Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A theoretical model to trace X-rays through an L-shaped (nested or Montel Kirkpatrick–Baez mirrors) laterally graded multilayer mirror to be used in a synchrotron application is presented. The model includes source parameters (size and divergence), mirror figure (parabolic and elliptic), multilayer parameters (reflectivity, which depends on layer material, thickness and number of layers) and figure errors (slope error, roughness, layer thickness fluctuation Δd/d and imperfection in the corners). The model was implemented through MATLAB/OCTAVE scripts, and was employed to study the performance of a multilayer mirror designed for the analyzer system of an ultrahigh-resolution inelastic X-ray scattering spectrometer at National Synchrotron Light Source II. The results are presented and discussed.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds