metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Chloro-3,5-di­nitro­benzoato)tri­phenyl­tin(IV)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bSchool of Chemistry, The University of Manchester, Manchester M13 9PL, England
*Correspondence e-mail: drsa54@yahoo.com

(Received 9 June 2006; accepted 20 June 2006; online 28 June 2006)

The geometry around the Sn atom of the title compound, [Sn(C6H5)3(C7H2ClN2O6)], is distorted tetra­hedral, with Sn—C distances lying in the range 2.124 (2)–2.119 (2) Å and an Sn—O distance of 2.0645 (15) Å.

Comment

Organotin compounds are of current inter­est due to their dramatic increase of industrial, agricultural and biological applications (Xie et al., 1996[Xie, Q., Yang, Z. & Jiang, L. (1996). Main Group Met. Chem. 19, 509-520.]; Nath et al., 2001[Nath, M., Pokharia, S. & Yadav, R. (2001). Coord. Chem. Rev. 215, 99-149.]). Studies of organotin and biologically important ligands have gained importance due to potential pharmaceutical applications of organotin compounds (Anderson et al., 1984[Anderson, K. E., Simionatto, C. S., Drummond, G. S. & Kappas, A. (1984). J. Pharmacol. Exp. Ther. 228, 327-333.]). The biological applications of organotin compounds as anti­tumor and anti­cancer agents (Yang & Guo, 1999[Yang, P. & Guo, M. (1999). Coord. Chem. Rev. 185-186, 189-211.]; Gielen et al., 2002[Gielen, M. (2002). Appl. Organomet. Chem. 16, 481-494.]) and the structural aspects of organotin carboxyl­ates have been well documented (Tiekink, 1994[Tiekink, E. R. T. (1994). Trends Orgaomet. Chem. 1, 71-116.]; Hans et al., 2002[Hans, K., Parvez, M., Ahmad, F., Ali, S., Mazhar, M. & Munir, A. (2002). Acta Cryst. E58, m441-m443.]).

[Scheme 1]

We report here the crystal structure of the title compound, (I)[link], as a continuation of our efforts in the synthesis and structural characterization of organotin(IV) carboxyl­ates (Sadiq-ur-Rehman et al., 2006[Sadiq-ur-Rehman, Ali, S., Shahzadi, S. & Parvez, M. (2006). Acta Cryst. E62, m910-m911.]).

The structure of (I)[link] is composed of discrete monomeric mol­ecules in which the O atom of the carboxyl­ate ligand and three C atoms of three phenyl groups surround the tetra­coordinated Sn atom (Fig. 1[link]). The Sn atom exists in a distorted tetra­hedral geometry. The largest distortion from the ideal tetra­hedral geometry is found in the O1—Sn—C8 angle (Table 1[link]); the C14—Sn1—C20 angle shows the next largest distortion from the ideal geometry. The monodentate mode of coordination of the 4-chloro-3,5-dinitro­benzoate is reflected in the disparate O1—C1 and O2—C2 bond distances, with the longer bond associated with the stronger Sn1—O1 inter­action. The bond distances and angles involving the Sn atom are in agreement with the corresponding values found for similar Sn complexes (Sadiq-ur-Rehman et al., 2005[Sadiq-ur-Rehman, Shahid, K., Ali, S., Bhatti, M. H. & Parvez, M. (2005). J. Organomet. Chem. 690, 1396-1408.]).

[Figure 1]
Figure 1
The structure of (I)[link], with displacement ellipsoids drawn at the 50% probability level.

Experimental

Triphenyl­tin(IV) hydroxide (0.6 g, 2.4 mmol) and 3,5-dinitro-4-chloro­benzoic acid (0.9 g, 2.4 mmol) were suspended in dry toluene (150 ml) in a two-necked round-bottomed flask equipped with a water condenser. The mixture was refluxed for 8–10 h and the water that formed during the condensation reaction was periodically removed via a Dean–Stark separator. The mixture was cooled to room temperature and solvent was removed on a rotary evaporator under reduced pressure. The solid product was recrystallized from chloro­form to obtain colourless crystals suitable for X-ray analysis (yield 75%; m.p. 414–416 K).

Crystal data
  • [Sn(C6H5)3(C7H2ClN2O6)]

  • Mr = 595.55

  • Monoclinic, P 21 /c

  • a = 12.7457 (8) Å

  • b = 8.3919 (5) Å

  • c = 22.3719 (14) Å

  • β = 103.1560 (10)°

  • V = 2330.1 (2) Å3

  • Z = 4

  • Dx = 1.698 Mg m−3

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 100 (2) K

  • Block, colourless

  • 0.40 × 0.35 × 0.35 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART (Version 5.625), SADABS (Version 2.03a) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.633, Tmax = 0.668

  • 13029 measured reflections

  • 4757 independent reflections

  • 4272 reflections with I > 2σ(I)

  • Rint = 0.029

  • θmax = 26.4°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.068

  • S = 1.03

  • 4757 reflections

  • 316 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0367P)2 + 1.1522P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 1.25 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn1—O1 2.0654 (15)
Sn1—C14 2.119 (2)
Sn1—C20 2.120 (2)
Sn1—C8 2.124 (2)
O1—C1 1.305 (3)
O2—C1 1.221 (3)
O1—Sn1—C14 110.48 (7)
O1—Sn1—C20 103.46 (7)
C14—Sn1—C20 119.25 (9)
O1—Sn1—C8 97.64 (7)
C14—Sn1—C8 111.21 (8)
C20—Sn1—C8 112.28 (9)

H atoms were included in calculated positions and refined as riding, with C—H distances of 0.95 Å and Uiso(H) = 1.2Ueq(C). The highest density peak is located 0.11 Å from atom H10.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.625), SADABS (Version 2.03a) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Version 6.36a. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 andSHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 andSHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2001[Bruker (2001). SMART (Version 5.625), SADABS (Version 2.03a) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

(4-Chloro-3,5-dinitrobenzoato)triphenyltin(IV) top
Crystal data top
[Sn(C6H5)3(C7H2ClN2O6)]F(000) = 1184
Mr = 595.55Dx = 1.698 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6521 reflections
a = 12.7457 (8) Åθ = 2.6–26.4°
b = 8.3919 (5) ŵ = 1.26 mm1
c = 22.3719 (14) ÅT = 100 K
β = 103.156 (1)°Block, colourless
V = 2330.1 (2) Å30.40 × 0.35 × 0.35 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4757 independent reflections
Radiation source: fine-focus sealed tube4272 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 26.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1515
Tmin = 0.633, Tmax = 0.668k = 1010
13029 measured reflectionsl = 2711
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0367P)2 + 1.1522P]
where P = (Fo2 + 2Fc2)/3
4757 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 1.25 e Å3
0 restraintsΔρmin = 0.35 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.134882 (11)1.067962 (17)0.129275 (7)0.01438 (6)
Cl10.55398 (5)0.72259 (8)0.10026 (3)0.02763 (14)
O10.21016 (12)0.99775 (19)0.06102 (7)0.0171 (3)
O20.31794 (13)0.8587 (2)0.13545 (7)0.0211 (4)
O30.28596 (16)0.9951 (3)0.14633 (9)0.0394 (5)
O40.32670 (17)0.7534 (3)0.16759 (9)0.0416 (5)
O50.70083 (13)0.7399 (2)0.02386 (9)0.0290 (4)
O60.62699 (16)0.5697 (2)0.07485 (11)0.0387 (5)
N10.32621 (17)0.8642 (3)0.13270 (10)0.0264 (5)
N20.62382 (16)0.6807 (2)0.03893 (10)0.0215 (4)
C10.29240 (18)0.9052 (3)0.08239 (11)0.0162 (5)
C20.35596 (17)0.8602 (3)0.03634 (10)0.0157 (4)
C30.31641 (18)0.8872 (3)0.02591 (11)0.0176 (5)
H30.24850.93750.04010.021*
C40.37641 (18)0.8404 (3)0.06694 (10)0.0187 (5)
C50.47870 (18)0.7729 (3)0.04867 (11)0.0189 (5)
C60.51593 (17)0.7503 (3)0.01411 (11)0.0169 (5)
C70.45593 (18)0.7886 (3)0.05622 (11)0.0172 (5)
H70.48290.76600.09850.021*
C80.01540 (17)1.2159 (3)0.07450 (10)0.0155 (4)
C90.00488 (18)1.2329 (3)0.01143 (11)0.0185 (5)
H90.05181.17610.00840.022*
C100.07344 (19)1.3319 (3)0.02249 (11)0.0221 (5)
H100.08011.34240.06550.026*
C110.1419 (2)1.4156 (3)0.00592 (12)0.0230 (5)
H110.19551.48340.01750.028*
C120.13241 (19)1.4007 (3)0.06854 (12)0.0232 (5)
H120.17951.45810.08810.028*
C130.05419 (18)1.3018 (3)0.10265 (11)0.0205 (5)
H130.04771.29220.14560.025*
C140.06444 (18)0.8692 (3)0.16362 (10)0.0161 (4)
C150.04809 (18)0.8590 (3)0.15001 (11)0.0190 (5)
H150.08990.93650.12410.023*
C160.0992 (2)0.7363 (3)0.17408 (11)0.0239 (5)
H160.17560.73060.16490.029*
C170.0382 (2)0.6224 (3)0.21159 (11)0.0239 (5)
H170.07300.53770.22760.029*
C180.0729 (2)0.6319 (3)0.22562 (11)0.0242 (5)
H180.11420.55400.25160.029*
C190.12474 (19)0.7545 (3)0.20213 (11)0.0201 (5)
H190.20120.76050.21220.024*
C200.25521 (18)1.2014 (3)0.18982 (10)0.0180 (5)
C210.32980 (19)1.1282 (3)0.23723 (11)0.0231 (5)
H210.32331.01800.24530.028*
C220.4136 (2)1.2166 (3)0.27265 (12)0.0273 (6)
H220.46471.16620.30460.033*
C230.4231 (2)1.3779 (3)0.26163 (12)0.0286 (6)
H230.48131.43730.28550.034*
C240.3476 (2)1.4524 (3)0.21570 (12)0.0256 (6)
H240.35301.56340.20870.031*
C250.26397 (19)1.3643 (3)0.17980 (11)0.0213 (5)
H250.21251.41560.14830.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01423 (9)0.01387 (9)0.01520 (10)0.00213 (5)0.00367 (6)0.00005 (6)
Cl10.0266 (3)0.0353 (3)0.0252 (3)0.0020 (2)0.0148 (3)0.0049 (3)
O10.0144 (7)0.0191 (8)0.0179 (8)0.0019 (6)0.0042 (6)0.0019 (7)
O20.0221 (8)0.0256 (9)0.0162 (9)0.0039 (7)0.0054 (7)0.0008 (7)
O30.0399 (11)0.0546 (13)0.0258 (11)0.0216 (10)0.0117 (9)0.0147 (10)
O40.0493 (13)0.0522 (13)0.0201 (10)0.0002 (10)0.0015 (9)0.0103 (9)
O50.0183 (9)0.0301 (10)0.0404 (11)0.0011 (7)0.0102 (8)0.0025 (8)
O60.0314 (11)0.0337 (11)0.0537 (14)0.0124 (8)0.0149 (10)0.0218 (9)
N10.0209 (10)0.0405 (13)0.0188 (11)0.0035 (10)0.0069 (8)0.0034 (10)
N20.0200 (10)0.0193 (10)0.0259 (11)0.0044 (8)0.0066 (9)0.0011 (9)
C10.0167 (11)0.0129 (10)0.0197 (12)0.0028 (8)0.0054 (9)0.0020 (9)
C20.0161 (10)0.0141 (10)0.0174 (11)0.0028 (8)0.0048 (9)0.0019 (9)
C30.0165 (11)0.0160 (11)0.0198 (12)0.0004 (9)0.0029 (9)0.0008 (9)
C40.0204 (11)0.0211 (12)0.0145 (12)0.0024 (9)0.0036 (9)0.0010 (9)
C50.0219 (12)0.0155 (11)0.0216 (12)0.0021 (9)0.0096 (10)0.0034 (9)
C60.0149 (11)0.0129 (10)0.0228 (12)0.0013 (8)0.0042 (9)0.0010 (9)
C70.0198 (11)0.0140 (10)0.0178 (12)0.0006 (9)0.0044 (9)0.0004 (9)
C80.0130 (10)0.0131 (10)0.0193 (12)0.0005 (8)0.0012 (9)0.0001 (9)
C90.0190 (11)0.0150 (11)0.0218 (13)0.0001 (9)0.0054 (9)0.0021 (9)
C100.0272 (13)0.0182 (12)0.0182 (12)0.0021 (9)0.0003 (10)0.0005 (9)
C110.0206 (12)0.0145 (11)0.0304 (14)0.0016 (9)0.0015 (10)0.0002 (10)
C120.0187 (12)0.0196 (12)0.0311 (14)0.0047 (9)0.0054 (10)0.0038 (10)
C130.0189 (11)0.0217 (12)0.0209 (12)0.0028 (9)0.0044 (9)0.0016 (10)
C140.0204 (11)0.0155 (11)0.0136 (11)0.0007 (9)0.0061 (9)0.0012 (9)
C150.0225 (12)0.0178 (11)0.0166 (12)0.0017 (9)0.0043 (9)0.0002 (9)
C160.0223 (12)0.0248 (13)0.0251 (13)0.0033 (9)0.0065 (10)0.0021 (10)
C170.0362 (14)0.0175 (12)0.0208 (13)0.0039 (10)0.0120 (11)0.0001 (10)
C180.0353 (14)0.0209 (12)0.0163 (12)0.0055 (10)0.0056 (10)0.0025 (10)
C190.0225 (12)0.0214 (12)0.0164 (12)0.0054 (9)0.0046 (9)0.0014 (9)
C200.0166 (11)0.0221 (11)0.0158 (11)0.0014 (9)0.0046 (9)0.0050 (9)
C210.0261 (13)0.0220 (12)0.0205 (13)0.0046 (10)0.0038 (10)0.0030 (10)
C220.0232 (13)0.0352 (15)0.0209 (13)0.0074 (11)0.0000 (10)0.0069 (11)
C230.0207 (12)0.0348 (15)0.0295 (15)0.0022 (11)0.0039 (11)0.0151 (12)
C240.0231 (13)0.0245 (13)0.0315 (15)0.0017 (10)0.0109 (11)0.0071 (11)
C250.0198 (12)0.0221 (12)0.0233 (13)0.0015 (9)0.0074 (10)0.0021 (10)
Geometric parameters (Å, º) top
Sn1—O12.0654 (15)C11—C121.384 (4)
Sn1—C142.119 (2)C11—H110.9500
Sn1—C202.120 (2)C12—C131.385 (3)
Sn1—C82.124 (2)C12—H120.9500
Cl1—C51.713 (2)C13—H130.9500
O1—C11.305 (3)C14—C191.400 (3)
O2—C11.221 (3)C14—C151.400 (3)
O3—N11.221 (3)C15—C161.390 (3)
O4—N11.215 (3)C15—H150.9500
O5—N21.214 (3)C16—C171.388 (3)
O6—N21.225 (3)C16—H160.9500
N1—C41.478 (3)C17—C181.382 (4)
N2—C61.481 (3)C17—H170.9500
C1—C21.497 (3)C18—C191.389 (3)
C2—C71.387 (3)C18—H180.9500
C2—C31.387 (3)C19—H190.9500
C3—C41.379 (3)C20—C251.394 (3)
C3—H30.9500C20—C211.395 (3)
C4—C51.395 (3)C21—C221.391 (3)
C5—C61.389 (3)C21—H210.9500
C6—C71.380 (3)C22—C231.385 (4)
C7—H70.9500C22—H220.9500
C8—C91.394 (3)C23—C241.387 (4)
C8—C131.399 (3)C23—H230.9500
C9—C101.385 (3)C24—C251.392 (3)
C9—H90.9500C24—H240.9500
C10—C111.382 (4)C25—H250.9500
C10—H100.9500
O1—Sn1—C14110.48 (7)C10—C11—H11120.0
O1—Sn1—C20103.46 (7)C12—C11—H11120.0
C14—Sn1—C20119.25 (9)C11—C12—C13119.9 (2)
O1—Sn1—C897.64 (7)C11—C12—H12120.1
C14—Sn1—C8111.21 (8)C13—C12—H12120.1
C20—Sn1—C8112.28 (9)C12—C13—C8120.8 (2)
C1—O1—Sn1111.63 (14)C12—C13—H13119.6
O4—N1—O3126.2 (2)C8—C13—H13119.6
O4—N1—C4118.1 (2)C19—C14—C15118.9 (2)
O3—N1—C4115.6 (2)C19—C14—Sn1123.09 (17)
O5—N2—O6125.8 (2)C15—C14—Sn1117.86 (17)
O5—N2—C6118.34 (19)C16—C15—C14120.6 (2)
O6—N2—C6115.8 (2)C16—C15—H15119.7
O2—C1—O1124.1 (2)C14—C15—H15119.7
O2—C1—C2121.5 (2)C17—C16—C15119.8 (2)
O1—C1—C2114.4 (2)C17—C16—H16120.1
C7—C2—C3119.3 (2)C15—C16—H16120.1
C7—C2—C1119.4 (2)C18—C17—C16120.1 (2)
C3—C2—C1121.3 (2)C18—C17—H17120.0
C4—C3—C2119.5 (2)C16—C17—H17120.0
C4—C3—H3120.3C17—C18—C19120.5 (2)
C2—C3—H3120.3C17—C18—H18119.7
C3—C4—C5122.9 (2)C19—C18—H18119.7
C3—C4—N1116.4 (2)C18—C19—C14120.1 (2)
C5—C4—N1120.7 (2)C18—C19—H19120.0
C6—C5—C4115.7 (2)C14—C19—H19120.0
C6—C5—Cl1122.18 (18)C25—C20—C21119.2 (2)
C4—C5—Cl1122.16 (18)C25—C20—Sn1119.22 (17)
C7—C6—C5122.9 (2)C21—C20—Sn1121.44 (17)
C7—C6—N2116.6 (2)C22—C21—C20120.0 (2)
C5—C6—N2120.5 (2)C22—C21—H21120.0
C6—C7—C2119.6 (2)C20—C21—H21120.0
C6—C7—H7120.2C23—C22—C21120.4 (2)
C2—C7—H7120.2C23—C22—H22119.8
C9—C8—C13118.6 (2)C21—C22—H22119.8
C9—C8—Sn1122.33 (16)C22—C23—C24119.9 (2)
C13—C8—Sn1119.09 (17)C22—C23—H23120.1
C10—C9—C8120.5 (2)C24—C23—H23120.1
C10—C9—H9119.8C23—C24—C25120.0 (2)
C8—C9—H9119.8C23—C24—H24120.0
C11—C10—C9120.3 (2)C25—C24—H24120.0
C11—C10—H10119.9C24—C25—C20120.4 (2)
C9—C10—H10119.9C24—C25—H25119.8
C10—C11—C12120.0 (2)C20—C25—H25119.8
C14—Sn1—O1—C165.67 (15)C20—Sn1—C8—C1367.95 (19)
C20—Sn1—O1—C163.07 (16)C13—C8—C9—C100.5 (3)
C8—Sn1—O1—C1178.24 (14)Sn1—C8—C9—C10179.31 (17)
Sn1—O1—C1—O23.9 (3)C8—C9—C10—C110.2 (3)
Sn1—O1—C1—C2175.42 (14)C9—C10—C11—C120.0 (4)
O2—C1—C2—C711.6 (3)C10—C11—C12—C130.0 (4)
O1—C1—C2—C7167.7 (2)C11—C12—C13—C80.3 (4)
O2—C1—C2—C3167.7 (2)C9—C8—C13—C120.5 (3)
O1—C1—C2—C313.0 (3)Sn1—C8—C13—C12179.37 (18)
C7—C2—C3—C40.9 (3)O1—Sn1—C14—C1974.1 (2)
C1—C2—C3—C4178.4 (2)C20—Sn1—C14—C1945.5 (2)
C2—C3—C4—C53.1 (3)C8—Sn1—C14—C19178.58 (18)
C2—C3—C4—N1176.4 (2)O1—Sn1—C14—C15110.03 (17)
O4—N1—C4—C3131.2 (2)C20—Sn1—C14—C15130.36 (17)
O3—N1—C4—C347.4 (3)C8—Sn1—C14—C152.7 (2)
O4—N1—C4—C548.3 (3)C19—C14—C15—C160.4 (3)
O3—N1—C4—C5133.1 (2)Sn1—C14—C15—C16176.36 (18)
C3—C4—C5—C62.0 (3)C14—C15—C16—C170.4 (4)
N1—C4—C5—C6177.5 (2)C15—C16—C17—C180.8 (4)
C3—C4—C5—Cl1177.46 (18)C16—C17—C18—C190.4 (4)
N1—C4—C5—Cl13.0 (3)C17—C18—C19—C140.4 (4)
C4—C5—C6—C71.2 (3)C15—C14—C19—C180.8 (3)
Cl1—C5—C6—C7179.28 (17)Sn1—C14—C19—C18176.54 (17)
C4—C5—C6—N2179.52 (19)O1—Sn1—C20—C2588.62 (18)
Cl1—C5—C6—N20.0 (3)C14—Sn1—C20—C25148.26 (17)
O5—N2—C6—C7128.6 (2)C8—Sn1—C20—C2515.6 (2)
O6—N2—C6—C749.3 (3)O1—Sn1—C20—C2187.52 (19)
O5—N2—C6—C552.1 (3)C14—Sn1—C20—C2135.6 (2)
O6—N2—C6—C5130.0 (2)C8—Sn1—C20—C21168.25 (18)
C5—C6—C7—C23.4 (3)C25—C20—C21—C222.0 (4)
N2—C6—C7—C2177.37 (19)Sn1—C20—C21—C22174.18 (18)
C3—C2—C7—C62.2 (3)C20—C21—C22—C230.7 (4)
C1—C2—C7—C6178.5 (2)C21—C22—C23—C241.1 (4)
O1—Sn1—C8—C92.91 (19)C22—C23—C24—C251.5 (4)
C14—Sn1—C8—C9112.61 (18)C23—C24—C25—C200.2 (4)
C20—Sn1—C8—C9110.89 (18)C21—C20—C25—C241.5 (3)
O1—Sn1—C8—C13175.94 (17)Sn1—C20—C25—C24174.70 (18)
C14—Sn1—C8—C1368.55 (19)
 

Acknowledgements

AR is thankful to HEC (Higher Education Commission, Islamabad, Pakistan) for financial suport under PhD Fellowship Scheme Batch-II (PIN Code: 042-111621-PS2-179).

References

First citationAnderson, K. E., Simionatto, C. S., Drummond, G. S. & Kappas, A. (1984). J. Pharmacol. Exp. Ther. 228, 327–333.  CAS PubMed Google Scholar
First citationBruker (2001). SMART (Version 5.625), SADABS (Version 2.03a) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Version 6.36a. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGielen, M. (2002). Appl. Organomet. Chem. 16, 481–494.  Web of Science CrossRef CAS Google Scholar
First citationHans, K., Parvez, M., Ahmad, F., Ali, S., Mazhar, M. & Munir, A. (2002). Acta Cryst. E58, m441–m443.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNath, M., Pokharia, S. & Yadav, R. (2001). Coord. Chem. Rev. 215, 99–149.  Web of Science CrossRef CAS Google Scholar
First citationSadiq-ur-Rehman, Ali, S., Shahzadi, S. & Parvez, M. (2006). Acta Cryst. E62, m910–m911.  CSD CrossRef IUCr Journals Google Scholar
First citationSadiq-ur-Rehman, Shahid, K., Ali, S., Bhatti, M. H. & Parvez, M. (2005). J. Organomet. Chem. 690, 1396–1408.  CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 andSHELXS97. University of Göttingen, Germany.  Google Scholar
First citationTiekink, E. R. T. (1994). Trends Orgaomet. Chem. 1, 71–116.  Google Scholar
First citationXie, Q., Yang, Z. & Jiang, L. (1996). Main Group Met. Chem. 19, 509–520.  CrossRef CAS Google Scholar
First citationYang, P. & Guo, M. (1999). Coord. Chem. Rev. 185–186, 189–211.  Web of Science CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds