (6)0.0233 (6)0.0231 (7)0.0006 (5)0.0009 (5)0.0031 (5)
C30.0187 (6)0.0257 (7)0.0261 (7)0.0019 (5)0.0009 (5)0.0039 (5)
C40.0192 (6)0.0255 (6)0.0196 (6)0.0020 (5)0.0005 (5)0.0052 (5)
C50.0199 (6)0.0226 (6)0.0189 (6)0.0021 (5)0.0019 (5)0.0047 (5)
C60.0225 (6)0.0222 (6)0.0277 (7)0.0017 (5)0.0010 (5)0.0048 (5)
C70.0354 (8)0.0288 (7)0.0275 (7)0.0040 (6)0.0050 (6)0.0075 (6)
C80.0354 (8)0.0311 (8)0.0325 (8)0.0031 (6)0.0095 (6)0.0058 (6)
C9A0.0276 (9)0.0372 (12)0.0351 (10)0.0066 (7)0.0011 (7)0.0050 (8)
C10A0.0618 (16)0.0311 (12)0.0514 (15)0.0110 (11)0.0225 (12)0.0099 (10)
C9B0.046 (10)0.017 (8)0.032 (9)0.012 (7)0.010 (7)0.003 (6)
C10B0.048 (13)0.037 (14)0.054 (14)0.011 (11)0.043 (12)0.010 (11)
C110.0203 (7)0.0318 (8)0.0291 (8)0.0025 (6)0.0040 (6)0.0041 (6)
C120.0163 (6)0.0234 (6)0.0217 (6)0.0009 (5)0.0021 (5)0.0068 (5)
C130.0173 (6)0.0263 (7)0.0236 (7)0.0016 (5)0.0003 (5)0.0070 (5)
C140.0239 (7)0.0276 (7)0.0306 (8)0.0051 (6)0.0024 (6)0.0043 (6)
N10.0184 (5)0.0227 (5)0.0212 (5)0.0025 (4)0.0009 (4)0.0042 (4)
N20.0169 (5)0.0204 (6)0.0258 (6)0.0002 (4)0.0027 (4)0.0023 (4)
N30.0161 (5)0.0222 (5)0.0234 (6)0.0003 (4)0.0028 (4)0.0021 (4)
S10.01824 (16)0.02307 (18)0.03029 (19)0.00124 (12)0.00422 (12)0.00120 (13)
Geometric parameters (Å, º) top
C1—N11.2899 (16)C10A—H10B1.01 (3)
C1—C51.4639 (17)C10A—H10C0.99 (2)
C1—C21.5086 (18)C9B—C10B1.48 (3)
C2—C31.5436 (17)C9B—H9C0.9700
C2—H2A1.003 (16)C9B—H9D0.9700
C2—H2B0.974 (16)C10B—H10D0.9600
C3—C41.5068 (18)C10B—H10E0.9600
C3—H3A0.977 (16)C10B—H10F0.9600
C3—H3B0.980 (16)C11—H11A0.973 (19)
C4—C51.3465 (17)C11—H11B0.98 (2)
C4—C111.4939 (18)C11—H11C0.95 (2)
C5—C61.5035 (18)C12—N31.3319 (17)
C6—C71.509 (2)C12—N21.3620 (16)
C6—H6A0.998 (16)C12—S11.6877 (13)
C6—H6B0.980 (17)C13—N31.4606 (16)
C7—C81.316 (2)C13—C141.5139 (19)
C7—H70.99 (2)C13—H13A0.971 (15)
C8—C9A1.502 (2)C13—H13B0.966 (15)
C8—C9B1.661 (17)C14—H14A0.975 (17)
C8—H80.992 (18)C14—H14B0.963 (17)
C9A—C10A1.522 (3)C14—H14C0.973 (18)
C9A—H9A0.99 (2)N1—N21.3904 (15)
C9A—H9B1.00 (2)N2—H20.873 (18)
C10A—H10A1.00 (2)N3—H30.828 (16)
N1—C1—C5120.80 (11)C9A—C10A—H10C109.0 (14)
N1—C1—C2129.87 (11)H10A—C10A—H10C106.4 (18)
C5—C1—C2109.28 (10)H10B—C10A—H10C111 (2)
C1—C2—C3103.99 (10)C10B—C9B—C8100.0 (14)
C1—C2—H2A111.9 (9)C10B—C9B—H9C111.8
C3—C2—H2A113.2 (9)C8—C9B—H9C111.8
C1—C2—H2B110.7 (9)C10B—C9B—H9D111.8
C3—C2—H2B110.4 (9)C8—C9B—H9D111.8
H2A—C2—H2B106.7 (12)H9C—C9B—H9D109.5
C4—C3—C2104.68 (10)C9B—C10B—H10D109.5
C4—C3—H3A112.1 (9)C9B—C10B—H10E109.5
C2—C3—H3A111.3 (9)H10D—C10B—H10E109.5
C4—C3—H3B109.8 (9)C9B—C10B—H10F109.5
C2—C3—H3B112.2 (9)H10D—C10B—H10F109.5
H3A—C3—H3B106.8 (13)H10E—C10B—H10F109.5
C5—C4—C11127.60 (12)C4—C11—H11A110.2 (11)
C5—C4—C3112.28 (11)C4—C11—H11B112.8 (11)
C11—C4—C3120.11 (11)H11A—C11—H11B110.0 (15)
C4—C5—C1109.42 (11)C4—C11—H11C110.6 (12)
C4—C5—C6128.51 (12)H11A—C11—H11C105.0 (15)
C1—C5—C6122.06 (11)H11B—C11—H11C107.9 (15)
C5—C6—C7113.14 (11)N3—C12—N2116.44 (11)
C5—C6—H6A109.4 (9)N3—C12—S1122.95 (10)
C7—C6—H6A110.4 (9)N2—C12—S1120.61 (10)
C5—C6—H6B108.9 (9)N3—C13—C14110.15 (11)
C7—C6—H6B108.3 (9)N3—C13—H13A108.2 (8)
H6A—C6—H6B106.6 (13)C14—C13—H13A111.2 (9)
C8—C7—C6127.15 (14)N3—C13—H13B109.0 (9)
C8—C7—H7117.6 (11)C14—C13—H13B111.4 (9)
C6—C7—H7115.2 (11)H13A—C13—H13B106.7 (12)
C7—C8—C9A126.93 (15)C13—C14—H14A111.1 (9)
C7—C8—C9B110.7 (6)C13—C14—H14B111.1 (10)
C7—C8—H8117.8 (10)H14A—C14—H14B107.7 (14)
C9A—C8—H8115.3 (10)C13—C14—H14C108.0 (10)
C9B—C8—H8109.2 (11)H14A—C14—H14C109.8 (14)
C8—C9A—C10A111.28 (16)H14B—C14—H14C109.1 (14)
C8—C9A—H9A110.1 (12)C1—N1—N2117.11 (11)
C10A—C9A—H9A108.3 (13)C12—N2—N1117.59 (11)
C8—C9A—H9B109.3 (11)C12—N2—H2118.7 (11)
C10A—C9A—H9B112.1 (11)N1—N2—H2122.9 (11)
H9A—C9A—H9B105.6 (16)C12—N3—C13123.81 (11)
C9A—C10A—H10A109.6 (13)C12—N3—H3116.1 (11)
C9A—C10A—H10B109.5 (16)C13—N3—H3120.0 (11)
H10A—C10A—H10B111 (2)
N1—C1—C2—C3177.86 (13)C1—C5—C6—C779.84 (15)
C5—C1—C2—C34.82 (14)C5—C6—C7—C8138.74 (16)
C1—C2—C3—C45.70 (13)C6—C7—C8—C9A4.5 (3)
C2—C3—C4—C55.04 (15)C6—C7—C8—C9B50.1 (6)
C2—C3—C4—C11174.65 (12)C7—C8—C9A—C10A106.5 (2)
C11—C4—C5—C1177.60 (13)C7—C8—C9B—C10B132.7 (10)
C3—C4—C5—C12.06 (15)C5—C1—N1—N2177.52 (10)
C11—C4—C5—C61.1 (2)C2—C1—N1—N20.47 (19)
C3—C4—C5—C6179.29 (12)N3—C12—N2—N14.03 (17)
N1—C1—C5—C4179.51 (11)S1—C12—N2—N1176.25 (9)
C2—C1—C5—C41.91 (14)C1—N1—N2—C12172.87 (11)
N1—C1—C5—C60.76 (18)N2—C12—N3—C13178.66 (11)
C2—C1—C5—C6176.84 (11)S1—C12—N3—C131.04 (18)
C4—C5—C6—C7101.67 (16)C14—C13—N3—C12179.07 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.873 (18)2.608 (18)3.4808 (12)177.6 (15)
N3—H3···N10.828 (16)2.187 (15)2.6008 (15)111.0 (13)
C2—H2A···S1i1.003 (16)2.822 (15)3.3535 (13)113.7 (10)
C13—H13B···N1ii0.966 (15)2.655 (15)3.5466 (17)153.5 (12)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

We gratefully acknowledge financial support by the State of North Rhine-Westphalia, Germany. ABO is a former DAAD scholarship holder and alumnus of the University of Bonn, Germany, and thanks both of the institutions for the long-time support.

Funding information

Funding for this research was provided by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) - Finance Code 001.

References

First citationAlcock, N. W. (1970). The Analytical Method for Absorption Correction. In: Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 271–278. Copenhagen: Munksgaard.  Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAnsari, A., Badhe, R. A., Babar, D. G. & Garje, S. S. (2022). Appl. Surf. Sci. Adv. 9, 100231.  Web of Science CrossRef Google Scholar
First citationBajaj, K., Buchanan, R. M. & Grapperhaus, C. A. (2021). J. Inorg. Biochem. 225, 111620.  Web of Science CrossRef PubMed Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationD'Agostino, I., Mathew, G. E., Angelini, P., Venanzoni, R., Angeles Flores, G., Angeli, A., Carradori, S., Marinacci, B., Menghini, L., Abdelgawad, M. A., Ghoneim, M. M., Mathew, B. & Supuran, C. T. (2022). J. Enzyme Inhib. Med. Chem. 37, 986–993.  Web of Science CAS PubMed Google Scholar
First citationFarias, R. L., Polez, A. M. R., Silva, D. E. S., Zanetti, R. D., Moreira, M. B., Batista, V. S., Reis, B. L., Nascimento-Júnior, N. M., Rocha, F. V., Lima, M. A., Oliveira, A. B., Ellena, J., Scarim, C. B., Zambom, C. R., Brito, L. D., Garrido, S. S., Melo, A. P. L., Bresolin, L., Tirloni, B., Pereira, J. C. M. & Netto, A. V. G. (2021). Mater. Sci. Eng. C, 121, 111815.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFatondji, H. R., Kpoviessi, S., Gbaguidi, F., Bero, J., Hannaert, V., Quetin-Leclercq, J., Poupaert, J., Moudachirou, M. & Accrombessi, G. C. (2013). Med. Chem. Res. 22, 2151–2162.  Web of Science CrossRef CAS Google Scholar
First citationFreund, M. & Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 2602–2606.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, S., Singh, N., Khan, T. & Joshi, S. (2022). Results Chem. 4, 100459.  Web of Science CrossRef Google Scholar
First citationHałdys, K. & Latajka, R. (2019). MedChemComm 10, 378-389.  Web of Science PubMed Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationJaafar, A., Platas-Iglesias, C. & Bilbeisi, R. A. (2021). RSC Adv. 11, 16192–16199.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJamiołkowska, A., Skwaryło-Bednarz, B., Mielniczuk, E., Bisceglie, F., Pelosi, G., Degola, F., Gałązka, A. & Grzęda, E. (2022). Agronomy 12, 116.  Google Scholar
First citationJiang, X., Fielding, L. A., Davis, H., Carroll, W., Lisic, E. C. & Deweese, J. E. (2023). Int. J. Mol. Sci. 24, 12010.  Web of Science CrossRef PubMed Google Scholar
First citationKanso, F., Khalil, A., Noureddine, H. & El-Makhour, Y. (2021). Int. Immunopharmacol. 96, 107778.  Web of Science CrossRef PubMed Google Scholar
First citationKhan, T., Raza, S. & Lawrence, A. J. (2022). Russ. J. Coord. Chem. 48, 877–895.  Web of Science CrossRef CAS Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationMasikane, S. C., Sixberth Mlowe, S., Pawar, A. S., Garje, S. S. & Revaprasadu, N. (2019). Russ. J. Inorg. Chem. 64, 1063–1071.  CAS Google Scholar
First citationMathew, G. E., Oh, J. M., Mohan, K., Tengli, A., Mathew, B. & Kim, H. (2021). J. Biomol. Struct. Dyn. 39, 4786–4794.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMonsur Showkot Hossain, A., Méndez-Arriaga, J. M., Gómez-Ruiz, S., Xie, J., Gregory, D. H., Akitsu, T., Ibragimov, A. B., Sun, B. & Xia, C. (2023). Polyhedron, 244, 116576.  Web of Science CrossRef Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOliveira, A. B. de, Bresolin, L., Beck, J. & Daniels, J. (2023a). IUCrData, 8, x230971.  Google Scholar
First citationOliveira, A. B. de, Bresolin, L., Beck, J. & Daniels, J. (2024). IUCrData, 9, x240013.  Google Scholar
First citationOliveira, A. B. de, Bresolin, L., Gervini, V. C., Beck, J. & Daniels, J. (2023b). IUCrData, 8, x231018.  Google Scholar
First citationOrsoni, N., Degola, F., Nerva, L., Bisceglie, F., Spadola, G., Chitarra, W., Terzi, V., Delbono, S., Ghizzoni, R., Morcia, C., Jamiołkowska, A., Mielniczuk, E., Restivo, F. M. & Pelosi, G. (2020). Int. J. Mol. Sci. 21, 8681.  Web of Science CSD CrossRef PubMed Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationÖzbek, O. & Berkel, C. (2023). Polyhedron, 238, 116426.  Google Scholar
First citationParrilha, G. L., dos Santos, R. G. & Beraldo, H. (2022). Coord. Chem. Rev. 458, 214418.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, R. L. & Martínez-Huitle, C. A. (2021). J. Mol. Liq. 343, 117660.  Web of Science CrossRef Google Scholar
First citationSingh, V., Palakkeezhillam, V. N. V., Manakkadan, V., Rasin, P., Valsan, A. K., Kumar, V. S. & Sreekanth, A. (2023). Polyhedron, 245, 116658.  Web of Science CrossRef Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer 3.1. University of Western Australia, Perth, Australia.  Google Scholar
First citationZolghadri, S., Bahrami, A., Hassan Khan, M. T., Munoz-Munoz, J., Garcia-Molina, F., Garcia-Canovas, F. & Saboury, A. A. (2019). J. Enzyme Inhib. Med. Chem. 34, 279–309.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds