organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(4-Pyridylmethyl­ene)-2-(quinolin-8-yl­­oxy)acetohydrazide sesquihydrate

aDepartment of Chemistry, Taishan University, 271021 Taian, Shandong, People's Republic of China, and bDepartment of Materials and Chemistry Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: zhengzebao@163.com

(Received 15 November 2007; accepted 12 December 2007; online 18 December 2007)

In the title compound, C17H14N4O2·1.5H2O, the mean planes of the pyridine ring and quinoline group make a dihedral angle of 21.0 (2)°. One water molecule lies on a twofold rotation axis. The organic mol­ecules and the three water mol­ecules are linked into infinite chains by N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds.

Related literature

For related literature, see: Chen & Shi (1998[Chen, C. H. & Shi, J. M. (1998). Coord. Chem. Rev. 171, 161-174.]); Moawad & Hanna (2002[Moawad, M. M. & Hanna, W. G. (2002). J. Coord. Chem. 55, 439-457.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14N4O2·1.5H2O

  • Mr = 333.35

  • Monoclinic, C 2/c

  • a = 16.3206 (19) Å

  • b = 15.6706 (19) Å

  • c = 13.5692 (16) Å

  • β = 105.623 (3)°

  • V = 3342.2 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.26 × 0.22 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.976, Tmax = 0.983

  • 8726 measured reflections

  • 2962 independent reflections

  • 1974 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.113

  • S = 1.00

  • 2962 reflections

  • 222 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H19⋯N4i 0.85 2.14 2.914 (2) 151
N2—H2⋯O3 0.86 2.10 2.890 (2) 153
O3—H18⋯N1 0.85 1.91 2.7582 (19) 175
O4—H20⋯O3ii 0.85 2.48 2.825 (2) 105
Symmetry codes: (i) [-x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

8–Hydroxyquinoline and its derivatives are of the most extensively investigated ligands in the coordination chemistry (Chen & Shi, 1998; Moawad & Hanna, 2002). In course of our studies on searching for good extractants of metal ions or a biologically active material, the title compound, (I), was synthesized and its crystal structure determined. The conformation along the O1–C10–C11–N2–N3–C12–C13 bond sequence is (-)gauchetranstranstrans (Fig.1). The mean planes of the pyridine ring and quinoline group make a dihedral angle of the molecules are 21.0 (2)°. The two molecules and the three water molecules are linked into infinite chains by N—H···O, O—H···O and O—H···N hydrogen bonds (Fig. 2).

Related literature top

For related literature, see: Chen & Shi (1998); Moawad & Hanna (2002).

Experimental top

2–(Quinolin–8–yl-oxy)acetohydrazide (0.01 mol), 4–pyridylaldehyde (0.01 mol), ethanol (40 ml) and three drops of acetic acid were added to a 100 ml flask, and refluxed for 6 h. After cooling to room temperature, the mixture was filtered. Colourless single crystals suitable for X–ray diffraction study were obtained by slow evaporation of a tetrahydrofuran solution over a period of 1 d. (m.p. 361 K). Elemental analysis calc.: C 61.25, H 5.14, N 16.80%; found: C 61.19, H 5.21, N 16.77%.

Refinement top

All H atoms were placed in idealized calculated positions with C—H = 0.93–0.97 Å, O—H = 0.85 Å, N—H = 0.86Å and refined as riding atoms with Uiso(H) = 1.2Ueq(C or N) and Uiso(H) = 1.5Ueq(O).

Structure description top

8–Hydroxyquinoline and its derivatives are of the most extensively investigated ligands in the coordination chemistry (Chen & Shi, 1998; Moawad & Hanna, 2002). In course of our studies on searching for good extractants of metal ions or a biologically active material, the title compound, (I), was synthesized and its crystal structure determined. The conformation along the O1–C10–C11–N2–N3–C12–C13 bond sequence is (-)gauchetranstranstrans (Fig.1). The mean planes of the pyridine ring and quinoline group make a dihedral angle of the molecules are 21.0 (2)°. The two molecules and the three water molecules are linked into infinite chains by N—H···O, O—H···O and O—H···N hydrogen bonds (Fig. 2).

For related literature, see: Chen & Shi (1998); Moawad & Hanna (2002).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. The dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. The infinite chains structure via hydrogen bonds in the title compound. The dashed lines indicate hydrogen bonds. H atoms not involved in H bonds have been omitted for clarity.
(E)-N'-(4-Pyridylmethylene)-2-(quinolin-8-yloxy)acetohydrazide sesquihydrate top
Crystal data top
C17H14N4O2·1.5H2OF(000) = 1400
Mr = 333.35Dx = 1.325 Mg m3
Monoclinic, C2/cMelting point: 361 K
Hall symbol: -c 2ycMo Kα radiation, λ = 0.71073 Å
a = 16.3206 (19) ÅCell parameters from 1750 reflections
b = 15.6706 (19) Åθ = 2.6–22.1°
c = 13.5692 (16) ŵ = 0.10 mm1
β = 105.623 (3)°T = 295 K
V = 3342.2 (7) Å3Block, colorless
Z = 80.26 × 0.22 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2962 independent reflections
Radiation source: fine–focus sealed tube1974 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1819
Tmin = 0.976, Tmax = 0.983k = 1518
8726 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0416P)2 + 1.6836P]
where P = (Fo2 + 2Fc2)/3
2962 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C17H14N4O2·1.5H2OV = 3342.2 (7) Å3
Mr = 333.35Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.3206 (19) ŵ = 0.10 mm1
b = 15.6706 (19) ÅT = 295 K
c = 13.5692 (16) Å0.26 × 0.22 × 0.18 mm
β = 105.623 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2962 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1974 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.983Rint = 0.034
8726 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.00Δρmax = 0.23 e Å3
2962 reflectionsΔρmin = 0.24 e Å3
222 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15472 (7)0.61002 (8)0.13430 (10)0.0522 (4)
O20.00480 (9)0.45270 (10)0.11135 (14)0.0848 (6)
O30.03989 (8)0.77138 (9)0.10648 (12)0.0679 (5)
H180.09240.76800.10890.102*
H190.01390.78320.04480.102*
O40.50000.38335 (19)0.25000.198 (2)
H200.45410.35470.23640.297*
N10.21216 (9)0.76870 (10)0.12366 (12)0.0480 (4)
N20.01021 (9)0.59689 (11)0.12749 (13)0.0563 (5)
H20.01780.64400.13860.068*
N30.09687 (10)0.59595 (12)0.11520 (13)0.0586 (5)
N40.39872 (12)0.69428 (16)0.07266 (16)0.0784 (6)
C10.24172 (13)0.84681 (13)0.12079 (16)0.0570 (6)
H10.20360.89190.11470.068*
C20.32621 (13)0.86644 (15)0.12628 (16)0.0621 (6)
H2A0.34370.92280.12480.074*
C30.38204 (13)0.80125 (15)0.13380 (16)0.0596 (6)
H30.43860.81270.13700.071*
C40.35495 (11)0.71610 (13)0.13688 (15)0.0504 (5)
C50.40959 (12)0.64574 (16)0.14487 (17)0.0642 (6)
H50.46620.65430.14600.077*
C60.38064 (13)0.56572 (16)0.15098 (18)0.0671 (6)
H6A0.41790.51980.15760.081*
C70.29443 (12)0.55081 (14)0.14739 (16)0.0591 (6)
H70.27530.49540.15140.071*
C80.23931 (11)0.61774 (13)0.13810 (14)0.0463 (5)
C90.26813 (11)0.70304 (12)0.13252 (13)0.0429 (5)
C100.12326 (11)0.52542 (12)0.13095 (17)0.0561 (6)
H10A0.15370.49560.19260.067*
H10B0.13440.49590.07300.067*
C110.02969 (13)0.52209 (15)0.12202 (16)0.0577 (6)
C120.12998 (13)0.66627 (15)0.13033 (16)0.0575 (6)
H120.09530.71340.15240.069*
C130.22215 (12)0.67417 (14)0.11357 (15)0.0549 (5)
C140.27696 (13)0.60665 (16)0.07901 (19)0.0730 (7)
H140.25590.55320.06880.088*
C150.36330 (15)0.62007 (19)0.0599 (2)0.0873 (8)
H150.39930.57410.03650.105*
C160.34569 (15)0.75802 (17)0.10755 (17)0.0701 (7)
H160.36840.81050.11850.084*
C170.25845 (14)0.75065 (15)0.12848 (15)0.0617 (6)
H170.22400.79760.15280.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0346 (7)0.0500 (8)0.0732 (10)0.0113 (6)0.0166 (6)0.0027 (7)
O20.0579 (10)0.0641 (11)0.1351 (16)0.0255 (8)0.0306 (10)0.0071 (10)
O30.0428 (8)0.0768 (10)0.0849 (11)0.0025 (7)0.0187 (7)0.0064 (8)
O40.389 (7)0.066 (2)0.178 (4)0.0000.143 (4)0.000
N10.0389 (9)0.0527 (10)0.0519 (10)0.0096 (8)0.0112 (7)0.0016 (8)
N20.0345 (9)0.0646 (12)0.0699 (12)0.0164 (8)0.0143 (8)0.0004 (9)
N30.0357 (9)0.0750 (13)0.0656 (12)0.0128 (9)0.0143 (8)0.0074 (10)
N40.0464 (12)0.1033 (17)0.0859 (15)0.0024 (12)0.0187 (10)0.0101 (13)
C10.0543 (13)0.0545 (13)0.0609 (14)0.0101 (10)0.0135 (10)0.0021 (10)
C20.0570 (14)0.0624 (14)0.0675 (15)0.0236 (11)0.0179 (11)0.0018 (11)
C30.0423 (12)0.0770 (16)0.0602 (14)0.0246 (12)0.0151 (10)0.0027 (12)
C40.0366 (11)0.0681 (14)0.0476 (12)0.0130 (10)0.0130 (9)0.0041 (10)
C50.0331 (11)0.0861 (17)0.0747 (16)0.0066 (11)0.0166 (10)0.0016 (13)
C60.0426 (12)0.0750 (16)0.0851 (17)0.0079 (11)0.0192 (11)0.0010 (13)
C70.0464 (12)0.0551 (13)0.0758 (16)0.0032 (10)0.0164 (11)0.0019 (11)
C80.0311 (10)0.0576 (12)0.0498 (12)0.0081 (9)0.0103 (9)0.0003 (9)
C90.0338 (10)0.0547 (12)0.0400 (11)0.0094 (9)0.0099 (8)0.0001 (9)
C100.0401 (11)0.0504 (12)0.0775 (15)0.0104 (9)0.0150 (10)0.0061 (11)
C110.0464 (12)0.0593 (14)0.0683 (15)0.0143 (11)0.0171 (11)0.0073 (11)
C120.0435 (12)0.0731 (16)0.0559 (14)0.0153 (11)0.0137 (10)0.0025 (11)
C130.0406 (11)0.0760 (15)0.0486 (12)0.0087 (11)0.0130 (9)0.0102 (11)
C140.0436 (13)0.0765 (16)0.0971 (19)0.0079 (12)0.0161 (12)0.0066 (14)
C150.0456 (15)0.092 (2)0.120 (2)0.0133 (13)0.0158 (14)0.0047 (17)
C160.0623 (15)0.0892 (18)0.0631 (15)0.0073 (14)0.0243 (12)0.0065 (13)
C170.0587 (14)0.0788 (16)0.0503 (13)0.0065 (12)0.0192 (11)0.0026 (11)
Geometric parameters (Å, º) top
O1—C81.373 (2)C4—C91.417 (2)
O1—C101.418 (2)C5—C61.351 (3)
O2—C111.215 (2)C5—H50.9300
O3—H180.8499C6—C71.414 (3)
O3—H190.8500C6—H6A0.9300
O4—H200.8501C7—C81.365 (3)
N1—C11.320 (2)C7—H70.9300
N1—C91.360 (2)C8—C91.426 (3)
N2—C111.353 (3)C10—C111.500 (3)
N2—N31.379 (2)C10—H10A0.9700
N2—H20.8598C10—H10B0.9700
N3—C121.268 (3)C12—C131.465 (3)
N4—C161.323 (3)C12—H120.9300
N4—C151.331 (3)C13—C171.376 (3)
C1—C21.395 (3)C13—C141.383 (3)
C1—H10.9300C14—C151.378 (3)
C2—C31.354 (3)C14—H140.9300
C2—H2A0.9300C15—H150.9300
C3—C41.410 (3)C16—C171.380 (3)
C3—H30.9300C16—H160.9300
C4—C51.404 (3)C17—H170.9300
C8—O1—C10115.81 (15)O1—C8—C9115.05 (16)
H18—O3—H19106.4N1—C9—C4122.34 (17)
C1—N1—C9117.52 (16)N1—C9—C8119.39 (15)
C11—N2—N3118.52 (17)C4—C9—C8118.27 (17)
C11—N2—H2120.8O1—C10—C11112.77 (17)
N3—N2—H2120.6O1—C10—H10A109.0
C12—N3—N2116.05 (17)C11—C10—H10A109.0
C16—N4—C15116.2 (2)O1—C10—H10B109.0
N1—C1—C2124.5 (2)C11—C10—H10B109.0
N1—C1—H1117.7H10A—C10—H10B107.8
C2—C1—H1117.7O2—C11—N2124.59 (19)
C3—C2—C1118.2 (2)O2—C11—C10118.0 (2)
C3—C2—H2A120.9N2—C11—C10117.40 (18)
C1—C2—H2A120.9N3—C12—C13120.9 (2)
C2—C3—C4120.42 (18)N3—C12—H12119.6
C2—C3—H3119.8C13—C12—H12119.6
C4—C3—H3119.8C17—C13—C14116.83 (19)
C5—C4—C3123.23 (18)C17—C13—C12121.0 (2)
C5—C4—C9119.81 (18)C14—C13—C12122.1 (2)
C3—C4—C9116.96 (19)C15—C14—C13118.8 (2)
C6—C5—C4120.57 (19)C15—C14—H14120.6
C6—C5—H5119.7C13—C14—H14120.6
C4—C5—H5119.7N4—C15—C14124.5 (2)
C5—C6—C7120.8 (2)N4—C15—H15117.7
C5—C6—H6A119.6C14—C15—H15117.7
C7—C6—H6A119.6N4—C16—C17123.4 (2)
C8—C7—C6120.1 (2)N4—C16—H16118.3
C8—C7—H7120.0C17—C16—H16118.3
C6—C7—H7120.0C13—C17—C16120.3 (2)
C7—C8—O1124.51 (17)C13—C17—H17119.9
C7—C8—C9120.43 (17)C16—C17—H17119.9
C11—N2—N3—C12173.72 (19)C7—C8—C9—N1179.76 (18)
C9—N1—C1—C20.0 (3)O1—C8—C9—N10.3 (3)
N1—C1—C2—C30.9 (3)C7—C8—C9—C40.0 (3)
C1—C2—C3—C40.6 (3)O1—C8—C9—C4179.47 (16)
C2—C3—C4—C5179.8 (2)C8—O1—C10—C11177.36 (17)
C2—C3—C4—C90.4 (3)N3—N2—C11—O23.4 (3)
C3—C4—C5—C6177.7 (2)N3—N2—C11—C10177.31 (17)
C9—C4—C5—C61.6 (3)O1—C10—C11—O2174.94 (19)
C4—C5—C6—C71.3 (4)O1—C10—C11—N25.7 (3)
C5—C6—C7—C80.3 (4)N2—N3—C12—C13176.33 (17)
C6—C7—C8—O1179.76 (19)N3—C12—C13—C17179.1 (2)
C6—C7—C8—C90.3 (3)N3—C12—C13—C141.2 (3)
C10—O1—C8—C75.7 (3)C17—C13—C14—C151.3 (3)
C10—O1—C8—C9174.83 (16)C12—C13—C14—C15176.6 (2)
C1—N1—C9—C41.1 (3)C16—N4—C15—C141.0 (4)
C1—N1—C9—C8178.67 (17)C13—C14—C15—N40.2 (4)
C5—C4—C9—N1179.27 (18)C15—N4—C16—C171.2 (4)
C3—C4—C9—N11.3 (3)C14—C13—C17—C161.1 (3)
C5—C4—C9—C81.0 (3)C12—C13—C17—C16176.83 (19)
C3—C4—C9—C8178.43 (18)N4—C16—C17—C130.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H19···N4i0.852.142.914 (2)151
N2—H2···O30.862.102.890 (2)153
O3—H18···N10.851.912.7582 (19)175
O4—H20···O3ii0.852.482.825 (2)105
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H14N4O2·1.5H2O
Mr333.35
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)16.3206 (19), 15.6706 (19), 13.5692 (16)
β (°) 105.623 (3)
V3)3342.2 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.26 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.976, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
8726, 2962, 1974
Rint0.034
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.113, 1.00
No. of reflections2962
No. of parameters222
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.24

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H19···N4i0.852.142.914 (2)150.8
N2—H2···O30.862.102.890 (2)153.4
O3—H18···N10.851.912.7582 (19)174.7
O4—H20···O3ii0.852.482.825 (2)105.3
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

This project was supported by the Postgraduate Foundation of Taishan University (No. Y05–2–02).

References

First citationChen, C. H. & Shi, J. M. (1998). Coord. Chem. Rev. 171, 161–174.  Web of Science CrossRef CAS Google Scholar
First citationMoawad, M. M. & Hanna, W. G. (2002). J. Coord. Chem. 55, 439–457.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X–ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds