metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Di­aqua­bis­(2,2′,2′′-tri­pyridylamine)zinc(II) bis­­(perchlorate)

aJiangsu Key Lab of Organic Electronics & Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210046, People's Republic of China
*Correspondence e-mail: iamswang@njupt.edu.cn

(Received 15 September 2009; accepted 17 October 2009; online 23 October 2009)

In the title compound, [Zn(2,2′,2′′-tpa)2(H2O)2](ClO4)2 (2,2′,2′′-tpa is 2,2′,2′′-tripyridylamine, C15H12N4), the Zn center lies on a twofold axis and is coordinated octa­hedrally by two water mol­ecules and two bidentate 2,2′,2′′-tpa ligands. The perchlorate anions are linked to the coordinated water mol­ecules in the complex cations via O—H⋯O hydrogen bonds.

Related literature

For general background, see: Liu et al. (1997[Liu, W., Hassan, A. & Wang, S. (1997). Organometallics, 16, 4257-4259.]). For related structures, see: Yang et al. (1999[Yang, W., Schmider, H., Wu, Q., Zhang, Y. & Wang, S. (1999). Inorg. Chem. 39, 2397-2404.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C15H12N4)2(H2O)2](ClO4)2

  • Mr = 796.89

  • Monoclinic, C 2/c

  • a = 18.687 (3) Å

  • b = 19.305 (4) Å

  • c = 10.8910 (19) Å

  • β = 121.689 (3)°

  • V = 3343.2 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 200 K

  • 0.35 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.775, Tmax = 0.825

  • 7752 measured reflections

  • 2940 independent reflections

  • 1861 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.143

  • S = 0.92

  • 2940 reflections

  • 239 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W⋯O5i 0.83 (2) 2.23 (4) 2.939 (6) 143 (6)
O1W—H1W⋯O4ii 0.85 (4) 2.07 (5) 2.868 (6) 158 (6)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Luminescent organic and coordination compounds have been an active research area for decades because of their various potential applications in materials sciences. It has been demonstrated that 2,2'-dipyridylamine can produce a bright blue luminescence when deprotonated and bound to either an aluminium ion or a boron center (Liu et al., 1997). However, many of the previously reported aluminium or boron compounds based on 2,2'-dipyridylamine are not stable enough for electroluminescent devices. By using the neutral ligand, 2,2',2''-tripyridylamine, we report here the synthesis and crystal structure of the title compound, diaquabis(2,2',2''-tripyridylamine)zinc(II) bis(perchlorate).

The structure consists of monomeric [Zn(2,2',2''-tpa)2(H2O)2]2+ cations and associated ClO4- anions. The Zn atom lies on a two fold axis. As shown in Fig. 1,the zinc center is six-coordinate with an octahedral geometry. In principle, 2,2',2''-tpa can function not only as a bidentate chelating ligand but also as a tridentate chelating ligand where all three pyridyl groups bind to the same central atom (Yang et al., 1999). In the title compound, each 2,2',2''-tpa ligand functions as a bidentate ligand, chelating to the zinc center. Two water molecules are coodinated to the zinc center as terminal ligands in a cis geometry. Crystals of the trans geometric isomer of I were not obtained.

The displacement parameters of the perchlorate anion are large. A disorder model has been tried but no improvement in refinement was observed.

Coordinated water molecules in the complex cations are connected to ClO4- anions through O—H···O hydrogen bonds (Fig. 2).

Related literature top

For general background, see: Liu et al. (1997). For related structures, see: Yang et al. (1999). Scheme must show. 2ClO4

Experimental top

The ligand, 2,2',2''-tpa was synthesized according to the procedure described in the literature (Yang et al. (1999)).

A solution of 2,2',2''-tpa (62.11 mg, 0.2 mmol) in ethanol (5 ml) was added dropwise to a solution of Zn(ClO4)2.6H2O (46.58 mg, 0.1 mmol) in ethanol (2 ml). The mixture was stirred at room temperature for 5 min and then filtered. Colorless crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of the filtrate.

Refinement top

H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement O–H distance restraints in the range 0.83 (2)–0.85 (4) Å

with Uiso(H)= 1.5Ueq(O). Aromatic H atoms were placed in calculated positions with C—H = 0.93 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Structure description top

Luminescent organic and coordination compounds have been an active research area for decades because of their various potential applications in materials sciences. It has been demonstrated that 2,2'-dipyridylamine can produce a bright blue luminescence when deprotonated and bound to either an aluminium ion or a boron center (Liu et al., 1997). However, many of the previously reported aluminium or boron compounds based on 2,2'-dipyridylamine are not stable enough for electroluminescent devices. By using the neutral ligand, 2,2',2''-tripyridylamine, we report here the synthesis and crystal structure of the title compound, diaquabis(2,2',2''-tripyridylamine)zinc(II) bis(perchlorate).

The structure consists of monomeric [Zn(2,2',2''-tpa)2(H2O)2]2+ cations and associated ClO4- anions. The Zn atom lies on a two fold axis. As shown in Fig. 1,the zinc center is six-coordinate with an octahedral geometry. In principle, 2,2',2''-tpa can function not only as a bidentate chelating ligand but also as a tridentate chelating ligand where all three pyridyl groups bind to the same central atom (Yang et al., 1999). In the title compound, each 2,2',2''-tpa ligand functions as a bidentate ligand, chelating to the zinc center. Two water molecules are coodinated to the zinc center as terminal ligands in a cis geometry. Crystals of the trans geometric isomer of I were not obtained.

The displacement parameters of the perchlorate anion are large. A disorder model has been tried but no improvement in refinement was observed.

Coordinated water molecules in the complex cations are connected to ClO4- anions through O—H···O hydrogen bonds (Fig. 2).

For general background, see: Liu et al. (1997). For related structures, see: Yang et al. (1999). Scheme must show. 2ClO4

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), shown with 30% probability displacement ellipsoids.The unlabeled atoms are derived from the reference atoms by means of the (-x + 1/2, -y + 1/2, -z) symmetry transformation.
[Figure 2] Fig. 2. Packing diagram viewed down the c axis, The O—H···O hydrogen bonds are shown as dotted lines.
cis-Diaquabis(2,2',2''-tripyridylamine)zinc(II) bis(perchlorate) top
Crystal data top
[Zn(C15H12N4)2(H2O)2](ClO4)2F(000) = 1632
Mr = 796.89Dx = 1.583 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7889 reflections
a = 18.687 (3) Åθ = 2.2–27.9°
b = 19.305 (4) ŵ = 0.96 mm1
c = 10.8910 (19) ÅT = 200 K
β = 121.689 (3)°Block, colorless
V = 3343.2 (11) Å30.35 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2940 independent reflections
Radiation source: fine-focus sealed tube1861 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 8.366 pixels mm-1θmax = 25.0°, θmin = 2.1°
phi and ω scansh = 2221
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1822
Tmin = 0.775, Tmax = 0.825l = 1212
7752 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.0705P)2]
where P = (Fo2 + 2Fc2)/3
2940 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.86 e Å3
2 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Zn(C15H12N4)2(H2O)2](ClO4)2V = 3343.2 (11) Å3
Mr = 796.89Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.687 (3) ŵ = 0.96 mm1
b = 19.305 (4) ÅT = 200 K
c = 10.8910 (19) Å0.35 × 0.22 × 0.20 mm
β = 121.689 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2940 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1861 reflections with I > 2σ(I)
Tmin = 0.775, Tmax = 0.825Rint = 0.068
7752 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0572 restraints
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 0.92Δρmax = 0.86 e Å3
2940 reflectionsΔρmin = 0.41 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5518 (2)0.28833 (19)0.9789 (4)0.0386 (9)
C10.5611 (3)0.2247 (2)1.0527 (5)0.0419 (12)
C20.5981 (3)0.2230 (3)1.1989 (5)0.0560 (15)
H20.61820.26341.25300.067*
C30.6054 (4)0.1604 (3)1.2652 (6)0.0726 (19)
H30.63050.15791.36480.087*
C40.5750 (4)0.1018 (3)1.1816 (7)0.0750 (19)
H40.57830.05911.22370.090*
C50.5400 (4)0.1072 (3)1.0366 (6)0.0612 (16)
H50.52090.06710.98110.073*
N20.5317 (2)0.16820 (19)0.9694 (4)0.0428 (10)
C60.6036 (3)0.2977 (2)0.9218 (5)0.0382 (11)
C70.6595 (3)0.3515 (3)0.9666 (5)0.0533 (14)
H70.66290.38361.03310.064*
C80.7103 (3)0.3570 (3)0.9116 (6)0.0670 (17)
H80.74740.39400.93780.080*
C90.7060 (3)0.3072 (3)0.8166 (6)0.0598 (16)
H90.74100.30960.77990.072*
C100.6500 (3)0.2550 (3)0.7783 (5)0.0455 (12)
H100.64760.22110.71550.055*
N30.5972 (2)0.25002 (18)0.8277 (4)0.0350 (9)
Zn10.50000.17445 (4)0.75000.0376 (3)
O1W0.4117 (3)0.0899 (2)0.7028 (5)0.0598 (10)
H1W0.387 (4)0.066 (3)0.626 (5)0.10 (3)*
H2W0.384 (4)0.088 (3)0.742 (6)0.10 (3)*
C110.5002 (3)0.3407 (2)0.9806 (5)0.0416 (12)
N40.4849 (3)0.3960 (2)0.8930 (4)0.0573 (12)
C120.4310 (3)0.4453 (3)0.8870 (6)0.0569 (15)
H120.41970.48410.82880.068*
C130.3930 (4)0.4387 (3)0.9659 (7)0.0664 (17)
H130.35490.47170.95950.080*
C140.4128 (4)0.3824 (3)1.0536 (6)0.0696 (17)
H140.38900.37761.10970.084*
C150.4662 (3)0.3336 (2)1.0602 (5)0.0494 (13)
H150.47900.29531.12000.059*
Cl10.79396 (8)0.44302 (7)0.37729 (14)0.0488 (4)
O20.8198 (5)0.3778 (3)0.3894 (6)0.200 (4)
O30.7209 (4)0.4465 (5)0.3674 (8)0.222 (4)
O40.8513 (5)0.4778 (3)0.4996 (5)0.159 (3)
O50.7854 (3)0.4721 (3)0.2524 (4)0.1048 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.048 (2)0.032 (2)0.036 (2)0.0059 (18)0.022 (2)0.0005 (17)
C10.051 (3)0.040 (3)0.041 (3)0.015 (2)0.028 (3)0.008 (2)
C20.071 (4)0.056 (4)0.044 (3)0.023 (3)0.032 (3)0.008 (3)
C30.103 (5)0.078 (5)0.049 (4)0.027 (4)0.049 (4)0.018 (3)
C40.119 (6)0.057 (4)0.074 (4)0.027 (4)0.067 (4)0.029 (3)
C50.094 (5)0.040 (3)0.071 (4)0.012 (3)0.058 (4)0.014 (3)
N20.060 (3)0.034 (2)0.048 (3)0.007 (2)0.037 (2)0.0080 (19)
C60.034 (3)0.035 (3)0.033 (3)0.003 (2)0.009 (2)0.007 (2)
C70.050 (3)0.047 (3)0.043 (3)0.003 (3)0.011 (3)0.002 (3)
C80.041 (3)0.065 (4)0.067 (4)0.016 (3)0.009 (3)0.015 (3)
C90.034 (3)0.076 (4)0.064 (4)0.002 (3)0.022 (3)0.024 (3)
C100.045 (3)0.048 (3)0.046 (3)0.007 (3)0.027 (3)0.011 (2)
N30.035 (2)0.033 (2)0.037 (2)0.0035 (17)0.0185 (19)0.0030 (17)
Zn10.0483 (5)0.0296 (4)0.0440 (5)0.0000.0307 (4)0.000
O1W0.077 (3)0.049 (3)0.071 (3)0.019 (2)0.051 (3)0.009 (2)
C110.042 (3)0.034 (3)0.033 (3)0.009 (2)0.009 (2)0.002 (2)
N40.054 (3)0.056 (3)0.048 (3)0.008 (2)0.018 (2)0.004 (2)
C120.055 (4)0.049 (3)0.055 (4)0.015 (3)0.020 (3)0.005 (3)
C130.071 (4)0.056 (4)0.078 (4)0.023 (3)0.044 (4)0.000 (3)
C140.087 (5)0.069 (4)0.069 (4)0.017 (4)0.053 (4)0.006 (3)
C150.074 (4)0.036 (3)0.044 (3)0.021 (3)0.035 (3)0.010 (2)
Cl10.0522 (8)0.0533 (9)0.0487 (8)0.0061 (6)0.0319 (7)0.0047 (6)
O20.349 (10)0.089 (4)0.096 (4)0.114 (6)0.070 (5)0.005 (3)
O30.115 (5)0.399 (12)0.223 (8)0.073 (6)0.138 (6)0.137 (8)
O40.281 (8)0.097 (4)0.063 (3)0.065 (5)0.066 (4)0.025 (3)
O50.093 (3)0.166 (5)0.057 (3)0.016 (3)0.040 (3)0.027 (3)
Geometric parameters (Å, º) top
N1—C111.404 (5)C10—H100.9300
N1—C61.411 (6)N3—Zn12.128 (4)
N1—C11.428 (5)Zn1—N3i2.128 (4)
C1—N21.338 (6)Zn1—N2i2.142 (4)
C1—C21.364 (6)Zn1—O1W2.182 (4)
C2—C31.376 (7)Zn1—O1Wi2.182 (4)
C2—H20.9300O1W—H1W0.85 (4)
C3—C41.374 (8)O1W—H2W0.83 (2)
C3—H30.9300C11—C151.325 (6)
C4—C51.359 (7)C11—N41.358 (6)
C4—H40.9300N4—C121.364 (6)
C5—N21.352 (6)C12—C131.379 (7)
C5—H50.9300C12—H120.9300
N2—Zn12.142 (4)C13—C141.364 (8)
C6—N31.335 (5)C13—H130.9300
C6—C71.368 (7)C14—C151.346 (7)
C7—C81.366 (7)C14—H140.9300
C7—H70.9300C15—H150.9300
C8—C91.384 (8)Cl1—O31.314 (5)
C8—H80.9300Cl1—O21.330 (5)
C9—C101.352 (7)Cl1—O41.369 (5)
C9—H90.9300Cl1—O51.401 (4)
C10—N31.352 (5)
C11—N1—C6123.2 (4)N3—Zn1—N2i99.25 (14)
C11—N1—C1119.6 (4)N3i—Zn1—N2i85.21 (14)
C6—N1—C1116.7 (4)N3—Zn1—N285.21 (14)
N2—C1—C2123.2 (5)N3i—Zn1—N299.25 (14)
N2—C1—N1115.8 (4)N2i—Zn1—N2173.5 (2)
C2—C1—N1121.0 (5)N3—Zn1—O1W171.28 (15)
C1—C2—C3118.9 (5)N3i—Zn1—O1W92.16 (15)
C1—C2—H2120.6N2i—Zn1—O1W87.87 (16)
C3—C2—H2120.6N2—Zn1—O1W87.30 (16)
C4—C3—C2118.9 (5)N3—Zn1—O1Wi92.16 (15)
C4—C3—H3120.6N3i—Zn1—O1Wi171.28 (15)
C2—C3—H3120.6N2i—Zn1—O1Wi87.30 (16)
C5—C4—C3119.0 (5)N2—Zn1—O1Wi87.87 (16)
C5—C4—H4120.5O1W—Zn1—O1Wi83.1 (2)
C3—C4—H4120.5Zn1—O1W—H1W126 (4)
N2—C5—C4123.0 (5)Zn1—O1W—H2W120 (5)
N2—C5—H5118.5H1W—O1W—H2W109 (6)
C4—C5—H5118.5C15—C11—N4123.1 (4)
C1—N2—C5116.9 (4)C15—C11—N1120.2 (4)
C1—N2—Zn1119.0 (3)N4—C11—N1116.7 (4)
C5—N2—Zn1122.6 (3)C11—N4—C12117.4 (4)
N3—C6—C7122.7 (5)N4—C12—C13121.1 (5)
N3—C6—N1116.3 (4)N4—C12—H12119.5
C7—C6—N1120.9 (5)C13—C12—H12119.5
C8—C7—C6118.6 (5)C14—C13—C12118.0 (5)
C8—C7—H7120.7C14—C13—H13121.0
C6—C7—H7120.7C12—C13—H13121.0
C7—C8—C9119.5 (5)C15—C14—C13121.2 (5)
C7—C8—H8120.2C15—C14—H14119.4
C9—C8—H8120.2C13—C14—H14119.4
C10—C9—C8118.7 (5)C11—C15—C14119.3 (5)
C10—C9—H9120.6C11—C15—H15120.4
C8—C9—H9120.6C14—C15—H15120.4
N3—C10—C9122.5 (5)O3—Cl1—O2111.4 (6)
N3—C10—H10118.7O3—Cl1—O4107.6 (5)
C9—C10—H10118.7O2—Cl1—O4108.1 (4)
C6—N3—C10117.8 (4)O3—Cl1—O5108.4 (4)
C6—N3—Zn1119.5 (3)O2—Cl1—O5109.0 (4)
C10—N3—Zn1122.6 (3)O4—Cl1—O5112.4 (3)
N3—Zn1—N3i93.45 (19)
C11—N1—C1—N2115.9 (5)C9—C10—N3—Zn1173.1 (4)
C6—N1—C1—N271.3 (5)C6—N3—Zn1—N3i56.2 (3)
C11—N1—C1—C264.4 (6)C10—N3—Zn1—N3i119.1 (4)
C6—N1—C1—C2108.4 (5)C6—N3—Zn1—N2i141.9 (3)
N2—C1—C2—C30.5 (8)C10—N3—Zn1—N2i33.4 (4)
N1—C1—C2—C3179.8 (5)C6—N3—Zn1—N242.8 (3)
C1—C2—C3—C40.1 (9)C10—N3—Zn1—N2141.9 (4)
C2—C3—C4—C51.1 (9)C6—N3—Zn1—O1Wi130.5 (3)
C3—C4—C5—N21.6 (9)C10—N3—Zn1—O1Wi54.2 (4)
C2—C1—N2—C50.1 (7)C1—N2—Zn1—N330.8 (3)
N1—C1—N2—C5179.8 (4)C5—N2—Zn1—N3135.2 (4)
C2—C1—N2—Zn1166.8 (4)C1—N2—Zn1—N3i61.9 (3)
N1—C1—N2—Zn112.9 (5)C5—N2—Zn1—N3i132.0 (4)
C4—C5—N2—C11.0 (8)C1—N2—Zn1—O1W153.6 (4)
C4—C5—N2—Zn1167.3 (4)C5—N2—Zn1—O1W40.3 (4)
C11—N1—C6—N3129.6 (4)C1—N2—Zn1—O1Wi123.2 (4)
C1—N1—C6—N357.8 (5)C5—N2—Zn1—O1Wi42.9 (4)
C11—N1—C6—C753.0 (6)C6—N1—C11—C15166.6 (5)
C1—N1—C6—C7119.5 (5)C1—N1—C11—C155.8 (7)
N3—C6—C7—C80.7 (7)C6—N1—C11—N416.3 (6)
N1—C6—C7—C8177.9 (4)C1—N1—C11—N4171.4 (4)
C6—C7—C8—C92.2 (8)C15—C11—N4—C120.8 (7)
C7—C8—C9—C101.5 (8)N1—C11—N4—C12176.2 (4)
C8—C9—C10—N30.9 (8)C11—N4—C12—C130.7 (8)
C7—C6—N3—C101.6 (7)N4—C12—C13—C141.9 (9)
N1—C6—N3—C10175.7 (4)C12—C13—C14—C151.7 (9)
C7—C6—N3—Zn1174.0 (3)N4—C11—C15—C141.0 (8)
N1—C6—N3—Zn18.7 (5)N1—C11—C15—C14175.9 (5)
C9—C10—N3—C62.4 (7)C13—C14—C15—C110.3 (9)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2ii0.932.433.336 (8)166
O1W—H2W···O5iii0.83 (2)2.23 (4)2.939 (6)143 (6)
O1W—H1W···O4iv0.85 (4)2.07 (5)2.868 (6)158 (6)
Symmetry codes: (ii) x+3/2, y+1/2, z+2; (iii) x1/2, y+1/2, z+1/2; (iv) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Zn(C15H12N4)2(H2O)2](ClO4)2
Mr796.89
Crystal system, space groupMonoclinic, C2/c
Temperature (K)200
a, b, c (Å)18.687 (3), 19.305 (4), 10.8910 (19)
β (°) 121.689 (3)
V3)3343.2 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.35 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.775, 0.825
No. of measured, independent and
observed [I > 2σ(I)] reflections
7752, 2940, 1861
Rint0.068
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.143, 0.92
No. of reflections2940
No. of parameters239
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.86, 0.41

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O5i0.83 (2)2.23 (4)2.939 (6)143 (6)
O1W—H1W···O4ii0.85 (4)2.07 (5)2.868 (6)158 (6)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x1/2, y1/2, z.
 

Acknowledgements

This work was supported by grants NY208044, 09KJB150008 and in part by National Basic Research Program of China (2009CB930601) and grant TJ207035.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, W., Hassan, A. & Wang, S. (1997). Organometallics, 16, 4257–4259.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, W., Schmider, H., Wu, Q., Zhang, Y. & Wang, S. (1999). Inorg. Chem. 39, 2397–2404.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds