Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The direct resynthesis of precursor from spent lithium-ion batteries (LIBs) via co-precipitation is a crucial step in closed-loop cathode recycling systems. However, design and operation strategies for producing high-purity precursors have not been comprehensively explored or optimized. Herein, we propose the optimization of co-precipitation during the recovery of spent LIBs to achieve impurity-free precursor resynthesis. By incorporating the thermodynamic equilibrium model of the leaching solution of spent LIBs into a population balance equation (PBE) model, we identified the operating ranges that prevented the formation of impurities. Bayesian optimization was employed within the screened operating ranges to determine the optimal operating conditions for minimizing both operation time and maximum particle size. This optimization was performed for both unseeded batch and semi-batch systems. The results demonstrate that the selection of an optimal semi-batch operation can reduce the operation time by 23.33% and increase the particle size by 54.75%, owing to the high nucleation and particle growth rate during the initial time step. By employing an optimization approach based on the PBE model, this study provides detailed operational guidelines for batch and semi-batch co-precipitation, enabling the production of high-purity precursor materials from spent LIBs, while minimizing both operating time and maximum particle size.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1600576724010239/ui5017sup1.pdf
Details of modeling and preliminary studies of co-precipitation process


Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds