metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,2′-bi­pyridyl-κ2N,N′)(sulfato-κ2O,O′)zinc(II) ethane-1,2-diol solvate

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China
*Correspondence e-mail: zklong@tom.com

(Received 19 December 2009; accepted 25 December 2009; online 9 January 2010)

The title compound, [Zn(SO4)(C10H8N2)2]·C2H6O2, is a six-coordinate zinc(II) complex with a distorted octa­hedral coordination geometry. The ZnII atom is bonded by two O atoms of the bidentate chelating sulfate ligand and four N atoms of the two chelating 2,2′-bipyridine ligands. The Zn—N bond distances range from 2.1287 (17) to 2.1452 (17) Å and the Zn—O bond distance is 2.1811 (15) Å. The two chelating NCCN groups subtend a dihedral angle of 81.1 (1)°. In the crystal structure, the [ZnSO4(C10H8N2)2] and C2H6O2 units are connected by inter­molecular O—H⋯O hydrogen bonding, which leads to additional stabilization of the structure.

Related literature

For related compounds, see: Liu & Arora (1993[Liu, M. & Arora, S. K. (1993). Acta Cryst. C49, 372-374.]); Harvey et al. (2001[Liu, M. & Arora, S. K. (1993). Acta Cryst. C49, 372-374.], 2002[Liu, M. & Arora, S. K. (1993). Acta Cryst. C49, 372-374.]); Jian et al. (2004[Jian, F., Li, C., Sun, P. & Xiao, H. (2004). Acta Cryst. E60, m1811-m1812.]); Rodrigues (2004[Rodrigues, B. L. (2004). Acta Cryst. E60, m1169-m1171.]); Juric et al. (2006[Šestan Jurić, M., Planinić, P. & Giester, G. (2006). Acta Cryst. E62, m2826-m2829.]); Zhu et al. (2006[Zhu, Y.-M., Zhong, K.-L. & Lu, W.-J. (2006). Acta Cryst. E62, m2725-m2726.]); Yu et al. (2007[Yu, Y., Zhen, W. & Albrecht-Schmitt, T. E. (2007). Inorg. Chem. 46, 10214-10220.]); Zhong et al. (2007[Zhong, H., Yang, X.-M., Luo, Q.-Y. & Xu, Y.-P. (2007). Acta Cryst. E63, m2208.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(SO4)(C10H8N2)2]·C2H6O2

  • Mr = 535.90

  • Monoclinic, C 2/c

  • a = 17.017 (3) Å

  • b = 11.890 (2) Å

  • c = 12.831 (3) Å

  • β = 122.14 (3)°

  • V = 2198.3 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 223 K

  • 0.55 × 0.45 × 0.20 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. A. (1998). REQAB. Rigaku Corportation, Tokyo, Japan.]) Tmin = 0.747, Tmax = 1.000

  • 6138 measured reflections

  • 2489 independent reflections

  • 2155 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.088

  • S = 1.08

  • 2489 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—N2 2.1287 (17)
Zn1—N1 2.1452 (17)
Zn1—O1 2.1811 (15)
S1—O2 1.4683 (15)
S1—O1 1.4915 (15)
N2—Zn1—N1 76.61 (7)
O1i—Zn1—O1 65.64 (8)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.82 1.97 2.746 (2) 158

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2,2'-bipyridyl(2,2'-bipy) is a well known neutral didentate ligand. Many metal zinc complexes with 2,2'-bipy have been previously synthesized and reported, such as bis(2,2'-bipyridyl) zinc(II) with diperchlorate (Liu & Arora, 1993), uranyl phosphate (Yu et al., 2007), thiocyanate (Zhong et al., 2007), oxalate (Juric et al., 2006), azide (Jian et al., 2004), acetate (Rodrigues, 2004). Moreover, the crystal structures of zinc complexes with monodente (Harvey et al., 2003), bidentate chelating (Zhu et al., 2006) and bidentate bridging sulfate (Harvey et al., 2000) have been structurally characterized. Recently, we attempt to utilize polydentate and mixed ligands for the design of coordination networks. The title compound [ZnSO4(C10H8N2)2].C2H6O2, (I), which is very similar to the zinc complex with 1,10-phenanthroline instead of 2,2'-bipyridine (Zhu et al., 2006), was obtained unitentionally during an attempt to synthesize mixed-ligand complex of Zn(II) with 2,2'-bipy and melamine via a solvothermal reaction. The crystal structure of the title complex has not hitherto been reported.

Single crystal X-ray diffraction experiment reveal that a twofold rotation axis (symmetry code: -x, y, - z + 1/2) passes through the Zn, S atoms, and also through the mid-point of C—C bond of the solvent, 1,2-ethanediol molecule. The Zn (II) ions are coordinated by four N atoms from two chelating 2,2'-bipy ligands and two O atoms from a bidentate-chelating salfate ligand, in a distorted octahedral geometry (Fig. 1. and Table 1.). The Zn—N bond distances range from 2.1287 (17)Å to 2.1452 (17)Å and Zn—O bond distance is 2.1811 (15) Å. The N—Zn—N bite angle, O—Zn—O bite angle and the dihedral angle between the two chelating NCCN groups is 76.61 (7) Å, 65.64 (8) Å and 81.1 (1) Å, respectively. The metal complex and solvent components of the title compound are held together by intermolecular O3—H3···O2 hydrogen bonding, which contribute to the stabilization of the structure (Fig.1 and Table 2.).

Related literature top

For related compounds, see: Liu & Arora (1993); Harvey et al. (2000, 2003); Jian et al. (2004); Rodrigues (2004); Juric et al. (2006); Zhu et al. (2006); Yu et al. (2007); Zhong et al. (2007).

Experimental top

The title compound was obtained unexpectedly during an attempt to synthesize mixed-ligand complex of Zn(II) with phenol and melamine via a solvo-thermal reaction. Colorless prism-shaped single crystals of the title compound for X-ray diffraction determination were prepared by 0.2 mmol mixing 2,2'-bipyridine, 0.1 mmol melamine, 0.1 mmol ZnSO4.7H2O, 2.0 ml 1,3-propanediol and 1.0 ml water and then placing them in a thick Pyrex tube, which was sealed and heated to 423 K for 3 days.

Refinement top

All H atoms of 2,2'-bipyridyl were positioned geometrically and allowed to ride on their attached atoms, with C—H =0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of 1,2-ethanediol were locate in a difference map and then allowed to ride on their parent atoms, with C—H =0.97 Å and O—H =0.82 Å; Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Structure description top

2,2'-bipyridyl(2,2'-bipy) is a well known neutral didentate ligand. Many metal zinc complexes with 2,2'-bipy have been previously synthesized and reported, such as bis(2,2'-bipyridyl) zinc(II) with diperchlorate (Liu & Arora, 1993), uranyl phosphate (Yu et al., 2007), thiocyanate (Zhong et al., 2007), oxalate (Juric et al., 2006), azide (Jian et al., 2004), acetate (Rodrigues, 2004). Moreover, the crystal structures of zinc complexes with monodente (Harvey et al., 2003), bidentate chelating (Zhu et al., 2006) and bidentate bridging sulfate (Harvey et al., 2000) have been structurally characterized. Recently, we attempt to utilize polydentate and mixed ligands for the design of coordination networks. The title compound [ZnSO4(C10H8N2)2].C2H6O2, (I), which is very similar to the zinc complex with 1,10-phenanthroline instead of 2,2'-bipyridine (Zhu et al., 2006), was obtained unitentionally during an attempt to synthesize mixed-ligand complex of Zn(II) with 2,2'-bipy and melamine via a solvothermal reaction. The crystal structure of the title complex has not hitherto been reported.

Single crystal X-ray diffraction experiment reveal that a twofold rotation axis (symmetry code: -x, y, - z + 1/2) passes through the Zn, S atoms, and also through the mid-point of C—C bond of the solvent, 1,2-ethanediol molecule. The Zn (II) ions are coordinated by four N atoms from two chelating 2,2'-bipy ligands and two O atoms from a bidentate-chelating salfate ligand, in a distorted octahedral geometry (Fig. 1. and Table 1.). The Zn—N bond distances range from 2.1287 (17)Å to 2.1452 (17)Å and Zn—O bond distance is 2.1811 (15) Å. The N—Zn—N bite angle, O—Zn—O bite angle and the dihedral angle between the two chelating NCCN groups is 76.61 (7) Å, 65.64 (8) Å and 81.1 (1) Å, respectively. The metal complex and solvent components of the title compound are held together by intermolecular O3—H3···O2 hydrogen bonding, which contribute to the stabilization of the structure (Fig.1 and Table 2.).

For related compounds, see: Liu & Arora (1993); Harvey et al. (2000, 2003); Jian et al. (2004); Rodrigues (2004); Juric et al. (2006); Zhu et al. (2006); Yu et al. (2007); Zhong et al. (2007).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. The dashed lines represent O—H···O interactions. Unlabeled atoms are related to the labeled atoms by the symmetry operator(-x, y, -z + 1/2).
Bis(2,2'-bipyridyl-κ2N,N')(sulfato- κ2O,O')zinc(II) ethane-1,2-diol solvate top
Crystal data top
[Zn(SO4)(C10H8N2)2]·C2H6O2F(000) = 1104
Mr = 535.90Dx = 1.619 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5954 reflections
a = 17.017 (3) Åθ = 3.4–27.5°
b = 11.890 (2) ŵ = 1.26 mm1
c = 12.831 (3) ÅT = 223 K
β = 122.14 (3)°Prism, colorless
V = 2198.3 (10) Å30.55 × 0.45 × 0.20 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
2489 independent reflections
Radiation source: fine-focus sealed tube2155 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.021
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.4°
ω scansh = 2222
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1215
Tmin = 0.747, Tmax = 1.000l = 1611
6138 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0539P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2489 reflectionsΔρmax = 0.66 e Å3
156 parametersΔρmin = 0.50 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0173 (10)
Crystal data top
[Zn(SO4)(C10H8N2)2]·C2H6O2V = 2198.3 (10) Å3
Mr = 535.90Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.017 (3) ŵ = 1.26 mm1
b = 11.890 (2) ÅT = 223 K
c = 12.831 (3) Å0.55 × 0.45 × 0.20 mm
β = 122.14 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
2489 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2155 reflections with I > 2σ(I)
Tmin = 0.747, Tmax = 1.000Rint = 0.021
6138 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.08Δρmax = 0.66 e Å3
2489 reflectionsΔρmin = 0.50 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.30659 (2)0.25000.02342 (14)
S10.00000.53723 (5)0.25000.02518 (18)
N20.09876 (11)0.19245 (12)0.38322 (15)0.0241 (4)
O10.04900 (9)0.46074 (12)0.14153 (13)0.0304 (3)
O20.06823 (10)0.60723 (12)0.24320 (15)0.0359 (4)
C90.16178 (16)0.07532 (17)0.5611 (2)0.0327 (5)
H9A0.15670.04520.62420.039*
C70.24124 (14)0.09388 (16)0.45508 (19)0.0280 (4)
H7A0.29110.07710.44690.034*
C80.23603 (14)0.04818 (17)0.55093 (19)0.0316 (5)
H8A0.28210.00010.60740.038*
C100.09473 (14)0.14816 (18)0.47609 (19)0.0307 (4)
H10A0.04500.16700.48390.037*
C60.17124 (13)0.16470 (15)0.37204 (18)0.0233 (4)
N10.10086 (11)0.29012 (13)0.19914 (16)0.0246 (4)
C50.17129 (13)0.21769 (16)0.26699 (18)0.0234 (4)
C40.23903 (15)0.19633 (16)0.2402 (2)0.0299 (4)
H4A0.28690.14610.28800.036*
C10.09742 (14)0.34294 (18)0.1043 (2)0.0297 (4)
H1A0.04940.39350.05810.036*
C20.16244 (16)0.32515 (18)0.0724 (2)0.0326 (5)
H2A0.15780.36250.00570.039*
C30.23444 (15)0.25072 (19)0.1417 (2)0.0336 (5)
H3A0.27910.23740.12230.040*
O30.02134 (16)0.82127 (14)0.14925 (19)0.0535 (5)
H30.02430.76020.18090.080*
C110.03464 (18)0.90768 (19)0.2313 (3)0.0437 (6)
H11A0.03160.97940.19340.052*
H11B0.09630.90060.30450.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02046 (19)0.0218 (2)0.0288 (2)0.0000.01361 (15)0.000
S10.0204 (3)0.0203 (3)0.0342 (4)0.0000.0141 (3)0.000
N20.0227 (8)0.0242 (8)0.0248 (8)0.0007 (6)0.0122 (7)0.0012 (6)
O10.0258 (7)0.0285 (7)0.0321 (8)0.0005 (6)0.0120 (6)0.0016 (6)
O20.0303 (8)0.0280 (7)0.0520 (10)0.0042 (6)0.0236 (7)0.0030 (7)
C90.0364 (11)0.0338 (11)0.0273 (11)0.0006 (9)0.0166 (9)0.0038 (9)
C70.0228 (9)0.0263 (10)0.0312 (11)0.0022 (8)0.0118 (8)0.0011 (8)
C80.0284 (10)0.0290 (10)0.0289 (11)0.0030 (9)0.0094 (9)0.0030 (8)
C100.0296 (10)0.0346 (11)0.0303 (10)0.0027 (9)0.0176 (9)0.0011 (9)
C60.0223 (9)0.0195 (8)0.0256 (9)0.0022 (7)0.0111 (8)0.0042 (7)
N10.0219 (8)0.0242 (8)0.0287 (9)0.0002 (7)0.0140 (7)0.0004 (7)
C50.0213 (9)0.0208 (9)0.0261 (9)0.0025 (7)0.0112 (8)0.0037 (7)
C40.0256 (10)0.0307 (10)0.0348 (11)0.0036 (8)0.0170 (9)0.0013 (9)
C10.0292 (10)0.0297 (10)0.0327 (11)0.0033 (9)0.0182 (9)0.0056 (9)
C20.0358 (11)0.0344 (11)0.0337 (11)0.0045 (9)0.0227 (10)0.0008 (9)
C30.0323 (11)0.0372 (12)0.0396 (12)0.0011 (10)0.0247 (10)0.0045 (10)
O30.0912 (15)0.0382 (9)0.0511 (11)0.0008 (9)0.0513 (11)0.0052 (8)
C110.0494 (14)0.0302 (11)0.0551 (16)0.0024 (10)0.0301 (13)0.0025 (10)
Geometric parameters (Å, º) top
Zn1—N2i2.1287 (17)C8—H8A0.9300
Zn1—N22.1287 (17)C10—H10A0.9300
Zn1—N12.1452 (17)C6—C51.488 (3)
Zn1—N1i2.1452 (17)N1—C11.343 (3)
Zn1—O1i2.1811 (15)N1—C51.351 (3)
Zn1—O12.1811 (15)C5—C41.390 (3)
Zn1—S12.7424 (8)C4—C31.385 (3)
S1—O21.4683 (15)C4—H4A0.9300
S1—O2i1.4683 (14)C1—C21.385 (3)
S1—O11.4915 (15)C1—H1A0.9300
S1—O1i1.4915 (15)C2—C31.384 (3)
N2—C101.338 (3)C2—H2A0.9300
N2—C61.356 (3)C3—H3A0.9300
C9—C81.376 (3)O3—C111.401 (3)
C9—C101.385 (3)O3—H30.8200
C9—H9A0.9300C11—C11i1.490 (5)
C7—C61.383 (3)C11—H11A0.9700
C7—C81.390 (3)C11—H11B0.9700
C7—H7A0.9300
N2i—Zn1—N2100.78 (9)C6—C7—C8119.04 (19)
N2i—Zn1—N196.61 (7)C6—C7—H7A120.5
N2—Zn1—N176.61 (7)C8—C7—H7A120.5
N2i—Zn1—N1i76.61 (7)C9—C8—C7119.1 (2)
N2—Zn1—N1i96.61 (7)C9—C8—H8A120.4
N1—Zn1—N1i169.52 (9)C7—C8—H8A120.4
N2i—Zn1—O1i156.73 (6)N2—C10—C9122.5 (2)
N2—Zn1—O1i98.79 (6)N2—C10—H10A118.8
N1—Zn1—O1i100.06 (6)C9—C10—H10A118.8
N1i—Zn1—O1i88.78 (6)N2—C6—C7121.72 (19)
N2i—Zn1—O198.79 (6)N2—C6—C5115.57 (17)
N2—Zn1—O1156.73 (6)C7—C6—C5122.69 (18)
N1—Zn1—O188.78 (6)C1—N1—C5118.56 (17)
N1i—Zn1—O1100.06 (6)C1—N1—Zn1125.22 (14)
O1i—Zn1—O165.64 (8)C5—N1—Zn1116.18 (13)
N2i—Zn1—S1129.61 (4)N1—C5—C4121.68 (19)
N2—Zn1—S1129.61 (4)N1—C5—C6115.19 (17)
N1—Zn1—S195.24 (4)C4—C5—C6123.12 (18)
N1i—Zn1—S195.24 (4)C3—C4—C5119.26 (19)
O1i—Zn1—S132.82 (4)C3—C4—H4A120.4
O1—Zn1—S132.82 (4)C5—C4—H4A120.4
O2—S1—O2i110.95 (12)N1—C1—C2122.7 (2)
O2—S1—O1110.94 (9)N1—C1—H1A118.7
O2i—S1—O1109.50 (8)C2—C1—H1A118.7
O2—S1—O1i109.50 (8)C3—C2—C1118.8 (2)
O2i—S1—O1i110.94 (9)C3—C2—H2A120.6
O1—S1—O1i104.85 (12)C1—C2—H2A120.6
O2—S1—Zn1124.53 (6)C2—C3—C4119.0 (2)
O2i—S1—Zn1124.53 (6)C2—C3—H3A120.5
O1—S1—Zn152.43 (6)C4—C3—H3A120.5
O1i—S1—Zn152.43 (6)C11—O3—H3109.5
C10—N2—C6118.62 (17)O3—C11—C11i113.7 (2)
C10—N2—Zn1125.01 (14)O3—C11—H11A108.8
C6—N2—Zn1116.37 (13)C11i—C11—H11A108.8
S1—O1—Zn194.75 (8)O3—C11—H11B108.8
C8—C9—C10119.0 (2)C11i—C11—H11B108.8
C8—C9—H9A120.5H11A—C11—H11B107.7
C10—C9—H9A120.5
N2i—Zn1—S1—O2114.55 (10)N1i—Zn1—O1—S184.03 (8)
N2—Zn1—S1—O265.45 (10)O1i—Zn1—O1—S10.0
N1—Zn1—S1—O211.49 (9)C10—C9—C8—C70.5 (3)
N1i—Zn1—S1—O2168.51 (9)C6—C7—C8—C90.5 (3)
O1i—Zn1—S1—O288.97 (11)C6—N2—C10—C90.1 (3)
O1—Zn1—S1—O291.03 (11)Zn1—N2—C10—C9179.13 (15)
N2i—Zn1—S1—O2i65.45 (10)C8—C9—C10—N20.8 (3)
N2—Zn1—S1—O2i114.55 (10)C10—N2—C6—C71.2 (3)
N1—Zn1—S1—O2i168.51 (9)Zn1—N2—C6—C7178.11 (14)
N1i—Zn1—S1—O2i11.49 (9)C10—N2—C6—C5179.68 (17)
O1i—Zn1—S1—O2i91.03 (11)Zn1—N2—C6—C50.4 (2)
O1—Zn1—S1—O2i88.97 (11)C8—C7—C6—N21.4 (3)
N2i—Zn1—S1—O123.52 (9)C8—C7—C6—C5179.77 (18)
N2—Zn1—S1—O1156.48 (9)N2i—Zn1—N1—C180.70 (17)
N1—Zn1—S1—O179.54 (9)N2—Zn1—N1—C1179.74 (18)
N1i—Zn1—S1—O1100.46 (9)N1i—Zn1—N1—C1129.77 (17)
O1i—Zn1—S1—O1180.0O1i—Zn1—N1—C183.00 (17)
N2i—Zn1—S1—O1i156.48 (9)O1—Zn1—N1—C118.01 (17)
N2—Zn1—S1—O1i23.52 (9)S1—Zn1—N1—C150.23 (17)
N1—Zn1—S1—O1i100.46 (9)N2i—Zn1—N1—C597.15 (14)
N1i—Zn1—S1—O1i79.54 (9)N2—Zn1—N1—C52.41 (13)
O1—Zn1—S1—O1i180.0N1i—Zn1—N1—C548.08 (13)
N2i—Zn1—N2—C1087.46 (16)O1i—Zn1—N1—C599.15 (14)
N1—Zn1—N2—C10178.23 (17)O1—Zn1—N1—C5164.14 (14)
N1i—Zn1—N2—C109.89 (17)S1—Zn1—N1—C5131.92 (13)
O1i—Zn1—N2—C1079.90 (16)C1—N1—C5—C40.5 (3)
O1—Zn1—N2—C10125.73 (18)Zn1—N1—C5—C4177.47 (15)
S1—Zn1—N2—C1092.54 (16)C1—N1—C5—C6178.66 (17)
N2i—Zn1—N2—C693.31 (13)Zn1—N1—C5—C63.3 (2)
N1—Zn1—N2—C61.00 (13)N2—C6—C5—N12.5 (2)
N1i—Zn1—N2—C6170.88 (13)C7—C6—C5—N1176.01 (17)
O1i—Zn1—N2—C699.33 (13)N2—C6—C5—C4178.35 (18)
O1—Zn1—N2—C653.5 (2)C7—C6—C5—C43.2 (3)
S1—Zn1—N2—C686.69 (13)N1—C5—C4—C30.1 (3)
O2—S1—O1—Zn1118.12 (8)C6—C5—C4—C3179.02 (18)
O2i—S1—O1—Zn1119.09 (8)C5—N1—C1—C20.8 (3)
O1i—S1—O1—Zn10.0Zn1—N1—C1—C2177.02 (15)
N2i—Zn1—O1—S1161.88 (7)N1—C1—C2—C30.6 (3)
N2—Zn1—O1—S151.09 (18)C1—C2—C3—C40.1 (3)
N1—Zn1—O1—S1101.62 (8)C5—C4—C3—C20.1 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.972.746 (2)158

Experimental details

Crystal data
Chemical formula[Zn(SO4)(C10H8N2)2]·C2H6O2
Mr535.90
Crystal system, space groupMonoclinic, C2/c
Temperature (K)223
a, b, c (Å)17.017 (3), 11.890 (2), 12.831 (3)
β (°) 122.14 (3)
V3)2198.3 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.55 × 0.45 × 0.20
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.747, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6138, 2489, 2155
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.088, 1.08
No. of reflections2489
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.50

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—N22.1287 (17)S1—O21.4683 (15)
Zn1—N12.1452 (17)S1—O11.4915 (15)
Zn1—O12.1811 (15)
N2—Zn1—N176.61 (7)O1i—Zn1—O165.64 (8)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.972.746 (2)158.3
 

Acknowledgements

The work was supported by Scientific Research Foundation of Nanjing College of Chemical Technology (grant No. NHKY-2010-17).

References

First citationHarvey, M., Baggio, S., Mombrú, A. & Baggio, R. (2000). Acta Cryst. C56, 771–774.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHarvey, M., Baggio, S., Russi, S. & Baggio, R. (2003). Acta Cryst. C59, m171–m174.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJacobson, R. A. (1998). REQAB. Rigaku Corportation, Tokyo, Japan.  Google Scholar
First citationJian, F., Li, C., Sun, P. & Xiao, H. (2004). Acta Cryst. E60, m1811–m1812.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationŠestan Jurić, M., Planinić, P. & Giester, G. (2006). Acta Cryst. E62, m2826–m2829.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, M. & Arora, S. K. (1993). Acta Cryst. C49, 372–374.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRodrigues, B. L. (2004). Acta Cryst. E60, m1169–m1171.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, Y., Zhen, W. & Albrecht-Schmitt, T. E. (2007). Inorg. Chem. 46, 10214–10220.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhong, H., Yang, X.-M., Luo, Q.-Y. & Xu, Y.-P. (2007). Acta Cryst. E63, m2208.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, Y.-M., Zhong, K.-L. & Lu, W.-J. (2006). Acta Cryst. E62, m2725–m2726.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds