Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The molecular packing modes of a series of mono- and diamides of (R,R)-tartaric acid are discussed on the basis of their crystal structures. Derivatives include combinations of methylester, amide, N-methylamide and N,N-dimethylamide groups, both symmetrically and asymmetrically substituted. The symmetrically substituted derivatives do not utilize their C2 symmetry in the crystal. The packing of primary tartramides seems to be driven by NH...O=C hydrogen bonds and supplemented by strong OH...O=C and weak NH...OH bonds. On the other hand, in derivatives containing methylester and/or methylamide groups OH...OH...O=C hydrogen-bond patterns seem to dominate. Types of aggregates, characteristic for the investigated derivatives, include cyclic dimers and ring systems analogous to the dimers, but formed by two different although complementary functional groups, as well as sets of chains aligned in a manner resembling the helical arrangement of peptides. The helices are formed along the screw axis with an identity period of approximately 5 Å. In tartramic acids, containing in one molecule both carboxyl and amide functions, in competition between the two groups to control the molecular arrangement, the latter dominates, unless it is N-substituted tartramide, in which case the carboxyl group predominates. Problems with packing, which occur in some of the structures owing to the steric bulk of the methyl groups, are overcome by changes in conformation (esters) or by co-crystallization with solvent water molecules (methylamides and dimethylamides). These derivatives are also more likely to crystallize with multiple asymmetric units.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768100004274/cf0011sup1.cif
Contains datablocks hoh1, hn12, hn22, global

fcf

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100004274/cf0011hoh1sup2.fcf
Contains datablock hoh1

fcf

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100004274/cf0011hn12sup3.fcf
Contains datablock hn12

fcf

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100004274/cf0011hn22sup4.fcf
Contains datablock hn22

CCDC references: 153325; 153326; 153327

Computing details top

For all compounds, data collection: Kuma KM-4 Software (Kuma Diffraction, 1991). Cell refinement: Kuma KM-4 Software (Kuma Diffraction, 1991) for hoh1; Kuma KM-4 Software for hn12, hn22. Data reduction: Kuma KM-4 Software (Kuma Diffraction, 1991) for hoh1; Kuma KM-4 Software for hn12, hn22. For all compounds, program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: Simens Analytical X-Ray Instruments (1989); software used to prepare material for publication: SHELXL93 (Sheldrick, 1993).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Figure 10]
[Figure 11]
[Figure 12]
[Figure 13]
[Figure 14]
(hoh1) (R,R)-(+)-Tartaric acid monoamide top
Crystal data top
C4H7NO5Dx = 1.726 Mg m3
Mr = 149.11Melting point = 443–445 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 5.9556 (5) ÅCell parameters from 46 reflections
b = 8.0972 (5) Åθ = 12.2–15.0°
c = 11.8960 (8) ŵ = 0.16 mm1
V = 573.67 (7) Å3T = 293 K
Z = 4Square pyramid, colourless
F(000) = 3120.5 × 0.5 × 0.5 mm
Data collection top
KM-4 four circle
diffractometer
Rint = 0.011
Radiation source: fine-focus sealed tubeθmax = 29.1°, θmin = 3.0°
Graphite monochromatorh = 88
θ–2θ scansk = 011
1688 measured reflectionsl = 016
1534 independent reflections2 standard reflections every 100 reflections
1476 reflections with I > σ(I) intensity decay: 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033Riding model
wR(F2) = 0.099Calculated w = 1/[σ2(Fo2) + (0.0485P)2 + 0.1655P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.054
1531 reflectionsΔρmax = 0.39 e Å3
103 parametersΔρmin = 0.18 e Å3
0 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.80 (114)
Crystal data top
C4H7NO5V = 573.67 (7) Å3
Mr = 149.11Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.9556 (5) ŵ = 0.16 mm1
b = 8.0972 (5) ÅT = 293 K
c = 11.8960 (8) Å0.5 × 0.5 × 0.5 mm
Data collection top
KM-4 four circle
diffractometer
Rint = 0.011
1688 measured reflections2 standard reflections every 100 reflections
1534 independent reflections intensity decay: 1.0%
1476 reflections with I > σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.033Riding model
wR(F2) = 0.099Δρmax = 0.39 e Å3
S = 1.01Δρmin = 0.18 e Å3
1531 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
103 parametersAbsolute structure parameter: 0.80 (114)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 3 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2145 (2)0.5652 (2)0.49757 (10)0.0206 (2)
C20.0044 (2)0.56737 (15)0.43187 (9)0.0183 (2)
H20.0111 (2)0.66799 (15)0.38932 (9)0.020*
C30.0080 (2)0.42239 (15)0.34979 (10)0.0214 (2)
H30.1212 (2)0.42979 (15)0.30182 (10)0.020*
C40.2183 (2)0.4313 (2)0.27706 (10)0.0224 (2)
N40.3519 (2)0.3024 (2)0.28003 (11)0.0339 (3)
H410.4785 (2)0.3014 (2)0.23877 (11)0.060*
H420.3167 (2)0.2149 (2)0.32325 (11)0.060*
O10.2225 (2)0.56502 (14)0.59877 (8)0.0302 (2)
O20.19040 (13)0.56349 (14)0.50508 (8)0.0237 (2)
H2O0.161 (5)0.516 (3)0.566 (2)0.055 (7)*
O30.0052 (2)0.27569 (13)0.41215 (10)0.0349 (3)
H3O0.071 (4)0.211 (3)0.375 (2)0.044 (6)*
O40.2518 (2)0.55460 (13)0.21725 (8)0.0297 (2)
O100.3878 (2)0.56387 (15)0.42987 (8)0.0295 (2)
H100.506 (4)0.552 (3)0.4650 (18)0.040 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0167 (5)0.0224 (5)0.0229 (5)0.0000 (4)0.0018 (4)0.0006 (5)
C20.0150 (4)0.0225 (5)0.0176 (5)0.0004 (5)0.0005 (4)0.0006 (4)
C30.0200 (5)0.0235 (5)0.0207 (5)0.0011 (5)0.0003 (4)0.0034 (4)
C40.0210 (5)0.0278 (5)0.0184 (5)0.0005 (5)0.0010 (4)0.0061 (4)
N40.0303 (6)0.0334 (6)0.0380 (6)0.0087 (5)0.0044 (5)0.0039 (5)
O10.0244 (4)0.0455 (5)0.0208 (4)0.0011 (5)0.0038 (3)0.0006 (4)
O20.0155 (4)0.0360 (5)0.0197 (4)0.0008 (4)0.0013 (3)0.0002 (4)
O30.0433 (6)0.0236 (4)0.0378 (6)0.0077 (5)0.0044 (5)0.0020 (4)
O40.0304 (5)0.0336 (5)0.0250 (4)0.0015 (4)0.0062 (4)0.0028 (4)
O100.0157 (4)0.0475 (6)0.0253 (4)0.0015 (4)0.0001 (3)0.0011 (4)
Geometric parameters (Å, º) top
C1—O11.205 (2)C3—H30.96
C1—O101.3089 (15)C4—O41.242 (2)
C1—C21.520 (2)C4—N41.313 (2)
C2—O21.4093 (13)N4—H410.90
C2—C31.527 (2)N4—H420.90
C2—H20.96O2—H2O0.84 (3)
C3—O31.403 (2)O3—H3O0.79 (3)
C3—C41.524 (2)O10—H100.83 (2)
O1—C1—O10125.70 (11)O3—C3—H3108.80 (7)
O1—C1—C2123.20 (10)C4—C3—H3108.57 (6)
O10—C1—C2111.10 (10)C2—C3—H3108.72 (7)
O2—C2—C1110.86 (9)O4—C4—N4123.84 (12)
O2—C2—C3111.54 (10)O4—C4—C3119.69 (11)
C1—C2—C3109.38 (10)N4—C4—C3116.44 (12)
O2—C2—H2108.19 (7)C4—N4—H41120.02 (8)
C1—C2—H2108.43 (6)C4—N4—H42119.98 (8)
C3—C2—H2108.34 (6)H41—N4—H42120.0
O3—C3—C4112.73 (11)C2—O2—H2O112.2 (18)
O3—C3—C2108.18 (10)C3—O3—H3O107.0 (17)
C4—C3—C2109.76 (10)C1—O10—H10111.3 (15)
(hn12) (R,R)-(+)-Tartaric acid N-methyldiamide top
Crystal data top
C5H10N2O4Melting point = 475–477 K
Mr = 162.15Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 47 reflections
a = 10.594 (1) Åθ = 6.1–12.0°
c = 13.771 (3) ŵ = 0.12 mm1
V = 1545.6 (4) Å3T = 293 K
Z = 8Tetragonal bipyramid, colourless
F(000) = 6880.45 × 0.44 × 0.41 mm
Dx = 1.394 Mg m3
Data collection top
KM-4 four circle
diffractometer
Rint = 0.013
Radiation source: fine-focus sealed tubeθmax = 27.1°, θmin = 2.4°
Graphite monochromatorh = 013
Θ–2Θ scansk = 013
1939 measured reflectionsl = 017
1698 independent reflections2 standard reflections every 100 reflections
1408 reflections with I > 2σ(I) intensity decay: 0.9%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullRiding model
R[F2 > 2σ(F2)] = 0.042Calculated w = 1/[σ2(Fo2) + (0.0699P)2 + 0.2727P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.122(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.28 e Å3
1698 reflectionsΔρmin = 0.23 e Å3
113 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0304 (45)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.72 (187)
Crystal data top
C5H10N2O4Z = 8
Mr = 162.15Mo Kα radiation
Tetragonal, P41212µ = 0.12 mm1
a = 10.594 (1) ÅT = 293 K
c = 13.771 (3) Å0.45 × 0.44 × 0.41 mm
V = 1545.6 (4) Å3
Data collection top
KM-4 four circle
diffractometer
Rint = 0.013
1939 measured reflections2 standard reflections every 100 reflections
1698 independent reflections intensity decay: 0.9%
1408 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.042Riding model
wR(F2) = 0.122Δρmax = 0.28 e Å3
S = 1.10Δρmin = 0.23 e Å3
1698 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
113 parametersAbsolute structure parameter: 0.72 (187)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.0031 (2)0.3259 (2)0.19146 (15)0.0333 (5)
C20.9944 (2)0.2357 (2)0.10640 (14)0.0318 (5)
H21.0751 (2)0.2327 (2)0.07477 (14)0.038*
C30.8969 (2)0.2848 (2)0.03486 (14)0.0337 (5)
H30.9222 (2)0.3666 (2)0.01209 (14)0.040*
C40.8908 (2)0.1938 (2)0.0499 (2)0.0389 (5)
C410.7692 (4)0.0247 (6)0.1287 (4)0.0533 (13)0.60
H4110.8349 (4)0.0231 (6)0.1767 (4)0.064*0.60
H4120.7710 (4)0.0524 (6)0.0921 (4)0.064*0.60
H4130.6887 (4)0.0304 (6)0.1603 (4)0.064*0.60
C420.7585 (16)0.0782 (17)0.1626 (12)0.120 (6)*0.40
N10.9727 (2)0.2826 (2)0.27842 (13)0.0412 (5)
H120.9602 (2)0.1986 (2)0.28028 (13)0.049*
H110.9779 (2)0.3378 (2)0.32794 (13)0.049*
N40.7865 (2)0.1311 (3)0.0609 (2)0.0710 (9)
H40.7223 (2)0.1474 (3)0.0199 (2)0.085*
O11.0369 (2)0.4354 (2)0.17790 (12)0.0452 (5)
O20.9608 (2)0.1130 (2)0.13644 (12)0.0396 (4)
H2O1.020 (3)0.074 (3)0.131 (2)0.058 (10)*
O30.77673 (15)0.2933 (2)0.07847 (13)0.0444 (4)
H3O0.772 (3)0.364 (4)0.090 (2)0.062 (10)*
O40.98510 (15)0.1790 (2)0.10183 (11)0.0423 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0285 (10)0.0376 (11)0.0338 (10)0.0005 (8)0.0039 (8)0.0031 (8)
C20.0295 (10)0.0339 (10)0.0320 (9)0.0014 (8)0.0042 (8)0.0020 (8)
C30.0288 (10)0.0361 (11)0.0360 (10)0.0007 (8)0.0035 (8)0.0027 (9)
C40.0318 (11)0.0479 (13)0.0370 (11)0.0002 (10)0.0005 (9)0.0059 (9)
C410.041 (2)0.066 (3)0.053 (2)0.020 (2)0.004 (2)0.036 (2)
N10.0521 (12)0.0393 (10)0.0324 (8)0.0034 (9)0.0060 (8)0.0049 (8)
N40.0388 (11)0.107 (2)0.0672 (15)0.0159 (13)0.0100 (11)0.052 (2)
O10.0595 (11)0.0375 (9)0.0387 (9)0.0131 (7)0.0137 (8)0.0047 (7)
O20.0406 (9)0.0328 (8)0.0454 (9)0.0004 (7)0.0083 (7)0.0007 (7)
O30.0289 (8)0.0477 (10)0.0567 (10)0.0031 (7)0.0057 (7)0.0177 (8)
O40.0380 (9)0.0497 (10)0.0394 (8)0.0024 (7)0.0102 (7)0.0085 (7)
Geometric parameters (Å, º) top
C1—O11.228 (3)C41—N41.476 (4)
C1—N11.322 (3)C41—H4110.96
C1—C21.514 (3)C41—H4120.96
C2—O21.410 (2)C41—H4130.96
C2—C31.519 (3)C42—N41.54 (2)
C2—H20.96N1—H120.90
C3—O31.410 (3)N1—H110.90
C3—C41.515 (3)N4—H40.90
C3—H30.96O2—H2O0.76 (3)
C4—O41.238 (3)O3—H3O0.76 (4)
C4—N41.298 (3)
O1—C1—N1122.4 (2)N4—C41—H411111.0 (2)
O1—C1—C2119.7 (2)N4—C41—H412108.4 (3)
N1—C1—C2117.8 (2)H411—C41—H412109.5
O2—C2—C1111.7 (2)N4—C41—H413110.4 (2)
O2—C2—C3109.5 (2)H411—C41—H413109.5
C1—C2—C3109.1 (2)H412—C41—H413108.1
O2—C2—H2109.07 (11)C1—N1—H12113.87 (13)
C1—C2—H2108.53 (11)C1—N1—H11116.47 (13)
C3—C2—H2108.83 (10)H12—N1—H11129.0
O3—C3—C4109.3 (2)C4—N4—C41124.8 (3)
O3—C3—C2111.1 (2)C4—N4—C42117.2 (7)
C4—C3—C2108.1 (2)C41—N4—C4228.5 (6)
O3—C3—H3109.50 (12)C4—N4—H4118.18 (14)
C4—C3—H3109.54 (12)C41—N4—H4116.7 (2)
C2—C3—H3109.30 (11)C42—N4—H4119.7 (6)
O4—C4—N4123.7 (2)C2—O2—H2O106 (2)
O4—C4—C3119.4 (2)C3—O3—H3O102 (3)
N4—C4—C3116.8 (2)
O1—C1—C2—O2176.8 (2)O3—C3—C4—O4175.5 (2)
N1—C1—C2—O23.6 (3)C2—C3—C4—O463.5 (3)
O1—C1—C2—C362.0 (3)O3—C3—C4—N47.4 (3)
N1—C1—C2—C3117.6 (2)C2—C3—C4—N4113.6 (3)
O2—C2—C3—O361.9 (2)O4—C4—N4—C417.0 (6)
C1—C2—C3—O360.7 (2)C3—C4—N4—C41169.9 (4)
O2—C2—C3—C458.0 (2)O4—C4—N4—C4225.1 (8)
C1—C2—C3—C4179.4 (2)C3—C4—N4—C42158.0 (7)
(hn22) (R,R)-(+)-Tartaric acid N,N'-dimethyldiamide monohydrate top
Crystal data top
C6H14N2O5Dx = 1.382 Mg m3
Mr = 194.19Melting point = 471–473 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 5.094 (1) ÅCell parameters from 40 reflections
b = 11.243 (2) Åθ = 5.9–19.1°
c = 16.295 (4) ŵ = 0.12 mm1
V = 933.2 (3) Å3T = 293 K
Z = 4Needle, colourless
F(000) = 4160.3 × 0.3 × 0.2 mm
Data collection top
KM-4 four circle
diffractometer
Rint = 0.103
Radiation source: fine-focus sealed tubeθmax = 27.1°, θmin = 2.2°
Graphite monochromatorh = 66
Θ–2Θ scansk = 014
2216 measured reflectionsl = 020
2058 independent reflections3 standard reflections every 100 reflections
1696 reflections with I > 2σ(I) intensity decay: 0.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057Riding model
wR(F2) = 0.163Calculated w = 1/[σ2(Fo2) + (0.1129P)2 + 0.4981P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2057 reflectionsΔρmax = 0.28 e Å3
134 parametersΔρmin = 0.26 e Å3
0 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 1.63 (188)
Crystal data top
C6H14N2O5V = 933.2 (3) Å3
Mr = 194.19Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.094 (1) ŵ = 0.12 mm1
b = 11.243 (2) ÅT = 293 K
c = 16.295 (4) Å0.3 × 0.3 × 0.2 mm
Data collection top
KM-4 four circle
diffractometer
Rint = 0.103
2216 measured reflections3 standard reflections every 100 reflections
2058 independent reflections intensity decay: 0.5%
1696 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.057Riding model
wR(F2) = 0.163Δρmax = 0.28 e Å3
S = 1.04Δρmin = 0.26 e Å3
2057 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
134 parametersAbsolute structure parameter: 1.63 (188)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 1 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1536 (6)0.0027 (2)0.5434 (2)0.0137 (6)
C20.2217 (6)0.0950 (2)0.4793 (2)0.0110 (6)
H20.4085 (6)0.0966 (2)0.4716 (2)0.010*
C30.0882 (5)0.0638 (2)0.3981 (2)0.0121 (5)
H30.1671 (5)0.0064 (2)0.3753 (2)0.010*
C40.1282 (6)0.1690 (2)0.3392 (2)0.0121 (5)
C110.0636 (8)0.0391 (3)0.6732 (2)0.0267 (7)
H1110.0817 (8)0.0068 (3)0.7226 (2)0.040*
H1120.0621 (8)0.1016 (3)0.6812 (2)0.040*
H1130.2289 (8)0.0742 (3)0.6586 (2)0.040*
C410.0827 (6)0.3090 (2)0.2470 (2)0.0183 (6)
H4110.2443 (6)0.3146 (2)0.2170 (2)0.030*
H4120.0603 (6)0.2981 (2)0.2094 (2)0.030*
H4130.0532 (6)0.3817 (2)0.2765 (2)0.030*
O10.2172 (5)0.1028 (2)0.53222 (14)0.0200 (5)
O20.1340 (4)0.2092 (2)0.50499 (12)0.0124 (4)
H2O0.306 (10)0.248 (4)0.511 (3)0.034 (11)*
O30.1830 (4)0.0447 (2)0.40978 (13)0.0153 (5)
H3O0.221 (8)0.029 (4)0.407 (2)0.023 (10)*
O40.3488 (4)0.2097 (2)0.32678 (13)0.0149 (4)
N10.0234 (5)0.0406 (2)0.6085 (2)0.0171 (5)
H10.0119 (5)0.1187 (2)0.6131 (2)0.040*
N40.0892 (5)0.2101 (2)0.30444 (14)0.0135 (5)
H40.2441 (5)0.1759 (2)0.31662 (14)0.010*
O1W0.4143 (5)0.1676 (2)0.4156 (2)0.0192 (5)
H1W0.334 (11)0.228 (6)0.424 (4)0.059 (17)*
H2W0.527 (12)0.152 (4)0.441 (3)0.037 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0148 (13)0.0104 (11)0.0161 (13)0.0008 (10)0.0022 (10)0.0022 (10)
C20.0134 (12)0.0053 (12)0.0145 (13)0.0011 (9)0.0019 (10)0.0008 (10)
C30.0130 (13)0.0087 (11)0.0145 (13)0.0004 (9)0.0007 (11)0.0006 (9)
C40.0161 (13)0.0091 (11)0.0112 (13)0.0007 (10)0.0000 (10)0.0024 (9)
C110.044 (2)0.0156 (14)0.021 (2)0.0026 (14)0.0097 (14)0.0073 (12)
C410.0198 (14)0.0155 (13)0.0196 (14)0.0001 (11)0.0021 (12)0.0068 (11)
O10.0271 (12)0.0084 (9)0.0246 (11)0.0038 (8)0.0053 (9)0.0024 (8)
O20.0149 (9)0.0054 (8)0.0170 (10)0.0000 (8)0.0006 (8)0.0023 (7)
O30.0140 (10)0.0081 (9)0.0238 (11)0.0023 (8)0.0001 (8)0.0020 (8)
O40.0147 (10)0.0137 (9)0.0163 (10)0.0013 (8)0.0013 (8)0.0006 (7)
N10.0267 (13)0.0082 (10)0.0165 (13)0.0004 (10)0.0035 (10)0.0029 (9)
N40.0126 (11)0.0129 (10)0.0148 (11)0.0007 (9)0.0003 (9)0.0041 (9)
O1W0.0212 (12)0.0092 (9)0.0272 (13)0.0015 (8)0.0048 (10)0.0011 (8)
Geometric parameters (Å, º) top
C1—O11.243 (3)C11—H1120.96
C1—N11.321 (4)C11—H1130.96
C1—C21.512 (4)C41—N41.453 (3)
C2—O21.422 (3)C41—H4110.96
C2—C31.529 (4)C41—H4120.96
C2—H20.96C41—H4130.96
C3—O31.411 (3)O2—H2O0.98 (5)
C3—C41.537 (3)O3—H3O0.85 (5)
C3—H30.96N1—H10.90
C4—O41.230 (4)N4—H40.90
C4—N41.327 (4)O1W—H1W0.81 (6)
C11—N11.453 (4)O1W—H2W0.73 (6)
C11—H1110.96
O1—C1—N1123.8 (3)H111—C11—H112110.2
O1—C1—C2119.6 (3)N1—C11—H113110.0 (2)
N1—C1—C2116.6 (2)H111—C11—H113110.2
O2—C2—C1110.1 (2)H112—C11—H113108.5
O2—C2—C3108.8 (2)N4—C41—H411111.1 (2)
C1—C2—C3109.7 (2)N4—C41—H412109.3 (2)
O2—C2—H2109.46 (14)H411—C41—H412109.4
C1—C2—H2109.3 (2)N4—C41—H413109.4 (2)
C3—C2—H2109.38 (15)H411—C41—H413109.4
O3—C3—C2110.7 (2)H412—C41—H413108.0
O3—C3—C4109.4 (2)C2—O2—H2O99 (3)
C2—C3—C4107.7 (2)C3—O3—H3O111 (3)
O3—C3—H3109.72 (14)C1—N1—C11122.5 (2)
C2—C3—H3109.71 (14)C1—N1—H1118.79 (15)
C4—C3—H3109.59 (14)C11—N1—H1118.7 (2)
O4—C4—N4124.3 (2)C4—N4—C41121.5 (2)
O4—C4—C3120.7 (3)C4—N4—H4119.25 (15)
N4—C4—C3115.1 (2)C41—N4—H4119.3 (2)
N1—C11—H111107.8 (2)H1W—O1W—H2W120 (6)
N1—C11—H112110.3 (2)
O1—C1—C2—O2179.3 (3)O3—C3—C4—O4172.3 (2)
N1—C1—C2—O21.8 (4)C2—C3—C4—O451.9 (3)
O1—C1—C2—C361.0 (4)O3—C3—C4—N47.6 (3)
N1—C1—C2—C3117.9 (3)C2—C3—C4—N4128.0 (2)
O2—C2—C3—O368.5 (3)O1—C1—N1—C111.3 (5)
C1—C2—C3—O352.0 (3)C2—C1—N1—C11177.6 (3)
O2—C2—C3—C451.0 (3)O4—C4—N4—C410.3 (4)
C1—C2—C3—C4171.6 (2)C3—C4—N4—C41179.7 (2)

Experimental details

(hoh1)(hn12)(hn22)
Crystal data
Chemical formulaC4H7NO5C5H10N2O4C6H14N2O5
Mr149.11162.15194.19
Crystal system, space groupOrthorhombic, P212121Tetragonal, P41212Orthorhombic, P212121
Temperature (K)293293293
a, b, c (Å)5.9556 (5), 8.0972 (5), 11.8960 (8)10.594 (1), 10.594 (1), 13.771 (3)5.094 (1), 11.243 (2), 16.295 (4)
α, β, γ (°)90, 90, 9090, 90, 9090, 90, 90
V3)573.67 (7)1545.6 (4)933.2 (3)
Z484
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.160.120.12
Crystal size (mm)0.5 × 0.5 × 0.50.45 × 0.44 × 0.410.3 × 0.3 × 0.2
Data collection
DiffractometerKM-4 four circle
diffractometer
KM-4 four circle
diffractometer
KM-4 four circle
diffractometer
Absorption correction
No. of measured, independent and
observed reflections
1688, 1534, 1476 [I > σ(I)]1939, 1698, 1408 [I > 2σ(I)]2216, 2058, 1696 [I > 2σ(I)]
Rint0.0110.0130.103
(sin θ/λ)max1)0.6830.6400.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.099, 1.01 0.042, 0.122, 1.10 0.057, 0.163, 1.04
No. of reflections153116982057
No. of parameters103113134
H-atom treatmentRiding modelRiding modelRiding model
Δρmax, Δρmin (e Å3)0.39, 0.180.28, 0.230.28, 0.26
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881Flack H D (1983), Acta Cryst. A39, 876-881Flack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter0.80 (114)0.72 (187)1.63 (188)

Computer programs: Kuma KM-4 Software (Kuma Diffraction, 1991), Kuma KM-4 Software, SHELXS86 (Sheldrick, 1990), SHELXL93 (Sheldrick, 1993), Simens Analytical X-Ray Instruments (1989).

 

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds